

Supplementary Figure 1: Frequency of springs still active (i.e. flow rate still above 1000 m³/y) at the driest part of climate cycles under gradual (periodic) and sudden (step) changes in recharge from modern day values to various minimum values (Rmin). All figures and calculations in the paper use the results for Rmin = 1 mm/y unless stated. While this is a conservative value for an arid climate, the Rmin = 0 end member provides a useful indication of the decline in active springs during any prolonged periods of zero rainfall (and therefore zero recharge).

Supplementary Figure 2: Cumulative probability distributions (F(x)) for all mapped spring characteristic input parameters (x) used for modelling. **a**. groundwater recharge. **b**. hydraulic conductivity. **c**. specific yield. **d**. characteristic length. **e**. slope. **f**. catchment area.

Supplementary Figure 3: Sensitivity of spring discharge, to a +/-25% variation from a baseline defined by an average of all parameters, to the sudden cessation of recharge from steady state conditions for **a.** normalised spring flow (q/q0) and **b**. absolute spring flow. The CDF (F(x)) for x = time in years to reach 1000 m³/y is shown as an inset. At the 95% confidence interval (i.e. 2 standard deviations), the range in x is +/-37%.

Supplementary Figure 4: Results of the statistical test for representativeness of spring sampling. Root mean squared error (RMSE) in the cumulative distribution function (CDF) of the groundwater response times plotted against increasing size of random subsamples as a proportion of the total mapped spring population.

Supplementary Figure 5: Results of analytical model testing compared against: **a**. observed flows for Mzima Springs, Tanzania⁵⁴. 'Modelled input' used signals with periods of 2.5 and 25 years with a ratio of amplitudes of 1:3, and hydraulic parameters uncalibrated from GIS mapping (see Methods) yielding a groundwater response time (GRT) of 37.5 y. 'Mean corrected model output' is a shifted plot of the raw model output to enable a better comparison to be made in the observed and modelled amplitude and attenuation despite the difference in observed and modelled absolute spring flow. **b**. naturalised flows for Uitenhage Spring, South Africa⁵⁵. 'Modelled input' used signals with periods of 4 and 15 years with a ratio of amplitudes of 1:1 and the published range of hydraulic parameters yielding a GRT range of 17 y, 74 y and 530 y for 'Analytical low', 'mid' and 'upper' respectively. **c**. modelled flows for North African Nubian Aquifer System⁵⁶. The published input parameters from the model were used as input parameters with estimates of average flowpath lengths of 300 km, 400 km and 500 km yielding GRT ranges of 25 ky, 44 ky and 68 ky for 'Analytical low', 'mid' and 'upper' respectively.

Supplementary Figure 6: Sensitivity of spring networks (hydro-refugia) to various cost maps and cost scaling in southern Kenya and northern Tanzania to demonstrate that spring networks exist in some form across all modelling scenarios. The scenarios shown are based on the springs persistent at 23 ky as the only active 'water patch'. **a.** Location details. **b.** Scenario using slope [Cost-1] as the cost layer. **c.** Scenario using roughness [Cost-2] as the cost layer. **d.** Scenario using no cost layer [Cost-0]. **e.** Scenario using roughness [Cost-2] with increased scaling [Scaling-2]. **f.** Scenario using roughness [Cost-2] with increased scaling [Cost-2] and a total three day travel distance of 180 km. **h.** Scenario using roughness [Cost-2] and a total three day travel distance of 120 km. **i.** Scenario using slope + roughness as the cost layer [Cost-5]. Unless otherwise stated all three day travel distances are 150 km and the turn angle is 20 degrees.

