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Supplementary Figure 1: Correlation of the death time of 2-dimensional homology classes and
the diameters of the largest included sphere Di when using methane CH4 as a probe molecule.
The red line indicates the least squares regression line; Death time = 35.6×Di–100.8.
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DCS=DTS 

Supplementary Figure 2: The effect of weighting the conventional properties differently on
ConD. The x and y axes give the average of the distances (DCS or DTS) from four most similar
materials to the corresponding reference zeolite structure (seed structure for searching similar
ones) measured in conventional or barcode space respectively. 50 different combinations of
weight factors were chosen randomly, and the results for each combination are distinguished
using different colors. A cross-hatched ellipse shows the area that contains the centers of the
point clouds which are obtained from different weighting choices.
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Supplementary Figure 3: The persistence barcodes of a torus as obtained from a channel by
implying periodic boundary conditions.
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Supplementary Figure 4: A persistence barcode and its corresponding persistence landscape.
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Supplementary Figure 5: Construction of the Vietoris-Rips complex from a point cloud in 2D
for increasing radii, together with the 0- and 1-dimensional persistence barcodes of the resulting
filtration. H0 counts the connected components of the complex for a given radius, andH1 tracks
circles that do not bound disks. The construction in 3D works analogously, using balls instead
of disks.
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Supplementary Figure 6: The zeolites most similar to MOF-5 and Cu-BTC with respect to
PerH.
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Supplementary Figure 7: Finding hypothetical MOFs that best resemble the experimentally
known structures ZESFUY and OGURAK.
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Supplementary Tables

Descriptor name Di Df ρ ASA AV

Seed SSF 7.59 6.15 1.64 1191.97 0.122
1st PCOD8328603 8.09 6.34 1.77 1167.86 0.120

PerH 2nd PCOD8267032 7.54 6.22 1.70 1171.01 0.115
3rd PCOD8267258 7.72 6.21 1.63 1205.27 0.115
4th PCOD8325065 7.63 6.29 1.59 1239.91 0.133

Seed SSF 7.59 6.15 1.64 1191.97 0.122
1st PCOD8242590 7.87 6.16 1.62 1210.05 0.119

ConD 2nd PCOD8239380 7.60 6.29 1.63 1156.76 0.120
3rd PCOD8267258 7.72 6.21 1.63 1205.27 0.115
4th PCOD8070132 7.69 6.49 1.62 1187.66 0.126

Seed IWV 8.48 6.97 1.50 1502.63 0.181
1st PCOD8285528 8.46 6.86 1.54 1476.78 0.176

PerH 2nd PCOD8329417 7.88 6.65 1.49 1507.05 0.189
3rd PCOD8284133 9.17 6.92 1.63 1491.56 0.194
4th PCOD8283909 9.08 6.60 1.49 1534.93 0.187

Seed IWV 8.48 6.97 1.50 1502.63 0.181
1st PCOD8302674 8.78 7.00 1.50 1499.77 0.183

ConD 2nd PCOD8310713 8.39 7.05 1.49 1533.70 0.178
3rd PCOD8079814 8.33 7.07 1.48 1523.32 0.175
4th PCOD8059487 7.99 7.01 1.48 1506.13 0.180

Supplementary Table 1: The global structural properties of the four zeolites most similar to
SSF and IWV selected by either conventional descriptors (ConD) or using persistance homol-
ogy (PerH): Di (maximum included sphere), Df (maximum free sphere), ρ (density), ASA
(accessible surface area), and AV (accessible volume).
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 Examples Features 

Group A 

 

 1-dimensional 

channels 

 Large 

equilateral 

polygonal 

cross-section 

Group B 

 

 1-dimensional 

channels with 

connections 

Group C 

 

 1-dimensional 

channels 

 Small cross-

section 

 Multi channels 

Group D 

 

 2-dimensional 

channels 

 

Group E 

 

 Connected 

small 

polygonal 

cross-section 

 Other shapes 

 

Group F 

 

 Flatten 

channels 

 Small void 

fraction 

Group G 

 

 Small 

polygonal 

cross-section 

without 

connection 

 

 

Supplementary Table 2: Examples from the seven topologically different classes of top-
performing materials for methane storage (see also Figure 4).
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Property PD0 PD1 PD2 PD1,2 PD0,1,2

K∗H 0.080 0.087 0.074 0.085 0.086
ρ 0.082 0.107 0.121 0.096 0.073
Qad 0.369 0.392 0.412 0.379 0.386
ASA 0.078 0.476 0.621 0.459 0.091
Di 0.318 0.367 0.155 0.234 0.172
Df 0.346 0.263 0.344 0.293 0.158
AV ∗ 0.217 0.328 0.319 0.312 0.194

∗Mean absolute percentage errors of KH and AV are obtained with logKH and logAV .

