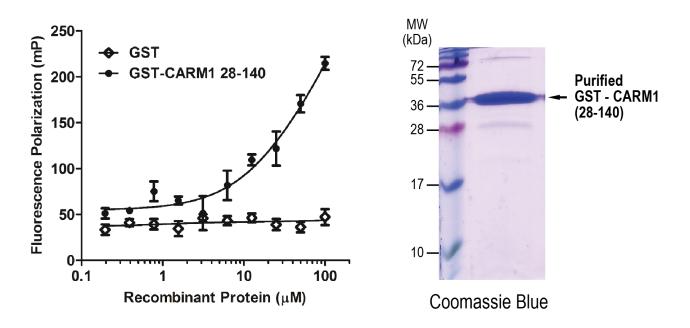

Supplementary Figure 1.

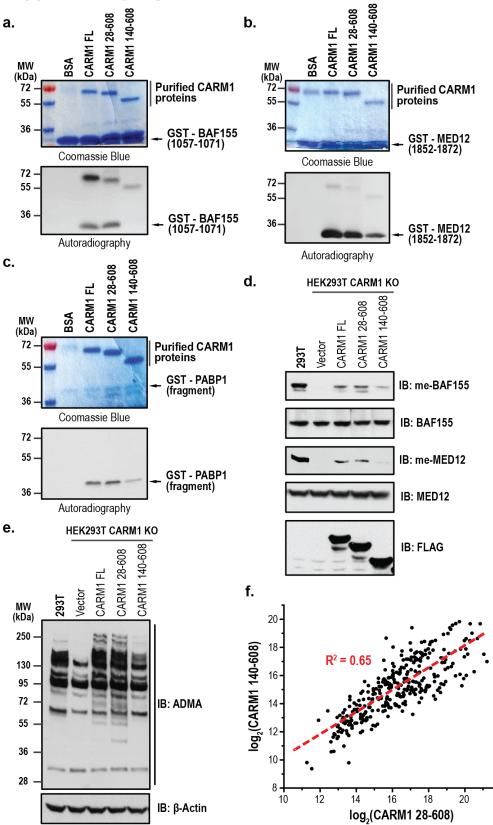
Supplementary Figure 1. Global profiling of CARM1 substrates using quantitative mass spectrometry.

- **a.** Reproducibility between three biological replicas achieved in experiments using MCF7 cells. The indicated Pearson correlation R² values include both modified and unmodified peptides.
- b. Identification and quantification of ADMA peptides affected by CARM1 loss in MDA-MB-231 breast cancer cell line using three biological replicas of wild type (WT) and knockout (KO) cells. The heat map displays hierarchal clustering using Pearson correlation of mean normalized log₂ transformed intensities of ADMA peptides.
- **c.** Volcano plots demonstrating changes in abundance of both modified and unmodified peptides in MCF7 (*left*) and MDA-MB-231 cells (*right*) using three biological replicas of each cell line. A large subset of modified peptides in each cell line (~50%) exhibited extreme reduction in abundance, meanwhile the abundance of a very few unmodified peptides (~1%) was altered upon CARM1 deletion (*p* value <0.01; two-tailed Student's t test).
- d. Volcano plots demonstrating changes in overall protein abundances in MCF7 (*left*) and MDA-MB-231 cells (*right*) using three biological replicas of each cell line. With six exceptions, no significant changes below Q-value of 0.01 (FDR of 1%; Storey correction for multiple hypothesis testing) in protein abundance (± 2-fold) were measured for any putative substrates (denoted in red), suggesting that the observed decrease in the abundances of ADMA-containing peptides was not due to the decrease in abundance of the corresponding proteins. PRMT1 (denoted in blue) was detected with 2.5 fold decrease in MCF7 but not in MDA-MB-231 cells.
- e. Western blot analyses illustrating changes in abundance of CARM1 and PRMT1, 2, 5, and 6 in parental and CARM1 KO MCF7 and MDA-MB-231 cells. PRMT8 was not detected in either cell line and therefore not included here.


Supplementary Figure 2.

Supplementary Figure 2. Motif analyses of ADMA sites unaffected by CARM1 deletion and purification of PRMTs used in the *in vitro* methylation assays.

