

(a) Gastrocnemius muscle weight (GW) and gastrocnemius muscle weight/body weight (GW/BW) ratio were reduced in denervation (Den) mice compared to control (Con) group (n=5 per group). (b) GW and GW/BW ratio were reduced in dexamethasone (Dex)-treated mice compared to control group (n=5 per group). (c) GW was reduced in fasting mice compared to control group (n=5 per group). (d) GW was reduced in cancer cachexia mice compared to control group (n=5 per group). (e) GW and GW/BW ratio were reduced in ageing (Old) mice compared to control group (n=5 per group). (e) GW and GW/BW ratio were reduced in ageing (Old) mice compared to control (Young) mice (n=4 per group). (f) qRT-PCR analysis of miR-29b expression in gastrocnemius muscle from denervation rat at day 3, 5, 7, and 14, compared to controls (n=5 per group). (g) qRT-PCR analysis showed increased *Atrogin-1*, *Murf-1*, and miR-29b expressions in tibialis anterior (TA), soleus, and extensor digitorum longus (EDL) from denervation mice compared to controls (n=5 per group). Error bars, SEM. An unpaired, two-tailed Student's t test was used for comparisons between two groups (a-e, g). One-way ANOVA test was performed to compare multiple groups followed by Bonferroni's post hoc test (f). *, P < 0.05. **, P < 0.01.

Supplementary Figure 2. miR-29b is increased in muscle atrophy cell models

(a) TNF- α (100 ng/ml) induced muscle atrophy in C2C12 myotubes as evidenced by reduced myotube diameter, accompanied with increased *Atrogin-1*, *Murf-1*, and miR-29b expression levels (n=4 per group, scale bar: 100 µm). (b) H₂O₂ (400 µM) induced muscle atrophy in C2C12 myotubes as evidenced by reduced myotube diameter, accompanied with increased *Atrogin-1*, *Murf-1*, and miR-29b expression levels (n=4 per group, scale bar: 100 µm). Error bars, SEM. An unpaired, two-tailed Student's t test was used for comparisons between two groups. *, *P*<0.05. **, *P*<0.01.

Supplementary Figure 3. miR-29b is sufficient to induce muscle atrophy in vitro

(a) qRT-PCR analysis showed increased miR-29b expression in C2C12 myotubes transfected with FugwmiR-29b compared to Fugw control (n=6 per group). (b) Immunofluorescent staining for C2C12 myotubes showed reduced myotube diameter when transfected with Fugw-miR-29b (n=4 per group, scale bar: 100 µm). (c) qRT-PCR analysis showed up-regulated Atrogin-1 and Murf-1 expressions in C2C12 myotubes transfected with Fugw-miR-29b (n=6 per group). Error bars, SEM. An unpaired, two-tailed Student's t test was used for comparisons between two groups. *, P<0.05. **, P<0.01.

Supplementary Figure 4. miR-29b is necessary for muscle atrophy in vitro

(a) miR-29b inhibition attenuated TNF- α (100 ng/ml) induced muscle atrophy in C2C12 myotubes as determined by myotube diameter (n=4 per group, scale bar: 100 µm), creatine kinase (CK) activity (n=6 per group), and *Atrogin-1* and *Murf-1* expressions (n=6 per group). (b) miR-29b inhibition attenuated H₂O₂ (400 µM) induced muscle atrophy in C2C12 myotubes as determined by myotube diameter (n=4 per group, scale bar: 100 µm), creatine kinase (CK) activity (n=6 per group), and *Atrogin-1* and *Murf-1* expressions (n=6 per group), and *Atrogin-1* and *Murf-1* expressions (n=6 per group). Error bars, SEM. One-way ANOVA test was performed to compare multiple groups followed by Bonferroni's post hoc test. *, *P*<0.05. **, *P*<0.01.

Supplementary Figure 5. IGF-1 and PI3K(p85a) are reduced in muscle atrophy

(a) Western blot showed that IGF-1 and PI3K(p85 α) were down-regulated in dexamethasone (Dex)-, TNF- α -, and H₂O₂-induced muscle atrophy *in vitro* (n=3 per group). (b) Western blot showed that IGF-1 and PI3K(p85 α) were down-regulated in denervation (Den)-, Dex-, and fasting-induced muscle atrophy *in vivo* (n=3 per group). Error bars, SEM. The presented blots are representative samples of three independent experiments. An unpaired, two-tailed Student's t test was used for comparisons between two groups. *, P<0.05. **, P<0.01.