Supplementary Table 3: TDA analysis of the conventional descriptors KH (Henry coefficient),
Qad (heat of adsorption), ρ (density), Di (maximum included sphere), Df (maximum free
sphere), ASA (accessible surface area), and AV (accessible volume). The data show the mean
absolute percentage error, expressing how well these descriptors can be predicted on the ba-
sis of a training set using only the 0-D, 1-D or 2-D barcode as fingerprint, (PD0, PD1, and
PD2, respectively), the combined 1-D and 2-D barcodes (PD1,2), and the combination of bar-
codes from all 3 dimensions (PD0,1,2). The mean absolute percentage error is calculated as
1
n

∑n
i=1

∣∣∣Pi,PD−Pi

Pi

∣∣∣ where n is the number of zeolites, and Pi or Pi, Pi,PerH is a property of a
zeolite or that of the most similar zeolite selected by PD, respectively.
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Supplementary Note 1

Persistent homology

Topological data analysis (TDA) is a mathematical technique for assigning various topological

invariants to data. The guiding philosophy of TDA is that the ‘shape’ of the data, encoded by a

mathematical ‘signature’, should reveal important relations among the data points. One of the

best-known TDA techniques is persistent homology1,2, which we describe very briefly here.

Each material is encoded as a point cloud obtained by sampling points on the pore surface,

giving rise to a description of the material in terms of the coordinates of the sampled points

in 3-space. From the points, we construct a filtration of Vietoris-Rips complexes, which is a

sequence of nested triangulated objects.

For a fixed non-negative real number r, the Vietoris-Rips complex of a point cloud is con-

structed as follows from the collection of balls of radius r centered at the points of the point

cloud. Starting with the elements of the point cloud, add a line segment between a pair of points

when the balls centered at the two points overlap. Similarly, a solid triangle is added when

each pair of balls centered at its corners intersect and a solid tetrahedron when four balls all

intersect pairwise. This procedure can be extended to all higher dimensions, but we stopped at

solid tetrahedra both for computational reasons and because our point cloud represented a real

three-dimensional structure. Since the Vietoris-Rips complex for a small radius is contained in

the complex for a bigger radius, we obtain a filtration of complexes (Supplementary Figure 5

top).

The shape of a complex is partly captured by its homology groups Hn, where n is a non-

negative integer. The nonzero elements of Hn are the homology classes in dimension n, which

correspond to the n-dimensional ‘holes’ in the complex. More precisely, the 0-dimensional

homology classes correspond to the connected components, while a 1-dimensional homology
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class is represented by a closed curve that does not bound a surface and a 2-dimensional homol-

ogy class by a bounded cavity.

For example, a hollow tube has one 0-dimensional homology class since it is connected, one

1-dimensional homology class corresponding to the circle running around the axis of the tube,

which does not bound a disk, and no 2-dimensional homology class, as the tube does not bound

a 3-dimensional cavity. In contrast, if the ends of the tube are glued together, for example by

applying periodic boundary conditions, a torus is formed (see Supplementary Figure 3). Being

connected, it still has one 0-dimensional homology class, but two independent 1-dimensional

homology classes, which are represented by the circle around the axis (blue) and the newly

formed circle that runs parallel to the axis (red). The torus is hollow and thus bounds a cavity

that represents a 2-dimensional homology class. If a solid torus is considered, the circle around

the axis bounds a disk and therefore does not contribute to the 1-dimensional homology, and

there is no nonzero 2-dimensional homology class.

The homology classes of a point cloud (such as that obtained by sampling a pore surface) are

not very informative, since each point forms its own connected component, while Hn = 0 for

all n > 0. In contrast, the homology groups of its Vietoris-Rips complexes strongly depend on

the position of the points in space. This information is stored in persistence barcodes that track

the non-trivial homology classes through the radius-dependent filtration. A persistence barcode

is a set of intervals where each nontrivial homology class is represented by a bar. The starting

point of an interval denotes the smallest radius for which the homology class represented by

the interval (e.g., a circle around a hole in dimension 1) appears in homology of the associated

Vietoris-Rips complex, while the endpoint is given by the radius where the homology class

disappears (e.g., the smallest radius for which the balls close the hole) (Supplementary Figure 5

bottom, Supplementary Figure 3). Classes that have a short lifetime can be considered as noise,

while classes that persist through long intervals reveal actual structural features of the point

12



cloud.

