

Supplementary Figure 1 | SDS-PAGE analysis of the expression and purification of BbBEAS from *S. cerevisiae* BJ5465-NpgA/pDY37 (left) and BbBSLS from *S. cerevisiae* BJ5465-NpgA/pDY42 (right). M: Protein ladder, 1: Soluble fraction of the lysate, 2: Insoluble fraction of the lysate, 3: Flow through, 4-6: Eluents by buffer A with 10, 100 and 250 mM imidazole, respectively.

Supplementary Figure 2 | ESI-MS (+) spectra of compounds synthesized (S1 and S2) or biosynthesized (1-5, 8, 10-15, S3, S4 and S6) in this work and the authentic samples of beauvericin and bassianolide.

Supplementary Figure 3 | High resolution ESI-MS of 1 generated in the *in vitro* reaction of BbBEAS.

Supplementary Figure 4 | High resolution ESI-MS of 5 generated in the *in vitro* reaction of BbBSLS.

BbBEAS-T2aVALCEEATATFGMQ-VGISDHFFKLGGHSLLATKLISRVGDRLKARLTVKDVFDHPIFSELABbBSLS-T2aVMLCEELTKTFEMD-VNITDDFFQLGGHSLLATRLVARISHRLGARLTVKDVFDYPVFSELABbBEAS-T2bTMLCEEFANVLGMD-VGVTDNFFDLGGHSLMATKLAARIGRRLNTTISVKEVFEHPIVFQLABbBSLS-T2bAMLCEEFANILGMD-VGITDNFFDLGGHSLMATKLAARIGHRLNTTISVKDIFSHPVIFQLSTycC-T3SKLAEIWERVLGVSGIGILDNFFQIGGHSLKAMAVAAQVHREYQVELPLKVLFAQPTIKALAGrsB-T3GKLEEIWKDVLGLQRVGIHDDFFTIGGHSLKAMAVISQVHKECQTEVPLRVLFETPTIQGLA

Supplementary Figure 5 | Amino acid sequence alignment of the twin T_2 domains of BbBEAS and BbBSLS with TycC-T₃ and GrsB-T₃. TycC-T₃ is a T domain from TycC (tyrocidine synthetase 3, GenBank accession number AAC45930) and GrsB-T₃ is from GrsB (gramicidin S synthetase 2, GenBank accession number BAA06146). The conserved motif (I/L)GG(D/H)SL is highlighted and the key Ser residue is boxed.

Supplementary Figure 6 | SDS-PAGE analysis of the purified C₁, C₂, C₃ and MT domains from *E. coli* BL21(DE3). M: Protein ladder, 1: C₁(BbBEAS), 2: C₃(BbBEAS), 3: C₃(BbBEAS-H2901A), 4: MT_(BbBEAS), 5: C₃(BbBSLS), 6: C₂(BbBEAS).

Supplementary Figure 7 | HPLC analysis of the reaction of $C_{2(BbBEAS)}$ with S1 and S4. (i) S1+S4+inactivated $C_{2(BbBEAS)}$; (ii) S1+S4+C_{2(BbBEAS)}.

Supplementary Figure 8 | HPLC analysis of the reaction of C_{3(BbBEAS)} with S1, S2 and S4. (i)

 $S1+S2+S4+inactivated C_{3(BbBEAS)}$; (ii) $S1+S2+S4+C_{3(BbBEAS)}$.

Supplementary Figure 9 | High resolution ESI-MS of FX1 (15).

Supplementary Figure 10 | Selected HMBC and ¹H-¹H COSY correlations for FX1 (15).

Supplementary Figure 11 | High resolution ESI-MS of D-Hiv-*N*-Me-L-Phe (11) obtained by hydrolysis of 15 with 0.1 N NaOH.

Supplementary Figure 12 | High resolution ESI-MS of enniatin C (8) generated by C₁-A₁- $T_1-C_2-A_2-MT-T_{2a}-T_{2b(BbBSLS)}-C_{3(BbBEAS)}$ in the yeast.

