dKLC hKLC1 ceKLC-2a	1 1 1	MTQMSQDEIITNTKTVLQGLEALRVEHVSIMNGIAEVQKDNE MSTMVYIKEDKLEKLTQDEIISKTKQVIQGLEALKNEHNSILQSLLETLKCLKKDDESNL
dKLC hKLC1 ceKLC-2a	43 61 49	KSDMLRKNIENIELGLSE AQVMMALTSHLQNIEAEKHKLKTQVRRLHQEN AWLRDEL VEEKSNMIRKSLEMLELGLSE AQVMMALSNHLNAVESEKQKLRAQVRRLCQEN QWLRDEL PKQKLSQINDNLDKLVCGVDE TSLMLMVFQLTQGMDAQHQKYQAQRRRLCQEN AWLRDEL
dKLC hKLC1 ceKLC-2a	100 121 109	A N T Q Q K F Q A S E Q L V A Q L E E E K K H L E F M A S V K K Y D E N Q E - Q D D A C D K S R T D P V V E L A N T Q Q K L Q K S E Q S V A Q L E E E K K H L E F M N Q L K K Y D D D I S P S E D K D T D S T K E P L D D L S S T Q I K L Q Q S E Q M V A Q L E E E N K H L K Y M A S I K Q F D D G T Q S D T K T S V D V G P Q P V T N E T L Q E L
dKLC hKLC1 ceKLC-2a	154 176 169	TPR1 FPDEENED RHN MS PTPP SQ FAN - QTSGYE IPAR LRTLHN LV IQYA SQ GRYE VA VP L FPN DE DD P GQG IQ QQH SSA A A A QQ GGYE IPAR LRTLHN LV IQYA SQ GRYE VA VP L GFG PE DE ED MN AS QF NQ PT PA NQMA AS AN VGYE IPAR LRTLHN LV IQYA SQ GRYE VA VP L
dKLC hKLC1 ceKLC-2a	2 0 9 2 3 2 2 2 9	TPR3 C K Q A L E D L E R T S G H D H P D V A T M L N I L A L V Y R D Q N K Y K E A A N L L N D A L S I R G K T L G E N H P A C K Q A L E D L E K T S G H D H P D V A T M L N I L A L V Y R D Q N K Y K D A A N L L N D A L A I R E K T L G K D H P A C K Q A L E D L E K T S G H D H P D V A T M L N I L A L V Y R D Q N K Y K E A A N L L N E A L S I R E K C L G E S H P A
dKLC hKLC1 ceKLC-2a	269 292 289	TPR4 VAA TL NN LA VL YG KR GK YK DA EP LC KR AL EI RE KV LG KD HP DV AK QL NN LA LL CQ NQ GK Y VAA TL NN LA VL YG KR GK YK EA EP LC KR AL EI RE KV LG KD HP DV AK QL NN LA LL CQ NQ GK Y VAA TL NN LA VL EG KR GK EK DA EP LC KR AL EI RE KV LG DD HP DV AK QL NN LA LL CQ NQ GK Y
dKLC hKLC1 ceKLC-2a	329 352 349	TPR5 D E V E K YY Q R A L D I Y E S K L G P D D P N V A K T K N N L A G C Y L K Q G R YT E A E I L Y K O V L T R A H E R E E E V E Y Y Q R A L E I Y Q T K L G P D D P N V A K T K N N L A S C Y L K Q G K E K Q A E T L Y K E I L T R A H E R E E E V E K YY K R A L E I Y E S K L G P D D P N V A K T K N N L S A Y L K Q G K Y K E A E L Y K Q I L T R A H E R E
dKLC hKLC1 ceKLC-2a	389 412 409	TPR6 F G A I D SKNK P I WOVA EE RE EH KF DN RENTPYGE YG GW HK AA KV D S PT VT TT L K N L GA L Y R F G S VD D E NK P I WM HA EE RE EC KG KO KD GT SF GE YG GW YK AC KV D S PT VT TT L K N L GA L Y R F G I S G E NK P I WOI A EE RE EN KHKG - E GA TA NE OA GW AKAA KV D S PT VT TT L K N L GA L Y R
dKLC hKLC1 ceKLC-2a	449 472 468	R Q G M F E A A E T L E D C A M R S K K E A Y D L A K Q T K L S Q L L T S N E K R R S K A I K R Q G K F E A A E T L E E A A M R S R K Q G L D N V H K Q R V A E V L N D P E N M E K R R S R E S L N V D V V K Y E R Q G K Y E A A E T L E D V A L R A K K Q H E P L R S G A M G G I D E M S Q S MM A S T I G G S R
dKLC hKLC1 ceKLC-2a	496 530 517	EDLDFSEEKNAKP
dKLC hKLC1 ceKLC-2a	590	G M K R A S S L N V L N V G G K A A E D R F Q G V S G R A S F C G K R Q Q Q Q W P G R R H R

Punc-25-KLC-2::GFP (2ng/μl)

Genotype	Ex[P _{klc-2} -KLC-2-	Thrashing (times/10sec)			n
	GFP] transgene	Average	Highest ¹	Lowest ²	
	(conc. ng/µl)				
N2	N/A	41.1	48	33	30
<i>klc-2(km11)</i>	N/A	3.0	20	0	30
<i>klc-2(km11)</i>	kmEx 807 (20)	24.0	38	2	22
	kmEx 808 (20)	30.1	44	16	25
	kmEx 850 (10)	18.2	37	0	30
	kmEx 851 (10)	24.5	36	6	30
	kmEx 852 (10)	25.1	34	6	30
	<i>kmEx</i> 853 (2)	11.2	38	0	30
	kmEx 854 (2)	5.9	17	0	30
	<i>kmEx</i> 855 (2)	11.2	40	0	30
	kmEx 856 (0.5)	18.1	40	0	30
	kmEx 857 (<0.1)	4.3	30	0	30
	kmEx 858 (<0.1)	2.7	14	0	30
	kmEx 859 (<0.1)	1.6	7	0	10

Supplementary Table 1. Transgene rescue of *klc-2(km11)* at different concentrations

klc-2(km11) mutants exhibited uncoordinated movement compared with the wild type in a thrashing assay (Miller et al, 1996). The movement defects of klc-2(km11) animals were rescued by expressing P_{klc -2-KLC-2-GFP at the concentrations as specified.

1) Highest means the highest frequency of thrashing in each strain.

2) Lowest means the lowest frequency of thrashing in each strain.

n= number of animals scored

Supplementary Figure legends

Supp. Figure 1. Sequence alignment KLC2 with KLC from Drosophila and human.

Supp. Figure 2. Dosage-dependent rescue of *klc-2* by P _{*klc-2*} KLC-2::GFP transgenes.

Supp. Figure 3. Images of Punc-25 KLC-2::GFP at $2ng/\mu l$ from independent lines. The localization is indistinguishable from those at $20ng/\mu l$ as in Figure 4B. No GFP can be seen below $2ng/\mu l$. Array#1 is *km844;* array#2 is *km845;* array#3 is *km846*.

Supp. Figure 4. Images of UNC-16::XFP. A. *Punc-*25UNC-16::CFP localization at low (A1, *juEx834*) and moderate (A2, *juEx836*) expression levels. B. *Punc-*25UNC-16::GFP localization (*juEx841*). Images in A and B are shown as projections of confocal images. No difference for CFP, YFP or GFP (A, B and Figure 5). C. *Punc-*25UNC-16::CFP (*juEx836*) images shown by focal plane. GFP pattern may vary slightly depending on the concentration and image projection.