To compare two materials in terms of their persistence barcodes, we use a combination of

the L2-distances between the persistence landcapes corresponding to the persistence barcodes

of same dimensions. Informally, a persistence landscape is a family of functions

λ =
{
λk : R→ R ∪ {∞} | k ∈ N

}
obtained from a barcode by “stacking together isosceles triangles whose bases are the intervals

of the barcode,” where the kth function describes the contour of the kth maximum (Supplemen-

tary Figure 4); see Supp Ref 3 for a rigorous definition. The L2-landscape distance between

two persistence barcodes B and B′ with corresponding persistence landscapes λ and λ′ is given

by

Λ(B,B′) = ‖λ− λ′‖2 =
∞∑
k=1

(∫
|λk(t)− λ′k(t)|2dt

) 1
2
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Supplementary Note 2

Similarity in different classes of nanoporous materials

To illustrate the application of our method to finding similar pore geometries across different

classes of nanoporous materials, we consider the following questions.

1. Are there zeolites that have the same pore geometry as a given MOF?

2. Are there hypothetical MOFs that are similar to MOFs that have already been synthe-

sized?

The common theme behind these questions is to illustrate how the methodology developed here

allows researchers to identify materials that have similar pore geometries.

MOFs and zeolites

In Supplementary Figure 6, we identify the structures in the IZA+ hypothetical zeolite database4,5

that are most topologically similar to some of the best known MOFs (e.g., MOF-5 and Cu-BTC).

The figure shows that we can indeed find hypothetical zeolite structures that look very similar

to these MOFs.

Hypothetical and experimental MOFs

For hypothetical MOFs we have a database of over 140,000 materials.6 An interesting question

is whether pore geometries similar to those occurring in hypothetical MOFs have already been

synthesized. This question is difficult to answer with traditional methods, since the materials

might differ in their chemical composition. We have compared the similarity of structures from

the database of hypothetical MOFs (hMOFs) with the experimental structures in the CoRE-

MOF database. Supplementary Figure 7 shows two examples of similar structures. The color
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coding of the structures shows that the chemical composition of the two structures is very dif-

ferent.
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Supplementary Note 3

Global structural properties

In the main text we explained that the different dimensions of the persistent homology of the

structures that we consider admit geometric interpretation. It is therefore interesting to see

whether we can detect this geometric content when we use our method to test the capability of

PerH to screen zeolites for the following conventional structural properties: Di, Df , ρ, ASA,

AV , the Henry coefficient (KH), and the heat of adsorption (Qad). We use methane as a probe

molecule.

Starting with a highly diverse training set of 600 structures chosen by the min-max algorithm7,

we perform high-throughput screening for the entire set of zeolites, using five different PerH’s:

PD0 (=L0 as defined in Methods), PD1, and PD2, which use only 0-, 1-, or 2-dimensional

persistent homology information respectively, as well as PD12 and PD012 which combine in-

formation from 1- and 2- or 0-, 1-, and 2-dimensional persistent homology. For PD12 equal

weights were used, and for PD012 the same weights as given in the methods section. For each

screening, we compare the conventional properties of each zeolite with those of the most similar

one in the training set. Supplementary Table 3 summarizes the mean absolute percentage errors

(MAPE) for each property, which is calculated as

MAPE =
1

n

n∑
i=1

∣∣∣∣PPi,PerH − PPi

PPi

∣∣∣∣ ,
where n is the number of zeolites in the promising set, and PPi (respectively, PPi,PerH) is

the performance property of the ith zeolite (respectively, of the zeolite in the training set most

similar to the ith zeolite).

We observe that TDA-based descriptors are also capable of screening for structural proper-

ties. Moreover, the different dimensions of the persistent homology detect different structural

properties. Using the standard deviation of the prediction of the screening as a measure of the
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quality of the description, Supplementary Table 3 shows that the best prediction for the surface

area (ASA) is the 0-dimensional descriptor (PD0), while the maximum included sphere (Di)

is best predicted with a 2-dimensional descriptor (PD2). In Supplementary Note 1, we explain

that this corresponds to the geometric interpretation of the persistent homology in the different

dimensions. In addition Supplementary Table 3 shows that averaging over the three dimensions

provides a good description of all properties.
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