Compound	NMR data
Enniatin C (8)	¹ H NMR (300 MHz, CDCl ₃): δ 5.27 (3H, dd, $J = 5.4,10.8$ Hz), 4.93 (3H, d, $J = 8.7$ Hz), 3.10 (9H, s), 2.22 (3H, m), 1.75 (3H, m), 1.65 (3H, m), 1.47 (3H, m), 1.00 (9H, d, $J = 6.6$ Hz), 0.94 (9H, d, $J = 6.3$ Hz), 0.93 (9H, d, $J = 6.9$ Hz), 0.91 (9H, d, $J = 6.6$ Hz)
Cyclo-D-Hiv- <i>N</i> -Me-L-Phe (10)	¹ H NMR (300 MHz, CDCl ₃): δ 7.31-7.34 (3H, m), 7.10-7.14 (2H, m), 4.40 (1H, t, $J = 4.5$ Hz), 3.30 (1H, dd, $J = 4.1$, 14.1 Hz), 3.19 (1H, dd, $J = 4.5$, 14.1 Hz), 3.02 (3H, s), 3.00 (1H, d, $J = 2.4$ Hz), 2.28-2.35 (1H, m), 0.84 (3H, d, $J = 7.2$ Hz), 0.76 (3H, d, $J = 6.6$ Hz) ¹³ C NMR (75 MHz, CDCl ₃); δ 167.4, 165.6, 124.2, 120.8 (2);), 120.2
	$(2\times)$, 128.3, 81.4, 62.8, 37.2, 32.5, 29.8, 18.7, 15.2
D-Hiv-N-Me-L-Phe (11)	¹ H NMR (300 MHz, CDCl ₃): δ 7.10-7.34 (5H, m), 4.41 (1H, t, 4.3), 3.28 (1H, dd, $J = 4.1$, 14.0 Hz), 3.21 (1H, dd, $J = 4.6$, 14.0 Hz), 3.02 (3H, s), 3.00 (1H, d, $J = 2.1$ Hz), 2.27-2.37 (1H, m), 0.84 (3H, d, $J = 7.1$ Hz), 0.76 (3H, d, $J = 6.9$ Hz)
	¹³ C NMR (75 MHz, CDCl ₃): δ 168.1, 165.8, 134.2, 129.9 (2×), 129.4 (2×), 128.7, 81.5, 63.0, 37.3, 32.6, 29.9, 18.8, 15.3
FX1 (15)	¹ H NMR (500 MHz, CD ₃ OD): δ 7.21-7.39 (20H, m, phenyl-CH of Phe), 6.02 (1H, dd, $J = 3.5$, 13.4 Hz, α-CH of Phe), 5.98 (1H, dd, $J = 3.0$, 12.9 Hz, α-CH of Phe), 5.70 (1H, dd, $J = 2.9$, 12.8 Hz, α-CH of Phe), 5.11-5.42 (4H, m, α-CH of Hiv), 5.20 (1H, dd, $J = 4.0$, 11.7 Hz, α-CH of Phe), 3.54-3.58 (2H, m, β-CH of Phe), 3.44-3.50 (2H, m, β-CH of Phe), 3.22 (3H, s, <i>N</i> -CH ₃), 3.06 (3H, s, <i>N</i> -CH ₃), 3.08 (3H, s, <i>N</i> -CH ₃), 2.90-3.10 (4H, m, β-CH of Phe), 2.81 (3H, s, <i>N</i> -CH ₃), 1.51-1.70 (4H, m, β-CH of Hiv), 0.89 (3H, d, $J = 6.1$ Hz, γ-CH ₃ of Hiv), 0.71 (3H, d, $J = 6.1$ Hz, γ- CH ₃ of Hiv), 0.65 (3H, d, $J = 6.0$ Hz, γ-CH ₃ of Hiv), 0.60 (3H, d, $J = 7.3$ Hz, γ-CH ₃ of Hiv), 0.48 (3H, d, $J = 6.6$ Hz, γ-CH ₃ of Hiv), 0.28 (3H, d, $J = 6.1$ Hz, γ- CH ₃ of Hiv), 0.28 (3H, d, $J = 6.1$ Hz, γ- CH ₃ of Hiv)
	¹³ C NMR (125 MHz, CD ₃ OD): δ 173.4, 172.8, 172.1, 171.9, 171.0, 170.9, 170.7, 170.5 (C=O), 138.6, 138.3, 138.0, 137.5 (γ-C of Phe), 131.0 (2×CH), 130.9 (2×CH), 130.3 (4×CH), 130.1 (2×CH), 130.0 (2×CH), 129.9 (2×CH), 129.7 (2×CH), 128.2 (2×CH), 128.1 (2×CH) (phenyl-CH of Phe), 78.9, 77.2, 76.7, 76.5 (α-CH of Hiv), 62.0, 59.7, 59.4, 58.8 (α-CH of Phe), 35.9, 35.8, 32.6, 32.5 (CH ₂ of Phe), 29.1, 29.0, 27.0, 26.9 (β-CH of Hiv), 31.8, 31.7, 31.2, 31.1 (<i>N</i> -CH ₃ of Phe), 20.4, 19.5, 19.2, 18.9, 18.4, 17.0, 16.5, 15.4 (CH ₃ of Hiv)

