OMTN, Volume 7

Supplemental Information

Evaluation of MYBPC3 trans-Splicing

and Gene Replacement as Therapeutic Options

in Human iPSC-Derived Cardiomyocytes

Maksymilian Prondzynski, Elisabeth Krämer, Sandra D. Laufer, Aya Shibamiya, Ole Pless, Frederik Flenner, Oliver J. Müller, Julia Münch, Charles Redwood, Arne Hansen, Monica Patten, Thomas Eschenhagen, Giulia Mearini, and Lucie Carrier

Figure S1: Schematic representation of two gene therapy approaches. (a) RNA *trans*-splicing. After virusmediated delivery, pre-*trans*-splicing molecules (PTMs) are transcribed in the nucleus. PTMs target the pre-mRNA of the gene of interest (GOI) and produce via *trans*-splicing a repaired, chimeric mRNA, without mutation. Translation of the repaired mRNA leads to a corrected fully functional protein. This process is competing with *cis*splicing, the classical splicing mechanism, by which endogenous mRNA and proteins are produced. (b) Gene replacement. The mutation in the GOI results in low level or the absence of corresponding protein. After virusmediated delivery, a full-length wild-type cDNA of GOI is transcribed in the nucleus. The resulting mRNA is translated into functional protein that replaces the missing mutant endogenous protein. GOI: gene of interest; yellow tag: i.e. FLAG to discriminate exogenous molecules; red bolt: gene mutation.

Figure S2: Validation of the *MYBPC3* **mutation at the genomic level.** PCR was performed on genomic DNA from blood cells from the HCM patient using intronic primers around *MYBPC3* exon 16 and compared to a human control sequence. Sanger sequencing confirmed the presence of an insertion of a C (c.1358_1359insC) at the heterozygous state in the HCM patient. Wild-type and frameshift sequences are also shown.

Figure S3: Gene expression analysis of Ctrl and HCM hiPSC-derived cardiomyocytes. Evaluation of mRNA levels determined by nCounter NanoString technology in Ctrl and HCM hiPSC-derived CM (n=3-6, with n=number of wells from one transduction experiment). Green bars are significantly upregulated and red bars are significantly downregulated. Data are expressed as mean \pm SEM. *P*<0.05, unpaired Students *t*-test.

Figure S4: Schematic illustration of PTMs. (a) The 5'PTM plasmid carries the 5'-FLAG-tagged wild-type (WT) *MYBPC3* coding sequence of exons 1 to 21 under the control of the human cardiac troponin T promoter (*TNNT2*). The 5'PTM also included a chimeric intron, containing sequences from the human β -globin and immunoglobulin (IgG) genes, conserved splice donor site (5'SS) followed by an intronic region (DISE) from the rat fibroblast growth factor receptor 2 gene and 120 nucleotides for binding to *MYBPC3* intron 21 (5' BD I-21). (b) The 3'PTM plasmid carries wild-type (WT) *MYBPC3* coding sequence of exons 22 to 34 under the control of the human cardiac troponin T promoter (*TNNT2*). The sequence is FLAG-tagged at the 3' end before the stop codon (TGA). The 3'PTM includes the same intron as in (a) and the binding domain targets the same sequence in *MYBPC3* intron 21 as 5'PTM. In addition, conserved 3' splicing sequences such as branch point (BP) and polypyrimidine tract (PTT) are present. ATG, start codon; BP, branch point; DISE, downstream intronic splicing enhancer element; P_{*TNNT2*}, cardiac troponin T promoter; PPT, polypyrimidine tract; TGA, stop codon; 5'SS, 5'-splice site; 3'SS, 3'-splice site.

Figure S5: Efficiency of AAV-*TNNT2***-GFP-mediated transduction in control hiPSC-derived cardiomyocytes.** hiPSC-CMs were transduced with MOIs of 1,000 up to 100,000 and cultured in 2D for seven days. GFP expression was evaluated by epifluorescence microscopy. Corresponding bright field images are also shown. Scale bars, 400 µm. GFP, green fluorescent protein; MOI, multiplicity of infection.

