Supplementary Information

Antibodies

The antibodies used in this study were from the following sources:

Santa Cruz Biotechnology, Pol-II N-term. (sc-9001), Brg-1 (sc-10768), CBP (sc-369).

Covance, Pol-II CTD-Ser5-P (H-14), Pol-II CTD-Ser-2P (H5), Pol-II CTD (8WG16).

Abcam, Histone 3 (ab8580), monomethyl H3-K4 (ab8895), dimethyl H3-K4

(ab7766), trimethyl H3-K4 (ab 8580), dimethyl H3-K9 (ab7312).

Upstate Biotechnology, Acetyl-H3 (06-599), Acetyl-H4 (06-866), dimethyl H3-K79

(07-366), dimethyl H3-K36 (07-274), dimethyl H3-K4 (07-030), FACT/cdc68 (07-255).

Anti-PCAF was obtained from Y. Nakatani, anti-TBP was from L. Tora, anti-Elp1 and anti-Elp3 was from J. Svejstrup.

Nucleotide positions of oligonucleotide primers used for real-time PCR amplifications.

			,
Prom/TSS:	nt -18	to	+92
CR 0.5:	nt +492	to	+578
CR 1.0:	nt +985	to	+1070
CR 2.5	nt +2509	to	+2599
CR 5.0	nt +5172	to	+5260
CR 8.0	nt +7948	to	+8034
CR 10.0	nt +10235	to	+10329
CR 12.5	nt +12563	to	+12649
CR 16.2	nt +16193	to	+16283
CR 20.0	nt +19963	to	+20045
CR 28.0	nt + 28061	to	+28149
Control	nt +32177	to	+32297

$HNF-4\alpha$	σene	(TSS· -	-1• n	olvA	site	28309)
11111-40	2CIIC	1100.			SILC.	203071

HNF-1α gene (TSS: +1; polyA site: 23764)

Prom/TSS:	nt -89	to	-19
CR 0.5:	nt +450	to	+535
CR 1.0:	nt +953	to	+1033
CR 2.5	nt +2513	to	+2591
CR 5.0	nt +6056	to	+6138
CR 8.0	nt +8137	to	+8212
CR 10.0	nt +9820	to	+9930
CR 15.0	nt +15649	to	+15720
CR 22.0	nt +21978	to	+22061
Control	nt +31801	to	+31888

Albumin gene (TSS: +1; polyA site: 17262)

Prom/TSS:	nt -20	to	+73
CR 0.5:	nt +439	to	+547
CR 1.0:	nt +1057	to	+1149
CR 2.5	nt +2561	to	+2632
CR 5.0	nt +4984	to	+5060
CR 8.0	nt +7940	to	+8020
CR 10.0	nt +10022	to	+10112
CR 12.5	nt +12986	to	+13068
CR 15.0	nt +15040	to	+15121
Control	nt +26283	to	+26358

RT-PCR primer sets

HNF-4α mRNA :	5' ggagatgacttgaggccttact3' ggggaatcgtttccaaggcctc	
HNF-1α mRNA :	5' gcctccctgggtcctacgttcacc3' gggcttgtggctgtagagggcgt	g
Albumin mRNA :	5' caccttccatgcagatatatg 3' tgcagcacttctctacaaaag	

Supplementary Table 1. Analysis of simultaneous modification of individual nucleosomes by sequential chromatin immunoprecipitation (ReChIP) assays.

ReChIP assays were performed by the indicated 1st and 2nd IP antibodies. The nucleosomal DNAs obtained after the second immunoprecipitation were amplified by Real Time PCR, using primer sets corresponding to nucleosomes located at 0.5 and 1.0 kb of the coding regions of HNF4, HNF1 and Albumin genes. The results were

first normalized to those obtained with non-immune antibody and divided by the input values (which correspond to results obtained with the eluted material after the 1st IPs). The Re-ChIP efficiencies of the different antibodies were calculated from the data (% of input) obtained in experiments using the same antibody in the first and second IP. The data from the 6 regions (0.5 and 1kb segments of three genes) were averaged. The average percentages were as follows: 56% for the H3K4 Tri-Methyl antibody, 32% for the H3K4 Di-Methyl antibody, 41% for the H3K79 Di-Methyl antibody, 38% for the Acetyl-H3 antibody and 33% for H3K4 Mono-Methyl antibody (the latter obtained on coding region 10 kb). Using these values all the data were normalized to 100% Re-ChIP efficiency. The numbers indicate normalized average percentages and deviations of the recovered material corresponding to the 0.5 kb segments (Numbers at the top) and the 1.0 kb segments (Numbers at the bottom), from at least 3 experiments.