Supplementary Table 1 | NMR data for 8, 10, 11 and 15.

No.	Primer	Sequence	Restriction
			site(s)
1	Company Nhai F	5' agCCTACCatagagatagatagatagagaga 3'	Mhal
2	BhBEAS-Phili-woston-R	5'-aaCACGTGcaaagccgagtttagactet_3'	PmII
2	BEREAS M1 Ndol E	5' anCACOTOCadageegagttagacter-5	I mil Ndel
3	Tu and a withston Dmol D	5' apCTTTA A A Ctannot and a addigt-5	Duel
4	C withston Pmal P	5' apCTTTA A A Ctangtontographic sound at 2'	F mei Dm el
5	Cl(BbBEAS)-withstop-fillef-K	5' apCATATGanggangangangangangangangangangangangang	I mei Ndel
0	DDDSLS-MIT-NUCI-F	5 - aaCATATOgageeaceacaacge-5	Nuel D
/	C ₁ (BbBSLS)-withstop-PmeI-R	5-aaGTTTAAACtcacagtggttcggaattccagc-3	Pmel
8	$T_{2a}T_{2b}C_{3(BbBEAS)}$ -Nhel-F	5'-aaGCTAGCatgctggctcgtagagcccggac-3'	Nhel
9	$T_{2b}C_{3(BbBEAS)}$ -Nhel-F	5'-aaGCTAGCatgcgcgagggggctgcaaaacgt-3'	Nhel
10	$C_{3(BbBSLS)}$ -NdeI-F	5'-aaCATATGgaggtttctcaattggaaag-3'	NdeI
11	A2MT(BbBEAS)-wistop-PmeI-R	5'-aaGTTTAAACtcatgcaacctcaatgtcgctga-3'	PmeI
12	A _{1(BbBEAS)} -NdeI-SpeI-F	5'-aaCATATGACTAGTctccagattctgcaagagtc-3'	NdeI, SpeI
13	T _{2a(BbBEAS)} withstop-PmeI-R	5'-aaGTTTAAACtcacatcgtttccatttcattgc-3'	PmeI
14	T _{2b(BbBSLS)} -wostop-PmlI-R	5'-aaCACGTGcatgtcctgtgaaaagttga-3'	PmlI
15	BbBSLSM1-SpeI-F	5'-aaACTAGTatggagccacccaacaacgc-3'	SpeI
16	BbBSLSM3-PmeI-withstop-R	5'-aaGTTTAAACtcataaagacgcattcaaag-3'	PmeI
17	A _{1(BbBSLS)} -SpeI-F	5'-aaACTAGTcaccaggttctcgaagagtc-3'	SpeI
18	BbBSLS-B-PmlI-wostop-R	5'-aaCACGTGtaaagacgcattcaaagcct-3'	PmlI
19	BSLS-M1-5-SpeI	5'-aaACTAGTatggagccacccaacaacgc-3'	SpeI
20	BSLS-A2MTwithlinker-withstop-PmlI	5'-aaCACGTGtcagctcagtggaaacgccggcgccgtcggtgg-3'	PmlI
21	BSLS-T2aT2bC3linker-5-NdeI	5'-aaCATATGctgtctcgccaggccaaagc-3'	NdeI
22	BSLSM3-3-PmeI-withstop	5'-aaGTTTAAACtcataaagacgcattcaaag-3'	PmeI
23	BSLS-T2bC3linker-5-NdeI	5'-aaCATATGcgtcaacagttggcctcgaa-3'	NdeI
