
Supplementary Figure 1 | Definitions of ROIs on flattened cortex. The individual ROIs of Subject 

2 are shown on the flattened cortex. A contiguous region covering the LOC, FFA, and PPA was 

manually delineated on the flattened cortical surface, and the region was defined as the “higher visual 

cortex” (HVC). Voxels overlapping with the “lower visual cortex” (LVC, V1–V3) were excluded 

from the ROI for the HVC. For individual ROIs voxels near the area border were included in both 

ROIs.  
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Supplementary Figure 2 | Image feature decoding accuracy evaluated by normalized root 
mean square error. For each feature unit, the root mean square error (RMSE) between true and 

predicted values were calculated over 50 test categories, and then normalized by the standard 

deviation of the true values. The normalized RMSE (nRMSE) was averaged for each combination of 

feature types/layers and ROIs (error bars, 95% CI across five subjects). The range of the horizontal 

axis was changed for each visual feature type/layer for display purposes. This analysis replicated a 

general trend observed in the results based on correlation coefficients (Fig. 3b), showing that 

higher-order visual features tended to be better predicted from fMRI signals in higher rather than 

lower ROIs, and that lower-order visual features tended to be better predicted from fMRI signals in 

lower rather than higher ROIs (ANOVA, interaction between visual feature type/layer and ROI, P < 

0.01). However, nRMSE showed a different pattern of accuracy from correlation coefficients when 

compared across feature types/layers. For example, HMAX3 showed the worst accuracy in the 

nRMSE analysis for all ROIs, although it attained a higher accuracy than several CNN features and 

SIFT+BoF in the correlation analysis. 
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Supplementary Figure 3 | Image feature decoding accuracy obtained by decoders trained with 
brain activity from lower and higher ROIs. The image feature decoding accuracy obtained from 

decoders trained on brain activity patterns from the LVC and HVC are shown (error bars, 95% CI 

across five subjects). The analyses showed that the decoders trained on LVC activity outperformed 

those trained on HVC activity in CNN1–5, HMAX1 and 2, and GIST, while the opposite was 

observed in CNN7 and CNN8 (asterisk, two-sided t-test, uncorrected P < 0.01; ANOVA, interaction 

between visual feature type/layer and ROI, P < 0.01, for both of the CNN feature set and the HMAX 

feature set). The difference in decoding accuracy between decoders of the LVC and HVC did not 

reach statistical significance in CNN6, HMAX3, or SIFT+BoF (two-sided t-test, uncorrected P > 

0.01). These results characterized the visual feature types/layers with respect to the levels of visual 

cortical hierarchy. Before the t-test, we performed an F-test to check the equality of variances between 

the results from the LVC and HVC. The results confirmed that the null hypothesis that the data for the 

LVC and HVC have the same variance was not rejected for all feature types/layers (P > 0.05). 
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Supplementary Figure 4 | Examples of preferred images for individual units in CNN layers. 
Examples of preferred images synthesized for each of the twenty randomly selected units in each 

CNN layer are shown. Category names of individual units in the CNN8 are shown at the top left of 

the images. Because the CNN6–8 are fully-connected layers, position information is lost for these 

layers.  
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Supplementary Figure 5 | Distributions of selected voxels across individual subareas for 
HMAX, GIST, and SIFT+BoF. Distributions of selected voxels used for predictions of each visual 

feature type are shown for HMAX, GIST, and SIFT+BoF (averaged across five subjects, predicted 

from VC).  
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Supplementary Figure 6 | Relationship between category discriminability and prediction 
accuracy of category-average features. The same analysis described in Fig. 5c was performed with 

correlation coefficients between the values of the category-average features and the predicted features 

for seen and imagined conditions (predicted from VC by image feature decoders; cf., Fig. 6). 