Supplementary Figure 7: Sensitivity of dispersal routes to various cost maps and cost scaling in southern Ethiopia and northern Kenya. The scenarios shown are based on the present day springs, lakes (fresh and saline), perennial wetlands, major rivers with flow $>0 \text{ km}^3/\text{y}$. Three-day travel distance is set at 150 km unless otherwise stated. Note that the potential for east-west dispersal routes is sensitive to the model parameters used. **a.** Location details, plus paths using roughness [Cost-2] as the cost layer with the standard scaling [Scaling-1]. **b.** Same scenario but using slope [Cost-1] as the cost layer with the standard scaling [Scalling-1]. **c.** Same scenario but using no [Cost-0] cost layer. e. Location details, plus paths using roughness [Cost-2] as the cost layer with the standard scaling [Scalling-1]. **d.** Same scenario but using no [Cost-0] cost layer. e. Location details, plus paths using roughness [Cost-2] as the cost layer with the standard scaling [Scalling-1]. **d.** Same scenario but using no [Cost-0] cost layer. e. Location details, plus paths using roughness [Cost-2] as the cost layer with the standard scaling [Scalling-1]. **d.** Same scenario but using no [Cost-0] cost layer. e. Location details, plus paths using roughness [Cost-2] as the cost layer with the standard scaling [Scaling-3]. **f.** Location details, plus paths using roughness [Cost-2] as the cost layer with the standard scaling [Scaling-3].

Supplementary Figure 8: Fourth modelled scenario based on the present day wet scenario (Run-2). Agent based modelling results based on a dry hydrological scenario using a maximum three-day travel distance of 150 km and surface roughness as the cost layer scaled according to Supplementary Figure 11. This scenario uses modern springs (seasonal, perennial + geothermal), wetlands (perennial), lakes (fresh + saline), major rivers with a flow >0 km³/y, and perennial streams mapped from the 1:500,000 scale maps. The black lines shown represent the tracks of agents in the model. Note the potential for widespread dispersal.

Supplementary Figure 9: Cost calibrations for slope and roughness and model sensitivity. a. Shows the impact on walking speed of slope based on Naismith's Rule as expressed by Rees *et al.* $(2004)^{61}$. Three possible scaling scenarios are also shown. Scaling-2 was used for both slope and roughness as the default modelling option. The grey stepped line shows its transformation to modelling data classes. **b.** Variation of network density with travel distance and comparison of the modelled scenarios. a. shows the relationship between three day travel distance and the number of edges within a network (Run-3). The data follows a power function, with 95% confidence limits shown (N=63). **c.** Inter-run variation at a given distance (N=5). Note the inter-run variation is less than the variation between each increase in distance step (10 km).

Supplementary Figure 10: Results of a sensitivity experiment conducted along a horizontal transect across the southern rift. Water-patches were placed at regular 10 km intervals along this transect and the agent number moving between patches output. Agent movements are the sum of those moving in either direction. **a.** Relief, slope and roughness data in ten equal classes along the transect. **b.** Frequency histograms of agent movements using various possible cost layers. Note that 'zero-cost' is not shown since agents 'leap-frog' stations along the transect. **c.** Replication experiment using roughness [Cost-2] as the cost layer. Note the absolute number of agents does vary but the relative proportion is always constant as is the network pattern. Roughness [Cost-2] was used as the default cost layer since it offered the least conservative option and therefore tests for possible population isolation.

a No Cost [Cost-0] b Slope [Cost-1] c Roughness [Cost-2] d Relief + Roughness [Cost-3] e Relief + Slope [Cost-4] f Slope + Roughness [Cost-5]

Supplementary Figure 11:

Runs to illustrate sensitivity to different cost layers. The hydrological system is based on the present day perennial springs, wetlands, lakes (saline + fresh) and major rivers with a flow rate greater than zero. In all cases a three day travel distance of 150 km, turn angle of 20 degrees and roughness as the cost layer with the standard [Scaling-2] was used. **a**. No-cost layer (Cost-0). **b**. Slope as the cost layer (Cost-1). **c**. Roughness as the cost layer (Cost-2). **d**. Relief and roughness as the cost layer (Cost-3). **e**. Relief and slope as the cost layer (Cost-4). f. Slope and roughness as the cost layer (Cost-5).

Supplementary Figure 12: Runs to illustrate sensitivity to different scaling of cost layers, in this case roughness [Cost-2]. The hydrological system is based on the present day perennial springs, wetlands, lakes (saline + fresh) and major rivers with a flow rate greater than zero. In all cases a three day travel distance of 150 km, turn angle of 20 degrees. **a**. Scenario with scaling 1. **b**. Scenario with scaling 2. **c**. Scenario with scaling 3.

a Present-wet scenario

c Lakes only

Supplementary Figure 13: Component parts of the hydrological system modelled with a three day travel distance of 150 km, turn angle of 20 degrees and using roughness as the cost layer with the standard [Scaling-2]. a. Present-day wet scenario. b. Springs only. c. Lakes only. d. Wetland/marsh only. e. Rivers only.