24	BSLS-T2awithlinker-withstop-PmlI	5'-aaCACGTGtcacatggcttccatgtcggtag-3'	PmlI
25	BbBEAS-H2901A-F	5'-gagtettgetttgtetttetgeegeeetetat-3'	
26	BbBEAS-H2901A-R	5'-gtactgaagacgcctgcttgagaatggtg-3'	
27	BbBEAS-D179A-F	5'-atcttgcactcgtggccagcaccgttcag-3'	
28	BbBEAS-D179A-R	5'-gaaatacccaaatcagcagttgtttccttg-3'	
29	BbBSLS-H170A-F	5'-ttcttgtatggacattcagcgcctcttttgtcgacagt-3'	
30	BbBSLS-H170A-R	5'-ctcgtctcttggaattgggttctccggtaaggacatat-3'	
31	BbBSLS-H2861A-F	5'-gtccttttgtggctatcagctgctttgtatgatggctt-3'	
32	BbBSLS-H2861A-R	5'-tctcacagacgatgtctgcttcagaaccttgacttgt-3'	
33	BbBEAS-S2591A-F	5'-tcaaactcggcggtcatgctctgcttgctacaaaac-3'	
34	BbBEAS-S2591A-R	5'-aaaagtgatcgctgatgccgacttgcattccaaacgt-3'	
35	BbBSLS-D174A-F	5'-agccactcttttgtcgccagtgcgttcca-3'	
36	BbBSLS-D174A-R	5'-gaatgtccatacaagaactcgtctcttggaa-3'	
37	BbBEAS-S2688A-F	5'-ttttttgacctcggtgggcatgcgctcatggcgaca-3'	
38	BbBEAS-S2688A-R	5'-gttgtccgtgactccgacatccatgccaaggacatt-3'	
39	$Linker(T_{2a})linker(T_{2b})T_{2b}C_3$ -SOE1-R	5'-cgacgttttgcagcccctcgcgtgcaacctcaatgtcgctg-3'	
40	$Linker(T_{2a})linker(T_{2b})T_{2b}C_3$ -SOE2-F	5'-cagcgacattgaggttgcacgcgaggggctgcaaaacgtcg-3'	
41	BbBEAS-AscI7195-F	5'-aaactagatGGCGCGCCctggatatccgccgt-3'	AscI
42	BbBEAS with $T_{2a}T_{2b}C_{3(BbBSLS)}$ -F	5'-cccggacgacgacgatggtgcaaaagtcggcacc-3'	
43	BbBEAS with $T_{2a}T_{2b}C_{3(BbBSLS)}$ -R	5'-ggtgccgacttttgcaccatcgtcgtcgtcggg-3'	
44	BbBEAS with $T_{2b}C_{3(BbBSLS)}$ -F	5'-ctttgaatggtggtggaggccaggacaagaaaga-3'	
45	BbBEAS with $T_{2b}C_{3(BbBSLS)}$ -R	5'-tetttettgteetggeeteeaceaceatteaaag-3'	
46	BbBEAS with $C_{3(BbBSLS)}$ -F	5'-acactgcgtttcaactcattcccgccgccgatgc-3'	
47	BbBEAS with C _{3(BbBSLS)} -R	5'-gcatcggcggcgggaatgagttgaaacgcagtgt-3'	_
48	BbBSLS-BsrGI6843-F	5'-aaTGTACActtgcgcggctcagac-3'	BsrGI
49	BbBSLS with $T_{2a}T_{2b}C_{3(BbBEAS)}$ -F	5'-ccaaagctatcaaaaagacgaagaaaaagaagcc-3'	

Supplementary Table 2 | Primers used in this study.

