Supplemental Material CBE—Life Sciences Education

Cary et al.

Course:	Y/N	Topic/Course Content	Scale(s)
PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER (PTEM)			
PTEM1: Energy is neither created nor destroyed, but can be transformed from one form to another to generate biological activity.			□ cell/molec□ organismal□ ecosystem
PTEM2: Input of energy, which can be from different sources, is needed to build and maintain biological entities, thereby lowering entropy in the system.			□ cell/molec □ organismal □ ecosystem
PTEM3: Biological entities harness potential energy stored in electrochemical gradients and released from chemical reactions.			□ cell/molec□ organismal□ ecosystem
PTEM4: Matter is recycled through the re-arrangement of chemical bonds in biological entities.			□ cell/molec□ organismal□ ecosystem
PTEM5: Biological entities regulate the synthesis, storage and mobilization of biological compounds to meet energy demands.			□ cell/molec□ organismal□ ecosystem
PTEM6: Many chemical elements can serve as electron donors and acceptors to drive biological processes.			□ cell/molec □ organismal □ ecosystem
PTEM7: Matter can transfer between the abiotic and biotic components of biological systems.			□ cell/molec□ organismal□ ecosystem

Course:	Y/N	Topic/Course Content	Scale(s)
INFORMATION FLOW, EXCHANGE AND STORAGE (IFES)			
IFES1: Information exists in many forms and is relayed within and across biological molecules, cells, tissues, organisms, populations and ecosystems.			□ cell/molec □ organismal □ ecosystem
IFES2: Genetic information is stored in nucleic acids (DNA and RNA); epigenetic information is stored in proteins that associate with DNA and in reversible DNA modifications.			□ cell/molec □ organismal □ ecosystem
IFES3: The process of protein synthesis results from the flow of genetic information through various pathways.			□ cell/molec□ organismal□ ecosystem
IFES4: Information from the environment regulates protein synthesis and activity, which control cellular processes and thereby organismal and population-level activity.			□ cell/molec□ organismal□ ecosystem
IFES5: Organisms transmit genes and epigenetic information to their offspring.			□ cell/molec□ organismal□ ecosystem

Course:	Y/N	Topic/Course Content	Scale(s)
STRUCTURE AND FUNCTION (SF)			
SF1: Biological structures from the molecular to the ecosystem scale and their interactions are determined by chemical and physical properties that both enable and constrain function.			□ cell/molec □ organismal □ ecosystem
SF2: Individual structures can be arranged into organized units that enable more complex functions.			□ cell/molec□ organismal□ ecosystem
SF3: Structural features of biological entities undergo changes during development that are determined by the regulation of gene expression.			□ cell/molec□ organismal□ ecosystem
SF4: Structural features are dynamic and modifications can be made in response to environmental changes that are compensatory to restore lost function, or non- compensatory to eliminate functions that are no longer needed.			□ cell/molec □ organismal □ ecosystem
SF5: Comparable changes in structure can have small or large effects on function, depending on the spatial location.			□ cell/molec□ organismal□ ecosystem

Course:	Y/N	Topic/Course Content	Scale(s)
EVOLUTION (E)			
E1: All living organisms share common ancestors at some time in the past.			□ cell/molec□ organismal□ ecosystem
E2: The phenotypes of living organisms result from the gain and loss of traits along their lineage.			□ cell/molec□ organismal□ ecosystem
E3: Genetic variation within a population can be generated by mutation, which results in the generation of novel traits, and by sexual recombination, endosymbiosis and horizontal gene transfer.			□ cell/molec□ organismal□ ecosystem
E4: Phenotypes, based upon underlying genotypes and environmental factors, can be subject to selective pressure.			□ cell/molec□ organismal□ ecosystem
E5: Organisms have greater fitness if they have a phenotype that increases their ability to survive and reproduce in a particular environment.			□ cell/molec□ organismal□ ecosystem
E6: Populations are composed of individual organisms that vary in their fitness, leading to differential rates of survival and reproduction and therefore changes in allele frequency over time.			□ cell/molec□ organismal□ ecosystem
E7: Evolution in a population may be due to events not related to fitness, including genetic drift and gene flow.			□ cell/molec□ organismal□ ecosystem
E8: The rate of evolutionary change varies and is influenced by many factors, including mutation rate, generation time, and environmental variation.			□ cell/molec□ organismal□ ecosystem
E9: Speciation occurs when subpopulations can no longer exchange genetic material, allowing them to diverge over time in their physiological and ecological traits.			□ cell/molec□ organismal□ ecosystem

Course:	Y/N	Topic/Course Content	Scale(s)
SYSTEMS (S)			
S1: Biological entities interact through chemical and physical signals that can be transient, depend on spatial organization, and are influenced by environmental factors.			□ cell/molec □ organismal □ ecosystem
S2: Changes in one component of a biological system can affect or be regulated by other components of the same system.			□ cell/molec□ organismal□ ecosystem
S3. Biological systems can be defined at different scales, interact within and across scales, and together form complex networks.			□ cell/molec□ organismal□ ecosystem
S4: Biological systems include and are affected by biotic and abiotic factors in the environment.			□ cell/molec □ organismal □ ecosystem
S5: Interactions between and among biological entities can generate new system properties.			□ cell/molec □ organismal □ ecosystem