Figure S6: Validation of *trans-spliced MYBPC3* mRNA after 5'- and 3'-mode of *trans-splicing.* (a) Sequencing of the gel-extracted 2,180-bp fragment amplified by RT-PCR with primers FLAG-F/E23-R in the AAV-5'PTM-transduced hiPSC-CMs sample validated the presence of the FLAG sequence after alignment with the 5'PTM plasmid. (b) Sequencing of the gel-extracted 1,874-bp fragment amplified by RT-PCR with primers E21-F/FLAG-R in AAV-3'PTM-transduced hiPSC-CMs sample validated the presence of the FLAG sequence after alignment with the 3'PTM. Alignment was performed with SnapGene® software. E, exon; RT-PCR, reverse transcriptase PCR.

Supplemental Table S1. Acronyms and names of genes evaluated with the nanoString nCounter® Elements

technology.

Acronym	Name	Accession number (NCBI)
ABCF1	ATP binding cassette subfamily F member 1	NM 001090.2
ACTA1	Actin, alpha, skeletal muscle	NM 001100.3
ACTC1	Actin, alpha, cardiac muscle 1	NM 005159.4
ACTN2	Alpha-Actinin 2	NM 001103.2
ATP1A1	Na/K-ATPase α 1 subunit	NM 000702.3
ATP1A2	Na/K-ATPase α2 subunit	NM 001681.3
ΔΤΡ2Δ2	ATPase sarconlasmic /endonlasmic reticulum Ca2+ transporting 2	NM 001681 3
	PCI 2 associated V apoptocis regulator	NM_001081.3
	PCL2 associated A, apoptosis regulator	NM_138701.3
	Colorer voltage geted sharped suburit elebert C (L Ture Co2), sharped	NM_000837.2
CACNAIC	Calcium voltage-gated channel subunit alpha1 C (L-Type Ca2+ channel)	NM_199460.2
CACNAIG	Calcium voltage-gated channel subunit alphal G (T type Ca2+ channel)	NM_198397.1
CASP3	Caspase 3	NM_032991.2
CASQ2	Calsequestrin-2	NM_001232.3
CLTC	Clathrin heavy chain	NM_004859.2
COL1A1	Collagen type I alpha 1	NM_000088.3
COL3A1	Collagen type III alpha 1	NM_000090.3
CTGF	Connective tissue growth factor	NM_001901.2
FHL1	Four-and-a-half-LIM-domains 1	NM_001449.4
FHL2	Four-and-a-half-LIM-domains 2	NM_001039492.2
FN1	Fibronectin 1	NM_212482.1
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	NM_002046.3
KCNA4	Potassium voltage-gated channel subfamily A member 4 (Ito,s K+ channel)	NM 002233.3
KCNA5	Potassium voltage-gated channel subfamily A member 5 (IKUR)	NM 002234.2
KCND3	Potassium voltage-gated channel subfamily D member 3 (Ito, f beta subunit, Kv4.3)	NM 004980.4
KCNF1	Potassium voltage-gated channel subfamily E regulatory subunit 1 (MinK, Iks)	NM 001127670.1
KCNF2	Potassium voltage-gated channel subfamily E regulatory subunit 2 (MIRP2 Jkr)	NM 172201 1
KCNH2	Potassium voltage-gated channel subfamily H member 2 (Ikr K+ channel)	NM 172057 2
KCNIP2	Potassium voltage-gated channel interacting protein 2 (KChiP2 heta subunit. Ito)	NM_172037.2
KCNI11	Potassium voltage-gated channel subfamily I member 11 (Kir 6.2. IkATP)	NM 000525 3
KCN112	Potassium voltage-gated channel subfamily I member 12 (kit channel subunit 2)	NM 021012 4
KCN12	Potassium voltage-gated channel subfamily I member 2 (Ik1 channel)	NM_000891.2
KCNI3	Potassium voltage-gated channel subfamily I member 3 (IKACH)	NM 001260508 1
KCN15	Potassium voltage-gated channel subfamily I member 5 (IKACH)	NM_000890_3
	Potassium calcium-activated channel subfamily M alnha 1 (BK Channel)	NM_001014797.2
KCNN3	Potassium calcium-activated channel subfamily N member 3 (SK3)	NM_002249.4
	Potassium voltage-gated channel subfamily O member 1 (Iks K+ channel)	NM 181798 1
MEOX1	Mesenchyme homeobox 1	NM_101040002 1
MVH6	Muosin heavy chain 6	NM_002471_3
MVH7	Myosin heavy chain 7	NM_000257.2
	Nuclear factor kappa B subunit 1	NM_002098_2
	Nativratic poptido A	NM_006172.2
	Nativiratic popula A	NM_000521.2
DGK1	Dheenheeliveerate kinase 1	NM_002321.2
		NM_002667.2
	Phospholamban	NM_002087.3
	Protein prospilatase 1, regulatory (minibitor) subunit 1A (i-1)	NM_006/41.5
RCAN1	Negulator or calcilieurini 1	NIM 001025 2
RTRZ	Nydhoume receptor 2 S100 calcium binding protoin A4 (=5501)	NIN 002061 2
S100A4	STOU CAICIUM DINDING PROTEIN A4 (=FSP1)	NIVI_002961.2
SCINTUA	Sourium vortage-gated channel alpha suburit 10 (Na+ channel, Nav1.8)	NINI_UU0514.2
SUNSA	Sourium vortage-gated channel alpha subunit 5 (Na+ channel, NaV1.5)	INIVI_198056.2
SLC8A1	Solute carrier family 8 member A1 (Natrium-Calcium Exchanger, NCX)	NIVI_021097.1
SLC9A1	Solute carrier family 9 member A1 (Na+/H+ exchanger)	NIVI_003047.4
SKF	Serum response factor	NIVI_003131.3
TUBB	lubulin beta class 1	NM 178014.3