50	BbBSLS with T _{2a} T _{2b} C _{3(BbBEAS)} -R	5'-ggcttctttttcttcgtctttttgatagctttgg-3'	
51	BbBSLS with T _{2b} C _{3(BbBEAS)} -F	5'-cttcggccggtggtggtcaagcgaagcaagggtc-3'	
52	BbBSLS with T _{2b} C _{3(BbBEAS)} -R	5'-gaccettgettegettgaceaceaceggeegaag-3'	
53	BbBSLS with C _{3(BbBEAS)} -F	5'-acactgccttccagctcttgtctgttgaagattt-3'	
54	BbBSLS with C _{3(BbBEAS)} -R	5'-aaatcttcaacagacaagagctggaaggcagtgt-3'	
55	C _{1(BbBEAS})-withstop-BamHI-R	5'-aaGGATCCtcagtcctcgcgagtcacaatgt-3'	<i>BamH</i> I
56	C _{3(BbBEAS)} -NheI-pET-F	5'-aaGCTAGCatggagctgggtcagttggagag-3'	NheI
57	BbBEAS-B-R-BamHI	5'-aaGGATCCtcacaaagccgagtttagactct-3'	BamHI
58	C _{3(BbBSLS)} -NdeI-pET-F	5'-aaCATATGcagcaatgttttctacgc-3'	NdeI
59	BbBSLSM3-BamHI-withstop-R	5'-aaGGATCCtcataaagacgcattcaaag-3'	BamHI
60	C _{2(BbBEAS)} -NdeI-F	5'-aaCATATGagcggcgattctacgccctc-3'	NdeI
61	C _{2(BbBEAS)} -HindIII-R	5'-aaAAGCTTtcagctgtcgagctcctttaacc-3'	HindIII
62	MT _(BbBEAS) -NdeI-F	5'-aaCATATGgctgacgatgccgttgagca-3'	NdeI
63	MT _(BbBEAS) -BamHI-R	5'-aaGGATCCtcactgcagccgctgcagcggcc-3'	BamHI

Plasmid	Description	Primers
pDY83	$C_{3(bbBeas)}$ in pJET1.2	1, 2
pDY85	$bbBeas-\Delta C_3(PmeI)$ in pJET1.2	3, 4
pDY87	C _{3(bbBeas)} in YEpADH2p-URA3	
pDY88	$bbBeas-\Delta C_3(PmeI)$ in YEpADH2p-TRP1	
pDY92	$C_{I(bbBeas)}$ in pJET1.2	3, 5
pDY93	$C_{I(bbBsls)}$ in pJET1.2	6, 7
pDY100	$C_{1(bbBeas)}$ in YEpADH2p-TRP1	
pDY101	C _{1(bbBsls)} in YEpADH2p-TRP1	
pDY104	$T_{2a}T_{2b}C_{3(bbBeas)}$ in pJET1.2	8, 2
pDY105	$T_{2b}C_{3(bbBeas)}$ in pJET1.2	9, 2
pDY106	$C_{3(bbBsls)}$ in pJET1.2	10, 16
pDY108	$bbBeas$ - $\Delta T_{2a}T_{2b}C_3$ in pJET1.2	3, 11
pDY109	<i>bbBeas-</i> ΔC_1 in pJET1.2	12, 2
pDY111	$bbBeas$ - $\Delta T_{2b}C_3$ in pJET1.2	3, 13
pDY112	$bbBsls$ - ΔC_3 in pJET1.2	15, 14
pDY113	$bbBsls$ - ΔC_1 in pJET1.2	17, 18
pDY114	$T_{2a}T_{2b}C_{3(bbBeas)}$ in YEpADH2p-URA3	
pDY115	$T_{2b}C_{3(bbBeas)}$ in YEpADH2p-URA3	
pDY116	$C_{3(bbBsls)}$ in YEpADH2p-TRP1	
pDY117	$bbBeas$ - ΔC_1 in YEpADH2p-URA3	
pDY118	$bbBeas$ - $\Delta T_{2b}C_3$ in YEpADH2p-TRP1	
pDY119	$bbBsls-\Delta C_3$ in YEpADH2p-URA3	
pDY121	<i>bbBsls-</i> ΔC_1 in YEpADH2p-URA3	
pDY122	$bbBeas$ - $\Delta T_{2a}T_{2b}C_3$ in YEpADH2p-TRP1	
pDY135	$bbBsls$ - $\Delta T_{2a}T_{2b}C_3$ in pJET1.2	19, 20
pDY136	$T_{2a}T_{2b}C_{3(bbBsls)}$ in pJET1.2	21, 22
pDY137	$T_{2b}C_{3(bbBsls)}$ in pJET1.2	22, 23
pDY138	$bbBsls$ - $\Delta T_{2b}C_3$ in pJET1.2	19, 24
pDY139	$T_{2b}C_{3(bbBsls)}$ in YEpADH2p-TRP1	
pDY140	$T_{2a}T_{2b}C_{3(bbBsls)}$ in YEpADH2p-TRP1	
pDY141	$bbBsls$ - $\Delta T_{2b}C_3$ in YEpADH2p-URA3	
pDY150	$bbBsls$ - $\Delta T_{2a}T_{2b}C_3$ in YEpADH2p-URA3	
pDY145	<i>bbBeas-H2901A</i> in YEpADH2p-URA3	25, 26
pDY149	bbBeas-D179A in YEpADH2p-URA3	27, 28
pDY151	<i>bbBsls-H170A</i> in YEpADH2p-URA3	29, 30
pDY152	<i>bbBsls-H2861A</i> in YEpADH2p-URA3	31, 32
pDY158	<i>bbBeas-S2591A</i> in YEpADH2p-URA3	33, 34
pDY161	<i>bbBsls-D174A</i> in YEpADH2p-URA3	35, 36
pDY162	bbBeas-S2688A in YEpADH2p-URA3	37, 38
pDY165	$bbBeas-\Delta T_{2a}$ in pJET1.2	41, 39, 40, 2
pDY173	$bbBeas$ - ΔT_{2a} in YEpADH2p-URA3	
pDY183	<i>bbBeas-S2591A</i> in pDY162	33, 34