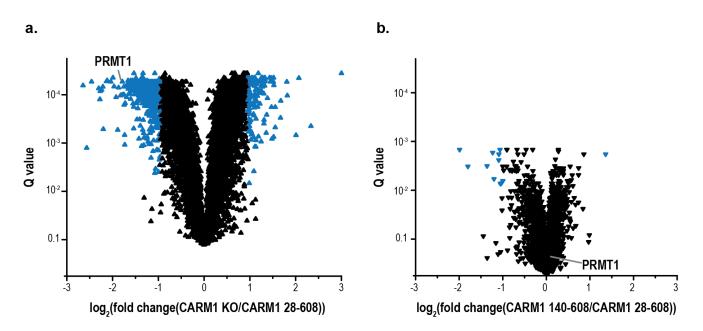
- a. Motif analyses of ADMA sites unaffected by loss of CARM1. Canonical RGG/RG and similar glycine-containing motifs were extracted from peptide sequences surrounding ADMA sites abundances of which remained unchanged in CARM1 KO cells, as compared with the parental cells.
- **b.** Motif analyses of ADMA sites encompassed by singly-methylated peptides and affected by the loss of CARM1.
- **c.** Motif analyses of ADMA sites encompassed by singly-methylated peptides and unaffected by the loss of CARM1.
- **d.** Coomassie Brilliant Blue staining of purified recombinant PRMTs from HEK293T cells used in the *in vitro* methylation assays of peptide arrays (Figure 2d and e).


Supplementary Figure 3.

Supplementary Figure 3. Fluorescence polarization assay using purified GST-tagged N-terminal domain of CARM1 and fluorescein-labeled BAF155 peptide.

Fluorescence polarization assay using purified recombinant GST-CARM1 28-140 (*right*) and fluorescein-labeled BAF155 peptide. Pronounced increase in fluorescence polarization (*left*) was detected with the increasing concentrations of GST-CARM1 28-140, but not with the GST alone, demonstrating that the EVH1 domain of CARM1 directly interacts with the enzyme's substrate at low affinity.

Supplementary Figure 4.



22

Supplementary Figure 4. Requirement of the N-terminal domain for substrate methylation by CARM1 *in vitro*.

- **a.** Coomassie Brilliant Blue staining (*top*) and autoradiograph (*bottom*) of *in vitro* methylation assays using the indicated proteins, ³H-SAM, and GST-BAF155 peptide.
- **b.** Coomassie Brilliant Blue staining (*top*) and autoradiograph (*bottom*) of *in vitro* methylation assays using the indicated proteins, ³H-SAM, and GST-MED12 peptide.
- **c.** Coomassie Brilliant Blue staining (*top*) and autoradiograph (*bottom*) of *in vitro* methylation assays using the indicated proteins, ³H-SAM, and GST-PABP1 peptide.
- d. Western blot analyses of cell lysates from HEK293T cells or HEK293T CARM1 KO cells transiently transfected with the indicated FLAG-tagged CARM1 plasmids using the indicated antibodies (i.e., BAF155, me-BAF155, MED12, and me-MED12). CARM1 was detected using the anti-FLAG antibody. Reduced methylation of the known CARM1 substrates was evident in the cells expressing CARM1 140-608 construct.
- e. Western blot analyses of ADMA-containing proteins in total cell lysates from HEK293T cells or HEK293T CARM1 KO cells transiently transfected with the indicated plasmids. Reduction in the overall abundance of ADMA-containing proteins was observed in cells expressing CARM1 140-608. β-Actin was used as a loading control.
- f. Comparison of the abundance of ADMA-containing peptides in MCF7 cells expressing CARM1 28-608 and CARM1 140-608, using three biological replicas of each cell line. A loose Pearson correlation in the levels of ADMA-containing peptides was detected between two cell lines (R² of 0.65), indicating major differences between the ability of two CARM1 truncations to recognize and methylate its substrates.

Supplementary Figure 5.

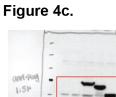
Supplementary Figure 5. Global changes in protein abundances in CARM1 KO MCF7 cells and CARM1 KO MCF7 cells stably expressing CARM1 140-608.