Supplementary Figure 6. IGF-1-AKT Signaling is decreased in muscle atrophy

(a) Western blot showed that the IGF-1-AKT signaling (AKT, FOXO3A, mTOR, and P70S6K phosphorylation levels) was down-regulated in denervation (Den)-induced muscle atrophy mouse model (n=3 per group). (b) Western blot showed that the IGF-1-AKT signaling was down-regulated in dexamethasone (Dex)-induced muscle atrophy mouse model (n=3 per group). (c)Western blot showed that the IGF-1-AKT signaling was down-regulated in fasting-induced muscle atrophy mouse model (n=3 per group). Error bars, SEM. An unpaired, two-tailed Student's t test was used for comparisons between two groups. *, P < 0.05.

а

Supplementary Figure 7. miR-29b is sufficient to induce muscle atrophy *in vivo*

(a) Cross sections of gastrocnemius were stained with MHC antibodies to identify type I (blue), type IIA

(green), and type IIB (red) muscle fibers, and to quantify myofiber type distribution in NC agomir and miR-29b agomir treated mice (n=3 per group, scale bar: 50 µm). (b-e) qRT-PCR analysis of other ubiquitin ligases-related genes (b), autophagy-related genes (c), degeneration/regeneration-related genes (d), and inflammation-related genes (e) in the gastrocnemius from mice treated with miR-29b agomir (n=5 per group). (f) qRT-PCR analysis showed up-regulated transcriptional markers of denervation (*Musk, Achra, Achre, Achrg, Cpla2, Ncam*, and *Runx1*) in the gastrocnemius from denervated (Den) mice compared to controls (n=5 per group). (g) qRT-PCR analysis showed up-regulated transcriptional markers of denervation (*Achre* and *Cpla2*) in the gastrocnemius from mice treated with miR-29b agomir (n=5 per group). (g) qRT-PCR analysis showed up-regulated transcriptional markers of denervation (*Achre* and *Cpla2*) in the gastrocnemius from mice treated with miR-29b agomir (n=5 per group). (h) Western blot showed that IGF-1 and PI3K(p85 α) were down-regulated in miR-29b agomir treated mice (n=3 per group). (i)Western blot showed that the IGF-1-AKT signaling (AKT, FOXO3A, mTOR, and P70S6K phosphorylation levels) was down-regulated in miR-29b agomir treated mice (n=3 per group). Error bars, SEM. An unpaired, two-tailed Student's t test was used for comparisons between two groups. *, *P*<0.05. **, *P*<0.01.

Supplementary Figure 8. miR-29b is necessary for muscle atrophy in vivo

(a) Western blot analysis showed that IGF-1 and PI3K(p85 α) were up-regulated in the gastrocnemius from mice treated with miR-29b sponge compared to Fugw control in the presence or absence of denervation (Den) (n=3 per group). (b)Western blot analysis showed increased phosphorylation levels of AKT, FOXO3A, mTOR, and P70S6K in the gastrocnemius from mice treated with miR-29b sponge compared to Fugw control in the presence or absence of denervation (Den) (n=3 per group). Error bars, SEM. One-way ANOVA test was performed to compare multiple groups followed by Bonferroni's post hoc test.*, P<0.05.

