Supplementary Information for
Horikawa and Kamitani, Generic decoding of seen and imagined objects using hierarchical visual features

V3dvad

W -8

Anterior <& Posterior— Anterior

Ventral

Supplementary Figure 1 | Definitions of ROIs on flattened cortex. The individual ROIs of Subject
2 are shown on the flattened cortex. A contiguous region covering the LOC, FFA, and PPA was
manually delineated on the flattened cortical surface, and the region was defined as the “higher visual
cortex” (HVC). Voxels overlapping with the “lower visual cortex” (LVC, V1-V3) were excluded
from the ROI for the HVC. For individual ROIs voxels near the area border were included in both
ROIs.
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Supplementary Figure 2 | Image feature decoding accuracy evaluated by normalized root
mean square error. For each feature unit, the root mean square error (RMSE) between true and
predicted values were calculated over 50 test categories, and then normalized by the standard
deviation of the true values. The normalized RMSE (nRMSE) was averaged for each combination of
feature types/layers and ROIs (error bars, 95% CI across five subjects). The range of the horizontal
axis was changed for each visual feature type/layer for display purposes. This analysis replicated a
general trend observed in the results based on correlation coefficients (Fig. 3b), showing that
higher-order visual features tended to be better predicted from fMRI signals in higher rather than
lower ROIs, and that lower-order visual features tended to be better predicted from fMRI signals in
lower rather than higher ROIs (ANOVA, interaction between visual feature type/layer and ROI, P <
0.01). However, nRMSE showed a different pattern of accuracy from correlation coefficients when
compared across feature types/layers. For example, HMAX3 showed the worst accuracy inthe
nRMSE analysis for all ROIs, although it attained a higher accuracy than several CNN features and
SIFT+BoF in the correlation analysis.
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Supplementary Figure 3 | Image feature decoding accuracy obtained by decoders trained with
brain activity from lower and higher ROIs. The image feature decoding accuracy obtained from
decoders trained on brain activity patterns from the LVC and HVC are shown (error bars, 95% CI
across five subjects). The analyses showed that the decoders trained on LVC activity outperformed
those trained on HVC activity in CNN1-5, HMAX1 and 2, and GIST, while the opposite was
observed in CNN7 and CNNBS (asterisk, two-sided r-test, uncorrected P < 0.01; ANOVA, interaction
between visual feature type/layer and ROI, P < 0.01, for both of the CNN feature set and the HMAX
feature set). The difference in decoding accuracy between decoders of the LVC and HVC did not
reach statistical significance in CNN6, HMAX3, or SIFT+BoF (two-sided #-test, uncorrected P >
0.01). These results characterized the visual feature types/layers with respect to the levels of visual
cortical hierarchy. Before the #-test, we performed an F-test to check the equality of variances between

the results from the LVC and HVC. The results confirmed that the null hypothesis that the data for the
LVC and HVC have the same variance was not rejected for all feature types/layers (P > 0.05).
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Supplementary Figure 4 | Examples of preferred images for individual units in CNN layers.
Examples of preferred images synthesized for each of the twenty randomly selected units in each
CNN layer are shown. Category names of individual units in the CNN8 are shown at the top left of
the images. Because the CNN6-8 are fully-connected layers, position information is lost for these

layers.
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Supplementary Figure 5 | Distributions of selected voxels across individual subareas for
HMAX, GIST, and SIFT+BoF. Distributions of selected voxels used for predictions of each visual
feature type are shown for HMAX, GIST, and SIFT+BoF (averaged across five subjects, predicted
from VO).
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Supplementary Figure 6 | Relationship between category discriminability and prediction
accuracy of category-average features. The same analysis described in Fig. Sc was performed with
correlation coefficients between the values of the category-average features and the predicted features
for seen and imagined conditions (predicted from VC by image feature decoders; cf., Fig. 6).
Correlation coefficients between category discriminability and the category-average feature decoding
accuracy are shown for the seen and imagined conditions (error bars, 95% CI across five subjects;
asterisks, one-sided #-test after Fisher’s z-transform, uncorrected P < 0.05). (a) Correlation
coefficients obtained by predicting features from stimulus-induced brain activity. (b) Correlation
coefficients obtained by predicting features from imagery-induced brain activity.
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Supplementary Figure 7 | Prediction of category-average features from stimulus- and

imagery-induced brain activity by category-average feature decoders. In the main analyses, while

we used decoders that were trained to predict the feature values of the presented images

(image feature decoders), it is possible to use the decoders trained to predict the category-average

features (category-average feature decoders). Thus, here, we predicted category-average features

using the category-average feature decoders (cf., Fig. 6 for the results produced by the image feature

decoders). (a) Correlation coefficients with predicted features from stimulus-induced brain activity.