1 st IP:	Н	3K4 Tri-N	/lethyl	H3I	K4 Di-Me	thyl	H3K79 Di-Methyl		H3-acetyl			
Gene	HNF4	HNF1	Alb.	HNF4	HNF1	Alb.	HNF4	HNF1	Alb.	HNF4	HNF1	Alb.
2 nd IP												
H3K4	92±14	108±8	103±7	90±10	91±8	92±10	83±8	89±12	85±12	72±10	80±12	81±8
Tri-Me	99±13	87±7	106±8	78±12	83±10	85±8	90±12	96±14	87±14	71±6	83±10	80±10
H3K4 Di-	96±8	87±6	93±8	109±9	96±10	93±9	93±10	84±8	78±6	87±6	90±10	78±10
Me	87±7	78±4	100±9	93±8	100±9	106±12	109±11	81±8	90±12	81±10	93±12	90±12
H3K79	85±8	90±10	77±10	97±6	85±10	92±10	111±18	102±11	87±11	92±10	85±8	87±8
Di-Me	94±10	97±10	85±10	87±8	77±6	80±8	97±12	106±15	92±12	85±12	89±12	75±9
H3-	81±6	79±8	92±10	86±10	79±14	81±12	73±10	84±8	86±14	102±14	94±11	105±11
acetyl	78±7	92±7	84±9	73±14	76±12	71±14	79±12	89±10	73±12	92±12	105±9	99±9
H3K4	1.2±0.4	1.1±0.6	1.2±0.5	0.6±0.2	0.7±0.2	0.9±0.1	1±0.4	1.1±0.6	0.8±0.3	0.3±0.1	0.2±0.1	0.4±0.2
Mono-Me	1.5±.05	0.9±0.4	0.7±0.3	0.6±0.3	0.6±0.3	0.7±0.2	1.2±0.5	0.9±0.5	0.7±0.2	0.5±0.3	0.2±0.1	0.3±0.1

Supplementary Figure 1. Analysis of the DNA after Mnase digestion and the expression of HNF-4, HNF-1 and albumin genes.

(A) Part of the input samples after crosslinking and MNase digestion, were decrosslinked, extracted with phenol-chlorophorm, precipitated with ethanol. The DNAs were separated by electrophoresis on 1.5% agarose gel and stained with ethidium bromide. Order of samples: lambda BstEII marker; 1, G0/G1 enriched HepG2; 2, aamanitin treated HepG2; 3, Nocodazol-arrested HepG2; 4, HEK 293.

(B) Total RNAs, extracted from $2x10^6$ cells, were analyzed by RT-PCR. Real-time PCR values are expressed as percentage of those detected with RNAs from G0/G1-enriched HepG2 cells.

B.

Supplementary Figure 2. Association of Brg-1, CBP and PCAF with initiating and elongating forms of RNA pol-II.

(A) Chromatin immunoprecipitation assays were performed with the antibodies H14
(P-Ser5-CTD) and H5 (P-Ser-2-CTD), raised against phosphorylated CTD peptides.
(B) HepG2 nuclear extracts were immunoprecipitated with the antibodies αBrg1,

 α CBP and α PCAF and the presence of the different CTD-phosphorylated forms of RNA pol-II in the precipitates was detected by western blot analysis using antibodies raised against non-phosphorylated CTD, 8WG16 (α CTD), and H14 (α P-Ser5-CTD), or H5 (α P-Ser-2-CTD) as indicated.

B.

Supplementary Figure 3. Immunocytological examination of histone modifications and chromatin modifying activities at the different stages of mitosis.

HepG2 cells grown on glass cover slips were fixed for 10 min at -20 ⁰C and immunostained with the indicated antibodies. Fluorescence images of representative cells at the interphase and various stages of the mitotic phase are shown. Left panels correspond to immunofluorescence stainings using Alexa Red 568 secondary antibodies, middle panels show DNA stainings with DAPI, while panels at the right are merged images of the former two pictures. Note that, immunofluorescence signals obtained by antibodies against the factots (CBP, PCAF, Elp3 and Brg1) were excluded from mitotic chromatin, while those obtained with histone modification state antibodies overlapped with it. In the case of CBP and Brg1 staining two populations of telophase cells were observed. In some cells they were excluded, in others they were partially associated with mitotic chromatin. Representative images of both populations are shown.

Supplementary Figure 3a

<u>Acetyl-H3</u>

Acetyl-H4

	Staining	DAPI	Merge	Staining	DAPI	Merge
Interphase				Interphase		
Prophase				Prophase		and the
Metaphase		${\mathfrak s}_{\mathbf v}$		Metaphase	N	N
Anaphase		*	1	Anaphase	E g	
Telophase	1.3	14	1.4	Telophase	1.3	t X

Supplementary Figure 3b

H3 K4 Mono-Methyl

H3 K4 Di-methyl

Supplementary Figure 3c

H3 K4 Tri-Methyl

H3 K79 Di-Methyl

	Staining	DAPI	Merge	Staining	DAPI	Merge
Interphase				Interphase		
Prophase				Prophase	and the second s	Ser.
Metaphase	(Inda)	11	944	Metaphase	/	1
Anaphase	13			Anaphase	l)	4
Telophase	1	11	1.1	Telophase	9 8	1 2

Supplementary Figure 3d

Supplementary Figure 3e