Supplemental Table S2. Sequences of PCR primers

Primer	Sequence (5' to 3')	
E1-F	GCCAGTCTCAGCTTTTAGCAA	
E2-R	CAGGCCGTACTTGTTGCTG	
l15-F	CTGGGACCTGAGGATGTGGG	
l16-R	GGTGGGTGGGTGGCAAGTG	
E15-F	CCAAGCGTACCCTGACCA	
E16-R	CCCTCCTCCGATACTTCACA	
E21-F	CCATTGTGGTTGTAGCTGGA	
E23-R	CACACAGCAGCTTCTTGTCA	
E33-F	CCCAAGATTTCCTGGTTCAAA	
E33-R	CCTCGCCCTGTAAGTTGGT	
FLAG-F	GGATTACAAGGATGACGACGA	
FLAG-R	CTTATCGTCGTCATCCTTGTAATC	
GAPDH-F	ATGTTCGTCATGGGTGTGAA	
GAPDH-R	TGAGTCCTTCCACGATACCA	
F3-1	TTCGACGCTAGCACCCACACTGCCCACCTT	
R3-1	TGTTCCGCGGGGATCCTGTGTGGAACCAGCCAAG	
F3-2	GTTCCACACAGGATCCCCGCGGAACATTATTATAAC	
R3-2	CCTTATTCCCCTGTTTTCCGGAAA	
F3-3	TTCCGGAAAACAGGGGAATAAGGC	
R3-3	TTCGACGCGGCCGCTCACTTATCGTCGTCATCCTTGTAATCCTGAGGCACTCG	
F5-1	TTCGACGCTAGCATGGATTACAAGGATGACGACGATAAGCCTGAGCCGGGGAAGA	
R5-1	AGTGTGGGTGGATCCAGGCCAACCCATGGAAAGAAGAGCTGTACTCACCTGCGTGATAGCCTTCTG	
F5-2	GGTTGGCCTGGATCCACCCACACTGCCCACCTT	
R5-2	TTCGACGCGGCCGCTGTGTGGAACCAGCCAAG	