Correlation coefficients between category discriminability and the category-average feature decoding 

accuracy are shown for the seen and imagined conditions (error bars, 95% CI across five subjects; 

asterisks, one-sided t-test after Fisher’s z-transform, uncorrected P < 0.05). (a) Correlation 

coefficients obtained by predicting features from stimulus-induced brain activity. (b) Correlation 

coefficients obtained by predicting features from imagery-induced brain activity. 
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Supplementary Figure 7 | Prediction of category-average features from stimulus- and 
imagery-induced brain activity by category-average feature decoders. In the main analyses, while 

we used decoders that were trained to predict the feature values of the presented images 

(image feature decoders), it is possible to use the decoders trained to predict the category-average 

features (category-average feature decoders). Thus, here, we predicted category-average features 

using the category-average feature decoders (cf., Fig. 6 for the results produced by the image feature 

decoders). (a) Correlation coefficients with predicted features from stimulus-induced brain activity. 

(b) Correlation coefficients with predicted features from imagery-induced brain activity. Mean 

correlation coefficients are shown for each feature type/layer and ROI (error bars, 95% CI across five 

subjects). The results by the category-average feature decoders were qualitatively similar to those 

produced by the image feature decoders (Fig. 6), although slightly higher accuracy was obtained for 

the imagery-induced brain activity. This might be because the imagery-related brain activity was 

associated with multiple images imagined by the subjects.  
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Supplementary Figure 8 | Distributions of correlation coefficients between predicted and 
category-average feature values for seen and imagined conditions. Scatterplots of correlation 

coefficients between the predicted and the category-average feature values for the seen (vertical axis) 

and imagined (horizontal axis) conditions are shown for ~1,000 feature units. (a) Distributions 

obtained by the image feature decoders. (b) Distributions obtained by the category-average feature 

decoders. Each dot denotes the averaged correlation coefficients across five subjects (predicted from 

VC) for each feature unit. The color indicates the density of the dots. Although the mean correlations 

ranged from approximately 0.1–0.5 for the seen condition (Fig. 6a and Supplementary Fig. 7a) and 

from approximately 0.0–0.2 for the imagined condition (Fig. 6b and Supplementary Fig. 7b), the 

correlations of individual units were broadly distributed. A subset of units with strong correlations 

may substantially contribute to object category decoding.  
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Supplementary Figure 9 | Time course of feature prediction from imagery-induced brain 
activity for individual CNN layers. At each time point/volume around the task period, correlation 

coefficients were calculated between the predicted and the category-average feature values for the 

series of test trials (averaged across five subjects; shaded areas, 95% CI across feature units; filled 

circles, peak timing). Predictions from imagery-induced brain activity in individual ROIs are shown 

for individual CNN layers.  

11

Cue Imagery Eval.Cue Imagery Eval.Cue Imagery Eval.Cue Imagery Eval.

Time from imagery onset (s)
−�−� 0 � � 9 12 15 18 21−�−� 0 � � 9 12 15 18 21−�−� 0 � � 9 12 15 18 21−�−� 0 � � 9 12 15 18 21

CNN2CNN1 &11� CNN4

CNN8CNN7&11�CNN5

PPA
FFA
LOC
V4
9�
V2
V1
Peak

Co
rre

la
tio

n 
co

ef
fic

ie
nt

−���

0

0.1

0.2

���

−���

0

0.1

0.2

���



Supplementary Figure 10 | Identification accuracy as a function of the number of average 
samples. Identification accuracy is shown as a function of the number of average samples are shown 

(identification from two categories; predicted from VC by image feature decoders; error bars, 95% CI 

across five subjects; dashed line, chance level, 50%). (a) Seen object identification accuracy. The 

identification accuracy gradually improved with the number of average samples but saturated at fewer 

than ten samples for most feature types/layers. (b) Imagined object identification accuracy. 

Approximately equivalent accuracy was observed even without averaging multiple samples. 

  

Id
en

tif
ica

tio
n 

ac
cu

ra
cy

 (%
)

0 5 10 15 20 25 30 35
40

50

60

70

80

90

100

# of average samples

Id
en

tif
ica

tio
n 

ac
cu

ra
cy

 (%
)

0 2 4 6 8 10
40

50

60

70

80

90

100

# of average samples

a Seen object identification

0 5 10 15 20 25 30 35
40

50

60

70

80

90

100

# of average samples

Id
en

tif
ica

tio
n 

ac
cu

ra
cy

 (%
)

b Imagined object identification

0 2 4 6 8 10
40

50

60

70

80

90

100

# of average samples

Id
en

tif
ica

tio
n 

ac
cu

ra
cy

 (%
)

