

Supplementary Figure 1.

GM-DCs were pulsed with SIINFEKL peptide for 8 hours +/- LPS (100 ng/ml), washed and placed in media containing either 10 mM glucose (Glc), 10mM galactose (Gal) or 10 mM glucose plus 10mM galactose (Glc+Gal). GM-DCs were then maintained in these culture conditions for 2 or 3 days. On the indicated day post LPS stimulation GM-DCs were washed and normal media containing 10 mM glucose was added before the addition of purified CFSE labelled OT-I T cells. After a co-culture period of 48 hours the OT-I T cells were analysed by flow cytometry for proliferation as measured by CFSE dilution. Data is mean +/- range of two separate experiments.

Supplementary Figure 2.

GM-DC were left unstimulated (UnStim) or stimulated with LPS (100 ng/ml) in the presence or absence of rapamycin (20 nM) (as indicated) for 4, 6, 16 and 24 hours, then analysed by qPCR for the expression of (a) *Hif1a* (b) *Phd3* or (c) *Nos2* mRNA. Data is mean +/- SEM of three experiments. Data was analysed using a 1-way ANOVA with a Tukey post-test (*p<0.05, ***p<0.001, ns = not significant)

Supplementary Figure 3.

(a) HIF-1 $\alpha^{\text{flox/flox}}$ (WT) or HIF-1 $\alpha^{\text{flox/flox}}$ VavCre (*Hif1a*^{-/-}) GM-DCs were pulsed with SIINFEKL peptide +/-LPS (100 ng/ml) for 1, 2 or 3 days. CD80 and CD86 expression (MFI, mean fluorescent intensity) was analysed by flow cytometry. (b,c) WT and iNOS-null (*Nos2*^{-/-}) GM-DCs were pulsed with SIINFEKL peptide +/- LPS (100 ng/ml) for 1, 2 or 3 days. GM-DCs were treated with SNAP (500 μ M) every 5 hours, where indicated, and CD80 and CD86 (b) and CD40 (c) expression was analysed by flow cytometry. (d,e) GM-DCs were left unstimulated or stimulated for 20 hours in the presence or absence of (d) rapamycin (20 nM) or (e) SEITU (500 μ M) and *IL12a* mRNA was analysed by qPCR. Data is mean +/- SEM of three (d,e), six (a) or seven (b,c) separate cultures. Data was analysed using a 1-way ANOVA with a Tukey post-test (*p<0.05, ** p<0.01, ***p<0.001)

Supplementary Figure 4.

(a) GM-DC were left in complete media +/- rapamycin (20 nM) or deprived of amino acids for 1 hour +/- rapamycin and analysed by immunoblot analysis for the levels of phosphorylated p70 S6-kinase on thronine 389 (pS6K-T389). Structural Maintenance Of Chromosomes protein (Smc1) expression was assessed as a loading control. (b-e) GM-DCs were pulsed with SIINFEKL peptide for 6 h +/- LPS (100 ng/ml), washed and purified OT-I T cells were added at different T:DC ratios for 18 h. (b) NBDG uptake and (c) pS6 levels in GM-DC (top) and CD8 T cells (bottom) was measured by flow cytometry. (d,e) IFNγ production was assessed in CD8 T cells by intracellular flow cytometry; % IFNγ positive T cells (d) and the mean fluorescent intensity (MFI) of IFNγ expression in IFNγ positive T cells (e) is shown. Data is representative of two separate experiments (a) and mean +/- SEM five separate experiments (b-e). Data was analysed using a 1-way ANOVA with a Tukey post-test (*p<0.05, ** p<0.01, ***p<0.001).

^a Gating Scheme for T cell analysis

- 1. Cell gate
- 2. Doublet discrimination 3. TCR β + CD8+ OTI T cells

Gating Scheme for GM-DC analysis

b

- 1. Cell gate
- 2. Doublet discrimination
- 3. CD11c+ MHCII+ GM-DC

Supplementary Figure 5.

(a) Gating stragegy for the analysis of OTI CD8 T cells in Fig.2, Fig. 7i-l, Fig. 8h-j, Supplementary Figure 1 and Supplementary Figure 4d, (b) Gating stragegy for the analysis of GM-DC in Fig. 1b-d, Fig. 7a-d and Supplementary Figure 3a-c

Gating Scheme for in vivo experiments

b

Gating Scheme for DC/T cell co-cultures

Supplementary Figure 6.

(a) Gating stragegy for the analysis of adoptively transfered GM-DC and OTI CD8 T cells in Fig.8k-m. (b) Gating stragegy for the analysis of GM-DC and OTI CD8 T cells in co-culture experments in Fig.8b-c and Supplementary Figure 4b-c.

а

Supplementary Figure 7

Supplementary Figure 7

Fig 6a	27-11-15
and the second	-, L, LETA
La Par	
pS6 (56	
HIF-1¢.(-b	-
ркв (КВ	

Fig 6f		
WT KO 1 2 3 4 5 6 7 8 US LOS LOS LOS LOS LOS LOS LOS LOS LOS LO		
Hif-1α 4 =		
β-actin		

Supplementary Figure 7

Supplementary Table 1:

RTPCR primers

Gene	Forward sequence 5'-3'	Reverse sequence 5'-3'
Phd3	CTGGTCCTGTACTGCGGGAG	GACCCCTCCGTGTAACTTGG
Nos2	GTCAACTGCAAGAGAACGGAGAAC	CTGCGGGGAGCCATTTTG
Pkf	GCGGCGTGTGTTCATTGTAG	CACTTCTCGTTCCGGAGCAC
Pkm2	GCTATTCGAGGAACTCCGCC	AAGGTACAGGCACTACACGC
Slc2a1	GGAATCGTCGTTGGCATCCT	CGAAGCTTCTTCAGCACACTC
ll12a	AGTCCCGAAACCTGCTGAAG	GCTCCCTCTTGTTGTGGAAGA
Rplp0	CATGTCGCTCCGAGGGAAG	CAGCAGCTGGCACCTTATTG
<i>II10</i>	GGACAACATACTGCTAACCGAC	AGAAATCGATGACAGCGCCTC
TNF	AGG CAC TCC CCC AAA AGA TG	TGG TTT GTG AGT GTG AGG GTC