Supplementary Table 3 | Plasmids constructed in this study.

pDY188	<i>bbBeas with</i> $T_{2a}T_{2b}C_{3(bbBsls)}$ in pJET1.2	41, 43, 42, 18
pDY189	<i>bbBeas with</i> $T_{2b}C_{3(bbBsls)}$ in pJET1.2	41, 45, 44, 18
pDY190	<i>bbBeas with</i> $C_{3(bbBsls)}$ in pJET1.2	41, 47, 46, 18
pDY191	<i>bbBsls with</i> $T_{2a}T_{2b}C_{3(bbBeas)}$ in pJET1.2	48, 50, 49, 2
pDY192	<i>bbBsls with</i> $T_{2b}C_{3(bbBeas)}$ in pJET1.2	48, 52, 51, 2
pDY201	$C_1A_1T_1C_2A_2MT_{(bbBeas)}T_{2a}T_{2b}C_{3(bbBsls)}$ in YEpADH2p-URA3	
pDY203	$C_1A_1T_1C_2A_2MTT_{2a}T_{2b(bbBeas)}$ - $C_{3(bbBsls)}$ in YEpADH2p-URA3	
pDY204	$C_1A_1T_1C_2A_2MTT_{2a(bbBeas)}T_{2b}C_{3(bbBsls)}$ in YEpADH2p-URA3	
pDY205	$C_1A_1T_1C_2A_2MTT_{2a(bbBsls)}T_{2b}C_{3(bbBeas)}$ in YEpADH2p-URA3	
pDY215	$C_1A_1T_1C_2A_2MT_{(bbBsls)}T_{2a}T_{2b}C_{3(bbBeas)}$ in YEpADH2p-URA3	
pDY222	<i>bbBsls with</i> $C_{3(bbBeas)}$ in pJET1.2	48, 54, 53, 2
pDY224	$C_1A_1T_1C_2A_2MTT_{2a}T_{2b(bbBsls)}$ - $C_{3(bbBeas)}$ in YEpADH2p-URA3	
pFC1	$C_{1(bbBeas)}$ in pJET1.2	3, 55
pFC2	$C_{3(bbBeas)}$ in pJET1.2	56, 57
pFC3	$C_{1(bbBeas)}$ in pET28a	
pFC4	$C_{3(bbBeas)}$ in pET28a	
pFC9	$C_{3(bbBsls)}$ in pJET1.2	58, 59
pFC11	$C_{3 (bbBsls)}$ in pET28a	
pFC44	$C_{3(bbBeas-H2901A)}$ in pJET1.2	56, 57
pFC46	$C_{3(bbBeas-H290IA)}$ in pET28a	
pFC62	$C_{2(bbBeas)}$ in pJET1.2	60, 61
pFC63	$C_{2(bbBeas)}$ in pET28a	
pZJ134	$MT_{(bbBeas)}$ in pJET1.2	62, 63
pJCZ21	<i>MT</i> _(bbBeas) in pET28a	