(b) Correlation coefficients with predicted features from imagery-induced brain activity. Mean

correlation coefficients are shown for each feature type/layer and ROI (error bars, 95% CI across five

subjects). The results by the category-average feature decoders were qualitatively similar to those

produced by the image feature decoders (Fig. 6), although slightly higher accuracy was obtained for

the imagery-induced brain activity. This might be because the imagery-related brain activity was

associated with multiple images imagined by the subjects.
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Supplementary Figure 8 | Distributions of correlation coefficients between predicted and
category-average feature values for seen and imagined conditions. Scatterplots of correlation
coefficients between the predicted and the category-average feature values for the seen (vertical axis)
and imagined (horizontal axis) conditions are shown for ~1,000 feature units. (a) Distributions
obtained by the image feature decoders. (b) Distributions obtained by the category-average feature
decoders. Each dot denotes the averaged correlation coefficients across five subjects (predicted from
VC) for each feature unit. The color indicates the density of the dots. Although the mean correlations
ranged from approximately 0.1-0.5 for the seen condition (Fig. 6a and Supplementary Fig. 7a) and
from approximately 0.0-0.2 for the imagined condition (Fig. 6b and Supplementary Fig. 7b), the
correlations of individual units were broadly distributed. A subset of units with strong correlations

may substantially contribute to object category decoding.
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Supplementary Figure 9 | Time course of feature prediction from imagery-induced brain

activity for individual CNN layers. At each time point/volume around the task period, correlation

coefficients were calculated between the predicted and the category-average feature values for the

series of test trials (averaged across five subjects; shaded areas, 95% CI across feature units; filled

circles, peak timing). Predictions from imagery-induced brain activity in individual ROIs are shown

for individual CNN layers.
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Supplementary Figure 10 | Identification accuracy as a function of the number of average

samples. Identification accuracy is shown as a function of the number of average samples are shown

(identification from two categories; predicted from VC by image feature decoders; error bars, 95% CI

across five subjects; dashed line, chance level, 50%). (a) Seen object identification accuracy. The

identification accuracy gradually improved with the number of average samples but saturated at fewer

than ten samples for most feature types/layers. (b) Imagined object identification accuracy.

Approximately equivalent accuracy was observed even without averaging multiple samples.
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Supplementary Figure 11 | Identification accuracy for all combinations of feature types/layers

and ROIs obtained by image feature decoders. Identification was performed for all combinations

of one of the 50 test object categories and one of the 15,322 candidate categories (identification from

two categories; error bars, 95% CI across five subjects; dashed line, chance level, 50%). (a) Seen

object identification. (b) Imagined object identification. Both seen and imagined objects were

successfully identified with most of the feature—ROI combinations (91 and 84 out of a total of 91

feature—ROI pairs for seen and imagined conditions, respectively; one-sided #-test, uncorrected P <

0.05). In seen object identification, the accuracy for higher-order features tended to be better with

higher ROIs, while that for lower-order features tended to be better with lower ROls, as observed in

the image feature decoding accuracy (Fig. 3b). In contrast, in imagined object identification, all feature

types/layers showed a similar trend, exhibiting flat or slightly elevated accuracy in higher ROIs.
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Supplementary Figure 12 | Identification accuracy by image feature decoders and

category-average feature decoders. The same identification analyses shown in Fig. 10a and b

(image feature decoders) were performed with the decoders trained to predict category-average

features of presented images (category-average feature decoders; identification from two categories;

error bars, 95% CI across five subjects; dashed line, chance level, 50%). (a) Seen object identification.

(b) Imagined object identification. A similar pattern of accuracy across ROIs was observed from the

two types of decoders. The overall accuracy for seen object identification tended to be higher with

image feature decoders than with category-average feature decoders, while that for imagined object

identification tended to be lower with image feature decoders than with category-average feature

decoders.
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Supplementary Figure 13 | Identification accuracy for all combinations of feature types/layers

and ROIs obtained by category-average feature decoders. The same identification analysis shown

in Supplementary Fig. 11 was performed with the decoders trained to predict category-average

features of the presented images (error bars, 95% CI across five subjects; dashed line, chance level,