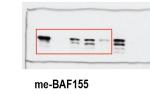
- a. A volcano plot of changes in protein abundance in CARM1 KO MCF7 cells, as compared to CARM1 KO MCF7 cells stably expressing CARM1 28-608, using three biological replicas of each cell line. The abundances of numerous proteins (in blue), including PRMT1, was reduced upon CARM1 deletion (FDR of 1%; Storey correction for multiple hypothesis testing)
- b. A volcano plot of changes in protein abundance in CARM1 KO MCF7 cells stably expressing CARM1 140-608, as compared to CARM1 KO MCF7 cells stably expressing CARM1 28-608, using three biological replicas of each cell line. The abundances of only a few proteins (in blue) were significantly affected by the truncation of the EVH1 domain (FDR of 1%; Storey correction for multiple hypothesis testing). PRMT1 abundance was not changed in this cell line.

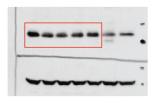
Supplementary Figure 6.

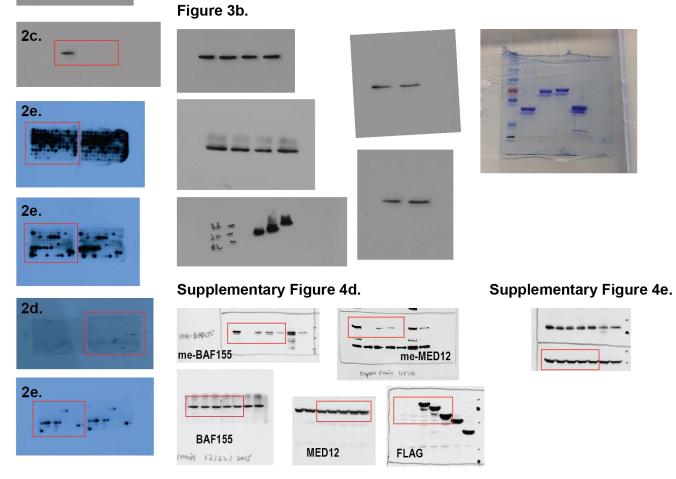
Figure 3b.

Figure 4a.


Figure 2.




3/1/2016

FLAG

BAF155

Supplementary Figure 6. Uncropped images of blots and gels. The red frame indicates the position of cropping. The respective figure numbers are provided.

Supplementary Table 1. Oncogenic substrates of CARM1.

Protein	Methylation site(s)	Proposed role in cancer		
ARID1A		Transcription regulator via chromatin organization; proposed tumor		
	R391, 429, 557	suppressor frequently lost or mutated in human cancers		
ARID1B	R557	Transcription regulator via chromatin rearrangement, essential for		
ARIDID	1007	survival of ARID1A-deficient cancers		
BCL11B	R322	Tumor-suppressor protein involved in T-cell lymphomas		
CDK12	R1407	Transcriptional activator of DNA damage response factors		
	R2434, 2444, 2454,			
MLL3	2571, 4196, 4220, 4202	Histone methyltransferase involved in transcriptional coactivation		
MLL2	R2431, 2804, 2833,	Histone methyltransferase; a driver in numerous cancer types that		
	2906, 2908, 3730	causes genome instability		
	R69	Protein kinase that promotes tumor metastasis in prostate cancer via		
MAP2K4		target phosphorylation and may function as a tumor suppressor in		
		other cancers		
MED12	R1854, 1859, 1862,	Component of the mediator complex that controls response to multiple		
	1899, 1910, 1912	cancer drugs through regulation of TGF-β receptor signaling		
MLLT6	R589	Proto-oncogene; chromosomal aberrations involving MLLT6 is		
_		associated with acute leukemias		
NCOA3	R1171, 1177, 1188	Gene expression co-activator aberrantly expressed in several cancers		
NCOR2	R1661, 1679	Mouse insertional mutagenesis experiments support NCOR2 as a		
NOONZ		cancer causing gene		
PML	R599	Regulator of DNA repair, alternative lengthening of telomeres,		
		transcriptional control, apoptosis, and senescence		
TET2	R1682	Methylcytosine dioxygenase with a prominent role in DNA		
		demethylation; its loss promotes prostate cancer and blood cancers		
TFE3	R188	Potent transcription activator that forms fusion products with other		
11 20		proteins with variable preservation of the CARM1 methylation site		
TPR	R2163	Component of protein trafficking complex; its N-terminus is involved in		
		activation of oncogenic kinases		
TRIM24		Transcriptional coactivator that interacts with numerous nuclear		
	R539, 548	receptors and coactivators and modulates the transcription of target		
		genes; oncogene in prostate cancer		
TRIM33	R440, 515, 555, 558,	Negative regulator of several transcriptional complexes through histone		
	568, 598	modification and binding		

Supplementary Table 2. Cellular pathways enriched among putative CARM1 substrates.