CNN8
CNN7

CNN3
CNN2
CNN1

CNN6
CNN5
CNN4

CNN8
CNN7

CNN3
CNN2
CNN1

CNN6
CNN5
CNN4

SIFT+BoF
GIST
HMAX3
HMAX2
HMAX1

SIFT+BoF
GIST
HMAX3
HMAX2
HMAX1

12



Supplementary Figure 11 | Identification accuracy for all combinations of feature types/layers 
and ROIs obtained by image feature decoders. Identification was performed for all combinations 

of one of the 50 test object categories and one of the 15,322 candidate categories (identification from 

two categories; error bars, 95% CI across five subjects; dashed line, chance level, 50%). (a) Seen 

object identification. (b) Imagined object identification. Both seen and imagined objects were 

successfully identified with most of the feature–ROI combinations (91 and 84 out of a total of 91 

feature–ROI pairs for seen and imagined conditions, respectively; one-sided t-test, uncorrected P < 

0.05). In seen object identification, the accuracy for higher-order features tended to be better with 

higher ROIs, while that for lower-order features tended to be better with lower ROIs, as observed in 

the image feature decoding accuracy (Fig. 3b). In contrast, in imagined object identification, all feature 

types/layers showed a similar trend, exhibiting flat or slightly elevated accuracy in higher ROIs. 
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Supplementary Figure 12 | Identification accuracy by image feature decoders and 
category-average feature decoders. The same identification analyses shown in Fig. 10a and b 

(image feature decoders) were performed with the decoders trained to predict category-average 

features of presented images (category-average feature decoders; identification from two categories; 

error bars, 95% CI across five subjects; dashed line, chance level, 50%). (a) Seen object identification. 

(b) Imagined object identification. A similar pattern of accuracy across ROIs was observed from the 

two types of decoders. The overall accuracy for seen object identification tended to be higher with 

image feature decoders than with category-average feature decoders, while that for imagined object 

identification tended to be lower with image feature decoders than with category-average feature 

decoders.  
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Supplementary Figure 13 | Identification accuracy for all combinations of feature types/layers 
and ROIs obtained by category-average feature decoders. The same identification analysis shown 

in Supplementary Fig. 11 was performed with the decoders trained to predict category-average 

features of the presented images (error bars, 95% CI across five subjects; dashed line, chance level, 

50%). (a) Seen object identification accuracy. (b) Imagined object identification accuracy. Both seen 

and imagined objects were successfully identified at a statistically significant level with most of the 

feature–ROI combinations (91 and 90 out of a total of 91 feature–ROI pairs for seen and imagined 

conditions, respectively; one-sided t-test, uncorrected P < 0.05).  
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Supplementary Figure 14 | Relationship between semantic distance and identification accuracy. 
Instead of evaluating mass identification accuracy by aggregating accuracies for all combinations of 

50 test and 15,322 candidate categories (cf., Fig. 10a and b), identification accuracy was evaluated for 

each test category with candidate categories at a specified semantic distance from the test category 

(predicted from VC; averaged across five subjects) for (a) and (b). (a) Semantic distance versus seen 

identification accuracy from concatenated vectors of CNN1–8. Each dot in the scatterplot denotes the 

mean identification accuracy obtained by averaging identification accuracy for all combinations of 

one test category and candidate categories at a specified semantic distance to the test category. The 

solid red line indicates a fitted regression line. (b) Correlation coefficients between semantic distance 

and mean identification accuracy (asterisks, one-sided t-test after Fisher’s z-transform, uncorrected P 

< 0.05). The identification accuracy and semantic distance tended to be positively correlated with each 

other, especially with high correlation coefficients for the mid-to-high level CNN layers (CNN4–8) 

under both the seen and imagined conditions. (c) A matrix of semantic distance and seen object 

identification accuracy among the 50 test categories. The semantic distance (lower triangle) and the 

seen object identification accuracy (upper triangle; CNN1–8; predicted from VC; averaged across five 

subjects) are shown for all pairs of the 50 test categories. Identification accuracies (upper triangle) 

were calculated with fMRI data from individual trials (without averaging multiple trials corresponding 

to the same category) so that the accuracy with each pair could be evaluated with many instances of 

identification. The matrix shows a moderate level of symmetry (with respect to the diagonal line), 

indicating a positive correlation between the semantic distance and the identification accuracy across 

the pairs. The segregation between animate vs. inanimate categories1-4 can be observed in the 

identification accuracy as well as in the semantic distance.   
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Supplementary Figure 15 | Identification accuracy for object categories not used for CNN 
model training. Mean identification accuracies for categories not used for CNN model training (n = 