Supplementary Figure 9. miR-29b in immobilization-induced muscle atrophy

(a) Gastrocnemius muscle weight (GW) and Gastrocnemius muscle weight/Body weight (GW/BW) ratio

were reduced in immobilization mice compared to control group (n=6 per group). (b) qRT-PCR showed that Atrogin-1 and Murf-1 were up-regulated in the gastrocnemius from immobilization mice (n=6 per group). (c) qRT-PCR showed that miR-29b was up-regulated in the gastrocnemius from immobilization mice (n=6 per group). (d) qRT-PCR analysis showed increased Atrogin-1, Murf-1, and miR-29b expressions in the tibialis anterior (TA), soleus, and extensor digitorum longus (EDL) from immobilization mice compared to controls (n=6 per group). (e) qRT-PCR showed that miR-29b sponge significantly decreased miR-29b expression in the gastrocnemius (n=5 per group). (f) Gastrocnemius muscle morphology, GW, and GW/BW ratio showed that miR-29b sponge at least partly blocked immobilization-induced muscle atrophy (n=5 per group, scale bar: 1 cm). (g) qRT-PCR analysis showed that Atrogin-1 and Murf-1 were no longer up-regulated in immobilization mice treated with miR-29b sponge (n=5 per group). (h) Hematoxylin-eosin (HE) staining showed that the reduction in muscle fiber diameter in immobilization mice was partly attenuated by miR-29b sponge (n=5 per group, scale bar: 50 µm). (i) Western blot analysis showed that the down-regulation of IGF-1 and PI3K(p85α) expression levels in immobilization mice were blocked by miR-29b sponge (n=3 per group). Age and sex matched mice were used for experiments randomly. Error bars, SEM. An unpaired, twotailed Student's t test was used for comparisons between two groups (a-d). One-way ANOVA test was performed to compare multiple groups followed by Bonferroni's post hoc test (e-i). *, P<0.05. **, P<0.01.

Supplementary Figure 10. Uncropped scans of Western blots

MicroRNA	Regulation	Fold change	P value
miR-130b	up	6.82	0.0016
miR-21	up	6.35	0.0020
miR-29b	up	3.87	0.0039
miR-212	up	3.38	0.0143
miR-672	up	3.24	0.0344
miR-223	up	3.08	0.0081
miR-222	up	3.03	0.0001
miR-221	up	3.01	0.0002
miR-203	up	2.98	0.0135
miR-132	up	2.92	0.0060
miR-511*	up	2.77	0.0032
miR-146b	up	2.68	0.0021
miR-133a*	down	2.39	0.0086
miR-1949	up	2.38	0.0404
miR-326	up	2.21	0.0231

Supplementary Table 1. Aberrant expressed microRNAs in denervated muscle

Gene	Sequence (5'-3')	
mmu-Yy1	GCCCTCATAAAGGCTGCAC	
	CCCTAAGCAACTGGCAGAA	
mmu-IGF-1	GCCTTCCAACTCAATTATT	
	GCCTCTGTGACTTCTTGAA	

Supplementary Table 2. siRNA sequences used in this study

Gene	Forward primer(5'-3')	Reverse primer(5'-3')
rno-Atrogin-1	TTCCATCAGGAGAAGTGGATCT	GGCAGTCGAGAAGTCCAGTC
rno-Murf-1	CACGAAGACGAGAAAATCAACA	TGTCCTTGGAAGATGCTTTGTA
rno-18S	TCAAGAACGAAAGTCGGAGG	GGACATCTAAGGGCATCAC
mmu-MHC	GAGGGTGGCTCTCACACATTC	TTGGCCTTCGTAAGCAAACTG
mmu-Myod	CCACTCCGGGACATAGACTTG	AAAAGCGCAGGTCTGGTGAG
mmu-myog	GAGACATCCCCCTATTTCTACCA	GCTCAGTCCGCTCATAGCC
mmu-Myf5	AAGGCTCCTGTATCCCCTCAC	TGACCTTCTTCAGGCGTCTAC
mmu-IL-1α	CGAAGACTACAGTTCTGCCATT	GACGTTTCAGAGGTTCTCAGAG
mmu-IL-1β	GCAACTGTTCCTGAACTCAACT	ATCTTTTGGGGGTCCGTCAACT
mmu-IL-6	TAGTCCTTCCTACCCCAATTTCC	TTGGTCCTTAGCCACTCCTTC
mmu-Yy1	CAGTGGTTGAAGAGCAGATCAT	AGGGAGTTTCTTGCCTGTCAT
mmu-Traf6	AAAGCGAGAGATTCTTTCCCTG	ACTGGGGACAATTCACTAGAGC