Cellular pathway (Reactome 2016)	Combined score (Enrichr)	Gene names
Gene expression	29.8	SF3B2; TAF9; ADAR; SMG7; ELAVL1; PSMA8; MED12; PPP1R13L; PCF11; TPR; ZNF703; SMN1; TAF9B; EXOSC1; WDR36; SF3A1; NCOA6; TET2; CD3EAP; RPRD2; PML; PATL1; RUNX2; NCOR2; AIMP2; HNRNPM; CNOT2; XRN2; PABPC1; CDK12; MAML3; DCP1A; TAF4; TRIM33
Chromatin organization	12.9	NCOR2; KMT2D; KMT2C; TAF9; GPS2; ARID1A; ARID1B; CLOCK; HCFC1
Chromatin modifying enzymes	12.8	NCOR2; KMT2D; KMT2C; TAF9; GPS2; ARID1A; ARID1B; CLOCK; HCFC1
mRNA decay	11.4	CNOT2; PABPC1; DCP1A; EXOSC1; PATL1
Regulation of lipid metabolism by PPAR α	9.1	NCOR2; MED12; CPT2; NCOA6; NCOA3; CLOCK
Regulation of mRNA stability	8.2	PABPC1; DCP1A; ELAVL1 EXOSC1; PSMA8
Generic transcription pathway	6.0	NCOA6; TAF9; RUNX2; PML; MED12; NCOR2; PPP1R13L; CNOT2; ZNF703; CDK12; MAML3; TAF4; TAF9B; TRIM33
Transcriptional regulation of white adipocyte differentiation	5.2	NCOR2; MED12; NCOA6; NCOA3
mRNA splicing	5.2	HNRNPM; SF3B2; SF3A1; PCF11; ELAVL1
Activation of HOX genes during differentiation	5.0	KMT2D; NCOA6; NCOA3; KMT2C
Regulation of TP53 Activity	4.9	PPP1R13L; TAF9; TAF9B; TAF4; PML

Supplementary Table 3. Motifs in the vicinity of ADMA sites regulated by CARM1.

Motif	Matches in the dataset	% Dataset	Fold increase over general frequency in the human proteome
PR	86	28.8	5.1
RxxxP	58	19.4	4.9
RxP	38	12.7	5.1
PRxxxxP	34	11.4	15.1

Supplementary Table 4. Motifs in the vicinity of ADMA sites regulated by other PRMTs.

Motif	Matches in the dataset	% Dataset	Fold increase over general frequency in the human proteome	
RG	47	29	4.1	
RGG	34	21	32.4	
GRG	20	12.3	22.6	
PRxxxxP	20	12.3	3.6	

Supplementary Table 5. Experimental setups and used TMT labels.

Exporimont	Biological	ТМТ
Experiment	replicate	channel
	WT1	126C
#1 (6-plex): wild type (WT)	WT2	127C
and CARM1 knockout (KO)	WT3	128C
MCF7 cells	KO1	129C
	KO2	130C
	KO3	131N
#2 (G play); wild type (M/T)	WT1	126C
#2 (6-plex): wild type (WT)	WT2	127N
and CARM1 knockout (KO)	WT3	127C
MDA-MB-231 cells	KO1	128N
	KO2	128C
	KO3	129N
	WT1	126C
#3 (9-plex): knock-in wild	WT2	127N
type CARM1 (WT), knock-	WT3	127C
in CARM1 140-608 (TR),	TR1	128C
and CARM1 knockout (KO)	TR2	129N
MCF7 cells	TR3	129C
	KO1	130N
	KO2	130C
	KO3	131N