30) were evaluated and are shown with those for all 50 test categories (identification from two 

categories; predicted from VC; error bars, 95% CI across five subjects; dashed lines, chance level, 

50%). (a) Identification accuracy obtained by image feature decoders. (b) Identification accuracy 

obtained by category-average feature decoders. Identification accuracies for categories not used for 

CNN model training were qualitatively consistent with those for all test categories under all 

conditions.  
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Supplementary Figure 16 | Identification accuracy as a function of the number of feature units. 
Identification was performed using a different number of feature units from each visual feature 

type/layer for all combinations of the 50 test object categories and 15,322 candidate categories 

(identification from two categories; predicted from VC by image feature decoders). The analysis was 

repeated 10 times for each number of feature units, and the accuracy was pooled across 10 repetitions 

of category candidate selection and 50 test samples (error bars, 95% CI across five subjects; dashed 

lines, chance level, 50%). (a) Seen object identification. (b) Imagined object identification. The 

accuracy for most visual features was saturated at a few hundred units. The accuracy trend across 

feature types/layers remained nearly constant across the number of feature units. 
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Supplementary Figure 17 | Identification accuracy with true image feature values (generic 
object recognition; GOR). The GOR identification accuracy for each visual feature type/layer is 

shown. The GOR accuracy is equivalent to the case in which image features are perfectly predicted 

from brain activity using image feature decoders. (a) Identification from two categories. Identification 

was performed for all combinations of one of the 50 test object categories and one of the 15,322 

candidate categories (error bars, 95% CI across 50 test categories; dashed line, chance level, 50%). (b) 

Identification from 100 categories. Identification was repeated for 100 candidate sets of randomly 

selected 100 categories for each of the 50 test categories. The percentage of correct identifications was 

averaged across the candidate sets (error bars, 95% CI across 50 test categories; dashed line, chance 

level, 1%). The analysis showed a slightly poorer identification with CNN8 compared with CNN7. 

The high accuracy of original CNN features in the object recognition task may have contributed to the 

high accuracy of the CNN features in our generic decoding approach. Although the reason for the 

superior performance of CNN among other visual features continues to be debated in the field of 

computer vision, the acquisition of natural feature representations, which are shown as preferred 

images in Figure 4 and Supplementary Figure 4, may explain the high accuracy of CNN in object 

recognition.  
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Supplementary Figure 18 | Voxel-wise encoding model prediction with image features. In the 

main analyses, we established relationships between brain activity and visual features via the visual 

feature predictions from brain activity patterns (i.e., decoding; cf., Fig. 3). However, it is also possible 

to use the voxel-wise encoding analysis3-7, in which brain activity is predicted from visual features. 

Using the same dataset shown in Fig. 3, we first trained voxel-wise encoding models (sparse linear 

regression model8) to predict activity in the individual voxels from sets of visual feature values 

(~1,000 units for each feature type/layer) calculated from presented images. The voxel-wise encoding 

model accuracy of each voxel was then evaluated for each feature type/layer using Pearson’s  

correlation coefficients between the observed and predicted voxel activity for the test images. The 

correlation coefficients were averaged over the voxels within each individual ROI. Mean correlation 

coefficients are shown for each combination of feature types/layers and ROIs (error bars, 95% CI 

across five subjects). High prediction accuracies were observed for lower/higher ROIs from 

lower/higher visual features, respectively. This trend was consistent with the results of the visual 

feature decoding approach (cf., Fig. 3), and with the findings of a previous study7. 
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Supplementary Figure 19 | Voxel-wise encoding model prediction with category-average 
features. The same voxel-wise encoding analysis in Supplementary Fig. 18 was applied to the 

category-average features (cf., Fig. 6) to predict stimulus-induced and imagery-induced brain activity. 