Supplementary Table 3. Primer sequences for qRT-PCRs used in this study

mmu-Nedd4	TCGGAGGACGAGGTATGGG	GGTAC
mmu-Mul1	CTGGGCACCAGTTCGATGG	GACAG
mmu-Znf216	CCCATGCTGTGTAGTACAGGA	GCTCAT
mmu-Fbxo40	CGTCTCCTGCCTGGTGATAAG	GTATGO
mmu-Murf2	AAAGCAACTGATCTGTCCCATC	TGTGGG
mmu-Murf3	GGAGAAGCAGCTCATTTGCC	CCTCCT
mmu-Cblb	GGTCGCATTTTGGGGGATTATTGA	TTTGGC
mmu-Atg7	GTTCGCCCCCTTTAATAGTGC	TGAAC
mmu-Map1-lc3	CACTGCTCTGTCTTGTGTAGGTTG	TCGTTC
mmu-Cathepsinl	GTGGACTGTTCTCACGCTCAAG	TCCGTC
mmu-Gabarapl1	CATCGTGGAGAAGGCTCCTA	ATACAG
mmu-Bnip3	TTCCACTAGCACCTTCTGATGA	GAACA
mmu-Bnip3l	TTGGGGCATTTTACTAACCTTG	TGCAG
mmu-Atg12	TCCGTGCCATCACATACACA	TAAGA

GGATCAGCAGTGAACA CATAAGGCACACACTT TTCTGCCACTATTCTGC CTCTGACTCTTTGCACAT GTAAGTACGGGTTAGAG **FGAAGACACCGTTGTG** CACAGTCTTACCACTTT TCCAACGTCAAGCGG GTGCCTTTATTAGTGCATC CCTTCGCTTCATAGG GCTGGCCCATGGTAG CCGCATTTACAGAACAA GTGACTGGTGGTACTAA CTGCTGTGGGGGCTGA

mmu-Vps34	TGTCAGATGAGGAGGCTGTG	CCAGGCACGACGTAACTTCT
mmu-Beclin	TGAATGAGGATGACAGTGAGCA	CACCTGGTTCTCCACACTCTTG
mmu-Atg4b	ATTGCTGTGGGGTTTTTCTG	AACCCCAGGATTTTCAGAGG
mmu-TBP	TGTGAATACTGGTGCTGAG	GGCATGAGACAAGACCTATA
mmu-Musk	TTCAGCGGGACTGAGAAACT	TGTCTTCCACGCTCAGAATG
mmu-Achra	TCCCTTCGATGAGCAGAACT	GGGCAGCAGGAGTAGAACAC
mmu-Achre	GTGTCTGGATTGGCATTGACT	ACACCTGCAAAATCGTCCTTG
mmu-Achrg	GACCAACCTCATCTCCCTGA	GAGAGCCACCTCGAAGACAC
mmu-Cpla2	GACAGCTCCGACAGTGATGA	CGTCCTTCTCGGGTATTGAA
mmu-Ncam	AAGGGGAAGGCACTGAATTT	TCTCCTGCCACTTGACACAG
mmu-Runx I	AGCCTGGCAGTGTCAGAAGT	TGGCATCTCTCATGAAGCAC
mmu-Myh1	GCGAATCGAGGCTCAGAACAA	GTAGTTCCGCCTTCGGTCTTG
mmu-Myh2	AAGTGACTGTGAAAACAGAAGCA	GCAGCCATTTGTAAGGGTTGAC
mmu-Myh4	CTTTGCTTACGTCAGTCAAGGT	AGCGCCTGTGAGCTTGTAAA

mmu-Myh7	ACTGTCAACACTAAGAGGGTCA	TTGGATGATTTGATCTTCCAGGG
muu-Atrogin-1	CAGCTTCGTGAGCGACCTC	GGCAGTCGAGAAGTCCAGTC
Mmu-IGF-1	GTGGGGGCTCGTGTTTCTC	GATCACCGTGCAGTTTTCCA
mmu-Murf-1	GTGTGAGGTGCCTACTTGCTC	GCTCAGTCTTCTGTCCTTGGA
mmu-18S	TCAAGAACGAAAGTCGGAGG	GGACATCTAAGGGCATCAC