50%). (@) Seen object identification accuracy. (b) Imagined object identification accuracy. Both seen

and imagined objects were successfully identified at a statistically significant level with most of the

feature—ROI combinations (91 and 90 out of a total of 91 feature-ROI pairs for seen and imagined

conditions, respectively; one-sided #-test, uncorrected P < 0.05).
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Supplementary Figure 14 | Relationship between semantic distance and identification accuracy.
Instead of evaluating mass identification accuracy by aggregating accuracies for all combinations of
50 test and 15,322 candidate categories (cf., Fig. 10a and b), identification accuracy was evaluated for
each test category with candidate categories at a specified semantic distance from the test category
(predicted from VC; averaged across five subjects) for (a) and (b). (a) Semantic distance versus seen
identification accuracy from concatenated vectors of CNN1-8. Each dot in the scatterplot denotes the
mean identification accuracy obtained by averaging identification accuracy for all combinations of
one test category and candidate categories at a specified semantic distance to the test category. The
solid red line indicates a fitted regression line. (b) Correlation coefficients between semantic distance
and mean identification accuracy (asterisks, one-sided #-test after Fisher’s z-transform, uncorrected P
<0.05). The identification accuracy and semantic distance tended to be positively correlated with each
other, especially with high correlation coefficients for the mid-to-high level CNN layers (CNN4-8)
under both the seen and imagined conditions. (¢) A matrix of semantic distance and seen object
identification accuracy among the 50 test categories. The semantic distance (lower triangle) and the
seen object identification accuracy (upper triangle; CNN1-8; predicted from VC; averaged across five
subjects) are shown for all pairs of the 50 test categories. Identification accuracies (upper triangle)
were calculated with fMRI data from individual trials (without averaging multiple trials corresponding
to the same category) so that the accuracy with each pair could be evaluated with many instances of
identification. The matrix shows a moderate level of symmetry (with respect to the diagonal line),
indicating a positive correlation between the semantic distance and the identification accuracy across
the pairs. The segregation between animate vs. inanimate categories™ can be observed in the

identification accuracy as well as in the semantic distance.
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Supplementary Figure 15 | Identification accuracy for object categories not used for CNN
model training. Mean identification accuracies for categories not used for CNN model training (n =
30) were evaluated and are shown with those for all 50 test categories (identification from two
categories; predicted from VC; error bars, 95% ClI across five subjects; dashed lines, chance level,
50%). (a) Identification accuracy obtained by image feature decoders. (b) Identification accuracy
obtained by category-average feature decoders. Identification accuracies for categories not used for
CNN model training were qualitatively consistent with those for all test categories under all

conditions.
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Supplementary Figure 16 | Identification accuracy as a function of the number of feature units.
Identification was performed using a different number of feature units from each visual feature
type/layer for all combinations of the 50 test object categories and 15,322 candidate categories
(identification from two categories; predicted from VC by image feature decoders). The analysis was
repeated 10 times for each number of feature units, and the accuracy was pooled across 10 repetitions
of category candidate selection and 50 test samples (error bars, 95% CI across five subjects; dashed
lines, chance level, 50%). (a) Seen object identification. (b) Imagined object identification. The
accuracy for most visual features was saturated at a few hundred units. The accuracy trend across

feature types/layers remained nearly constant across the number of feature units.
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Supplementary Figure 17 | Identification accuracy with true image feature values (generic
object recognition; GOR). The GOR identification accuracy for each visual feature type/layer is
shown. The GOR accuracy is equivalent to the case in which image features are perfectly predicted
from brain activity using image feature decoders. (a) Identification from two categories. Identification
was performed for all combinations of one of the 50 test object categories and one of the 15,322
candidate categories (error bars, 95% CI across 50 test categories; dashed line, chance level, 50%). (b)
Identification from 100 categories. Identification was repeated for 100 candidate sets of randomly
selected 100 categories for each of the 50 test categories. The percentage of correct identifications was
averaged across the candidate sets (error bars, 95% CI across 50 test categories; dashed line, chance
level, 1%). The analysis showed a slightly poorer identification with CNN8 compared with CNN7.
The high accuracy of original CNN features in the object recognition task may have contributed to the
high accuracy of the CNN features in our generic decoding approach. Although the reason for the
superior performance of CNN among other visual features continues to be debated in the field of
computer vision, the acquisition of natural feature representations, which are shown as preferred

images in Figure 4 and Supplementary Figure 4, may explain the high accuracy of CNN in object

recognition.
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Supplementary Figure 18 | Voxel-wise encoding model prediction with image features. In the
main analyses, we established relationships between brain activity and visual features via the visual
feature predictions from brain activity patterns (i.e., decoding; cf., Fig. 3). However, it is also possible
to use the voxel-wise encoding analysis®’, in which brain activity is predicted from visual features.
Using the same dataset shown in Fig. 3, we first trained voxel-wise encoding models (sparse linear
regression model®) to predict activity in the individual voxels from sets of visual feature values
(~1,000 units for each feature type/layer) calculated from presented images. The voxel-wise encoding
model accuracy of each voxel was then evaluated for each feature type/layer using Pearson’s
correlation coefficients between the observed and predicted voxel activity for the test images. The
correlation coefficients were averaged over the voxels within each individual ROI. Mean correlation
coefficients are shown for each combination of feature types/layers and ROIs (error bars, 95% CI
across five subjects). High prediction accuracies were observed for lower/higher ROIs from
lower/higher visual features, respectively. This trend was consistent with the results of the visual