	1	1	ı	ı	Т		
Courses:							
PATHWAYS AND TRANSFORMATIONS OF ENERGY AND MATTER (PTEM)							
PTEM1: Energy is neither created nor destroyed, but can be	□ cell/molec						
transformed from one form to another to generate biological	□ organismal						
activity.	□ ecosystem						
PTEM2: Input of energy, which can be from different sources, is	□ cell/molec						
needed to build and maintain biological entities, thereby lowering	□ organismal						
entropy in the system.	□ ecosystem						
PTEM3: Biological entities harness potential energy stored in	□ cell/molec						
	□ organismal						
electrochemical gradients and released from chemical reactions.	□ ecosystem						
PTEM4: Matter is recycled through the re-arrangement of chemical	□ cell/molec						
	□ organismal						
bonds in biological entities.	□ ecosystem						
PTEM5: Biological entities regulate the synthesis, storage and	□ cell/molec						
	□ organismal						
mobilization of biological compounds to meet energy demands.	□ ecosystem						
PTEM6: Many chemical elements can serve as electron donors and	□ cell/molec						
acceptors to drive biological processes.	□ organismal						
acceptors to drive biological processes.	□ ecosystem						
PTEM7: Matter can transfer between the abiotic and biotic	□ cell/molec						
	□ organismal						
components of biological systems.	□ ecosystem						

Courses:					
INFORMATION FLOW, EXCHANGE AND STORAGE (IFES)					
IFES1: Information exists in many forms and is relayed within and	□ cell/molec				
across biological molecules, cells, tissues, organisms, populations	□ organismal				
and ecosystems.	□ ecosystem				
IFES2: Genetic information is stored in nucleic acids (DNA and RNA);	□ cell/molec				
epigenetic information is stored in proteins that associate with DNA	□ organismal				
and in reversible DNA modifications.	□ ecosystem				
IFES3: The process of protein synthesis results from the flow of	□ cell/molec				
·	□ organismal				
genetic information through various pathways.	□ ecosystem				
IFES4: Information from the environment regulates protein	□ cell/molec				
synthesis and activity, which control cellular processes and thereby	□ organismal				
organismal and population-level activity.	□ ecosystem				
IFES5: Organisms transmit genes and epigenetic information to	□ cell/molec				
their offspring.	□ organismal				
their onspring.	□ ecosystem				

Courses:					
STRUCTURE AND FUNCTION (SF)					
SF1: Biological structures from the molecular to the ecosystem scale	□ cell/molec				
and their interactions are determined by chemical and physical	□ organismal				
properties that both enable and constrain function.	□ ecosystem				
SF2: Individual structures can be arranged into organized units that	□ cell/molec				
	□ organismal				
enable more complex functions.	□ ecosystem				
SF3: Structural features of biological entities undergo changes	□ cell/molec				
during development that are determined by the regulation of gene	□ organismal				
expression.	□ ecosystem				
SF4: Structural features are dynamic and modifications can be made	□ cell/molec				
in response to environmental changes that are compensatory to	□ organismal				
restore lost function, or non- compensatory to eliminate functions	□ ecosystem				
that are no longer needed.	= 0000/000	= 00007010	= 0000/000	= 00007000	_ ccco,ccc
SF5: Comparable changes in structure can have small or large	☐ cell/molec	□ cell/molec	□ cell/molec	□ cell/molec	□ cell/molec
	□ organismal				
effects on function, depending on the spatial location.	□ ecosystem				

Courses:					
EVOLUTION (E)					
E1: All living organisms share common ancestors at some time in the past.	□ cell/molec□ organismal□ ecosystem				
E2: The phenotypes of living organisms result from the gain and loss of traits along their lineage.	□ cell/molec□ organismal□ ecosystem				
E3: Genetic variation within a population can be generated by mutation, which results in the generation of novel traits, and by sexual recombination, endosymbiosis and horizontal gene transfer.	□ cell/molec□ organismal□ ecosystem				
E4: Phenotypes, based upon underlying genotypes and environmental factors, can be subject to selective pressure.	□ cell/molec□ organismal□ ecosystem				
E5: Organisms have greater fitness if they have a phenotype that increases their ability to survive and reproduce in a particular environment.	□ cell/molec□ organismal□ ecosystem				
E6: Populations are composed of individual organisms that vary in their fitness, leading to differential rates of survival and reproduction and therefore changes in allele frequency over time.	□ cell/molec□ organismal□ ecosystem	□ cell/molec□ organismal□ ecosystem	□ cell/molec □ organismal □ ecosystem	□ cell/molec□ organismal□ ecosystem	□ cell/molec □ organismal □ ecosystem
E7: Evolution in a population may be due to events not related to fitness, including genetic drift and gene flow.	□ cell/molec□ organismal□ ecosystem				
E8: The rate of evolutionary change varies and is influenced by many factors, including mutation rate, generation time, and environmental variation.	□ cell/molec□ organismal□ ecosystem				
E9: Speciation occurs when subpopulations can no longer exchange genetic material, allowing them to diverge over time in their physiological and ecological traits.	□ cell/molec□ organismal□ ecosystem				

Courses:					
SYSTEMS (S)					
S1: Biological entities interact through chemical and physical signals	□ cell/molec				
that can be transient, depend on spatial organization, and are	□ organismal				
influenced by environmental factors.	□ ecosystem				
S2: Changes in one component of a biological system can affect or	□ cell/molec				
, , , , , , , , , , , , , , , , , , , ,	□ organismal				
be regulated by other components of the same system.	□ ecosystem				
S3. Biological systems can be defined at different scales, interact	□ cell/molec				
•	□ organismal				
within and across scales, and together form complex networks.	□ ecosystem				
S4: Biological systems include and are affected by biotic and abiotic	□ cell/molec				
,	□ organismal				
factors in the environment.	□ ecosystem				
S5: Interactions between and among biological entities can	□ cell/molec				
	□ organismal				
generate new system properties.	□ ecosystem				