(a) Correlation coefficients for stimulus-induced brain activity. (b) Correlation coefficients for 

imagery-induced brain activity. Mean correlation coefficients are shown for each feature type/layer 

and ROI (error bars, 95% CI across five subjects). Higher correlations were observed for 

combinations of mid-to-high level CNN features and mid-to-high level ROIs for both the perception 

and the imagery conditions, consistent with the results of the visual feature decoding approach (Fig. 

6).  
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Supplementary Figure 20 | Identification accuracy via voxel-wise encoding models. We 

performed pairwise identification analyses using brain activity patterns predicted with voxel-wise 

encoding models (Supplementary Fig. 19). We created candidate brain activity patterns by converting 

the category-average feature vectors of 15,372 categories in ImageNet9 to brain activity patterns using 

voxel-wise encoding models for each visual feature type/layer. The voxels showing the highest 

category discriminability (F-statistics, a ratio of inter- and intra-category variations of voxel activity in 

the training image session; 8 images from each of the 150 categories) were selected for the analyses of 

each ROI (100 voxels for individual areas; 200 voxels for VC). The pairwise identification analysis 

was then performed by calculating Pearson’s correlation coefficients between the observed brain 

activity pattern (one of the 50 seen/imagined test categories) and two of the candidate brain activity 

patterns (one for the true and the other for a false category) and selecting the candidate category with a 

higher correlation coefficient. The analysis was performed using all combinations of the 50 test 

categories and candidate categories for each visual feature type/layer and ROI (error bars, 95% CI 

across five subjects; dashed line, chance level, 50%). (a, b) Seen/imagined object identification 

accuracies via the encoding and decoding approaches (predicted from VC). (c, d) Seen/imagined 

object identification accuracy via the encoding approach for all combinations of feature types/layers 

and ROIs. The identification analysis via the encoding approach showed high accuracy for 

mid-to-high visual features and mid-to-high ROIs, consistent with the results of the feature decoding 

approach. The results demonstrated the feasibility of generic object decoding via the encoding 

approach, while the overall accuracy was lower than that obtained by visual feature decoding. As 

shown in Supplementary Fig. 17, the visual feature space, especially in the mid- to high-level layers, 

was highly discriminable regarding object categories, while the brain space is generally much less 

discriminable (e.g., classification accuracy with fMRI responses to object categories10,11) due to the 

low signal to noise ratio and other factors. Thus, identification in visual feature space via the decoding 

approach may be more efficient than identification in brain space via the encoding approach.  
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Supplementary Figure 21 | Image feature decoding by different linear regression models. While 

we used the Bayesian sparse linear regression models with the automatic relevance determination 

prior8 (ARD model) in the main analyses, we also performed the feature decoding analyses using 

other types of linear regression models (see Methods: “Visual feature decoding”). Here, we compare 

the image feature decoding accuracies (cf., Fig. 3) obtained using the ARD model, the 

L1-/L2-reguralized linear regression models (Qian, J., Hastie, T., Friedman, J., Tibshirani, R. & 

Simon, N., Glmnet for Matlab, http://www.stanford.edu/~hastie/glmnet_matlab/, 2013), and the least 

squares linear regression model. Mean correlation coefficients are shown for each feature type/layer 

and ROI (error bars, 95% CI across five subjects). The decoding accuracies with these models are 

qualitatively similar, while the sparse models, especially the ARD model, showed relatively higher 

accuracy than the least squares model.   



Supplementary Figure 22 | Prediction of category-average features by different linear 
regression models. Category-average features were predicted using different linear regression models 

as shown in Supplementary Fig. 21. (a) Correlation coefficients with predicted features from 

stimulus-induced brain activity. (b) Correlation coefficients with predicted features from 

imagery-induced brain activity. Mean correlation coefficients are shown for each feature type/layer 

and ROI (error bars, 95% CI across five subjects). This analysis also showed similar levels of 

accuracy across the models for both the perception and imagery conditions. Taken together with the 

results in Supplementary Fig. 21, these results indicate that image and category-average feature 

decoding can be reproduced with different linear regression models, supporting the robustness of our 

main results. The relative advantage of the sparse models suggests that regularization is useful to 

avoid overfitting.  
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