feature decoding approach (cf., Fig. 3), and with the findings of a previous study’.
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Supplementary Figure 19 | Voxel-wise encoding model prediction with category-average
features. The same voxel-wise encoding analysis in Supplementary Fig. 18 was applied to the
category-average features (cf., Fig. 6) to predict stimulus-induced and imagery-induced brain activity.
(a) Correlation coefficients for stimulus-induced brain activity. (b) Correlation coefficients for
imagery-induced brain activity. Mean correlation coefficients are shown for each feature type/layer
and ROI (error bars, 95% CI across five subjects). Higher correlations were observed for
combinations of mid-to-high level CNN features and mid-to-high level ROIs for both the perception
and the imagery conditions, consistent with the results of the visual feature decoding approach (Fig.
6).
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Supplementary Figure 20 | Identification accuracy via voxel-wise encoding models. We
performed pairwise identification analyses using brain activity patterns predicted with voxel-wise
encoding models (Supplementary Fig. 19). We created candidate brain activity patterns by converting
the category-average feature vectors of 15,372 categories in ImageNet’ to brain activity patterns using
voxel-wise encoding models for each visual feature type/layer. The voxels showing the highest
category discriminability (F-statistics, a ratio of inter- and intra-category variations of voxel activity in
the training image session; 8 images from each of the 150 categories) were selected for the analyses of
each ROI (100 voxels for individual areas; 200 voxels for VC). The pairwise identification analysis
was then performed by calculating Pearson’s correlation coefficients between the observed brain
activity pattern (one of the 50 seen/imagined test categories) and two of the candidate brain activity
patterns (one for the true and the other for a false category) and selecting the candidate category with a
higher correlation coefficient. The analysis was performed using all combinations of the 50 test
categories and candidate categories for each visual feature type/layer and ROI (error bars, 95% CI
across five subjects; dashed line, chance level, 50%). (a, b) Seen/imagined object identification
accuracies via the encoding and decoding approaches (predicted from VC). (¢, d) Seen/imagined
object identification accuracy via the encoding approach for all combinations of feature types/layers
and ROIs. The identification analysis via the encoding approach showed high accuracy for
mid-to-high visual features and mid-to-high ROIs, consistent with the results of the feature decoding
approach. The results demonstrated the feasibility of generic object decoding via the encoding
approach, while the overall accuracy was lower than that obtained by visual feature decoding. As
shown in Supplementary Fig. 17, the visual feature space, especially in the mid- to high-level layers,
was highly discriminable regarding object categories, while the brain space is generally much less
discriminable (e.g., classification accuracy with fMRI responses to object categories'™'") due to the
low signal to noise ratio and other factors. Thus, identification in visual feature space via the decoding

approach may be more efficient than identification in brain space via the encoding approach.
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Supplementary Figure 21 | Image feature decoding by different linear regression models. While

we used the Bayesian sparse linear regression models with the automatic relevance determination

prior® (ARD model) in the main analyses, we also performed the feature decoding analyses using

other types of linear regression models (see Methods: “Visual feature decoding’). Here, we compare

the image feature decoding accuracies (cf., Fig. 3) obtained using the ARD model, the
L1-/L.2-reguralized linear regression models (Qian, J., Hastie, T., Friedman, J., Tibshirani, R. &
Simon, N., Glmnet for Matlab, http://www .stanford.edu/~hastie/glmnet matlab/, 2013), and the least

squares linear regression model. Mean correlation coefficients are shown for each feature type/layer

and ROI (error bars, 95% CI across five subjects). The decoding accuracies with these models are

qualitatively similar, while the sparse models, especially the ARD model, showed relatively higher

accuracy than the least squares model.
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Supplementary Figure 22 | Prediction of category-average features by different linear

regression models. Category-average features were predicted using different linear regression models

as shown in Supplementary Fig. 21. (a) Correlation coefficients with predicted features from

stimulus-induced brain activity. (b) Correlation coefficients with predicted features from

imagery-induced brain activity. Mean correlation coefficients are shown for each feature type/layer

and ROI (error bars, 95% CI across five subjects). This analysis also showed similar levels of

accuracy across the models for both the perception and imagery conditions. Taken together with the

results in Supplementary Fig. 21, these results indicate that image and category-average feature

decoding can be reproduced with different linear regression models, supporting the robustness of our

main results. The relative advantage of the sparse models suggests that regularization is useful to

avoid overfitting.
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