Supplementary Figure 14: Sub-network shapes derived from successful journey matrices across various model runs. a. Run-4 (Supplementary Table 3) in which a cost layer based on topographic roughness was used. Water elements correspond to the present day scenario. **b.** Run-9 (Supplementary Table 3) in which no cost layer was used. Water elements correspond to the present day scenario as in (a). **c.** Run-5 (Supplementary Table 3) in which a cost layer based on slope was used. Water elements correspond to the present day scenario as in (a). Note the increase in the number of sub-networks with use of slope as the coast layer compared to roughness (a). **d.** Run-15 (Supplementary Table 3) in which lakes were included as the only water source in the scenario. **e.** Run-14 (Supplementary Table 3) in which perennial springs were included as the only water source in the scenario. **f.** Run-14 (Supplementary Table 3) in which major were included as the only water source in the scenario.

Supplementary Figure 15: Principle components analysis of the network and Fragstats connectivity metrics recorded for the four principle scenarios modelled based on a minimum of ten repetitions. The first component explains over 99.2% of the variance and gives good statistical separation as shown by the 95% confidence ellipses. The 95% confidence ellipses show the significant level of difference between the three primary runs modelled.

Supplementary Table 1: Coefficient of determination matrix calculated by applying linear regressions between all modelled spring variables. This indicates the primary control of the groundwater response time on the spring flow recession characteristics ($R^2=0.23$ to 0.64) as well as the lack of correlation between climatic (actual recharge) and spring recession timescales ($R^2=0.01$ to 0.02).

	Time to recede to 1000 m ³ /a	Time to recede to 90% of initial flow	Groundwater response time	Potential Recharge	Actual Recharge	Catchment Area	Hydraulic conductivity	Slope	Catchment length (B _x)	Specific yield
Time to recede to 1000 m ³ /a	1.00									
Time to recede to 90% of initial flow	0.25	1.00								
Groundwater response time	0.23	0.64	1.00							
Potential Recharge	0.00	0.00	0.00	1.00						
Actual Recharge	0.01	0.02	0.02	0.71	1.00					
Catchment Area	0.00	0.00	0.00	0.00	0.00	1.00				
Hydraulic conductivity	0.01	0.01	0.01	0.01	0.00	0.01	1.00			
Slope	0.01	0.02	0.00	0.00	0.00	0.00	0.02	1.00		
Catchment length (B _x)	0.00	0.00	0.01	0.00	0.02	0.03	0.00	0.01	1.00	
Specific yield	0.03	0.04	0.05	0.02	0.05	0.00	0.03	0.00	0.01	1.00

Supplementary Table 2: Typical network metrics and Fragstat output for selected model runs, showing the differences between the four modelled hydrological scenarios. Mean data is shown for a minimum of ten model repeats. See Supplementary Table 3 for the run definitions and Supplementary Table 4 for description of the metrics.

	Natara	N.	Ede	0/ D-41-	ND	NP-		PD (D-4h	LDI	TE D-4h	ED (D-4h				PRO	DDOX AM	CON	CONNECT	COLIE	COLLEGION
	Numbers	NO dec	Edg	% Path	NP - Total	Path	PD	[Path Class]	LPI- Dath	[Path Class]	[Path Class]	I SI	AKEA	AREA_AM	A_A M	PROA_AM	NECT	[Path Class]	SION	[Path Class]
Dup	Numbers	ues	es	Uy Alea	Total	8	FD	Class	Faui	Classj	Classj	LOI	_Alvi	[Faul Class]	IVI		NECT		SION	
1	Wet scenario; 150 km in three days; 20° turn angle; cost map-2 (roughness) with normal scaling; all perennial and seasonal water bodies.																			
		16	101			8-1, 100	2924	()	[8, 1	170868.				[73.67		99.880	
Min	2	64	99	47.7971	4717	39	9500	241833	45.67	2755.55	2	55.19	0.0064	0.007	5182	2619.663	37	74.0056	3	99.9249
		16	105				3204				176535.						74.42		99.899	
Max	6	64	57	49.0522	5168	59	6090	365851	47.55	2846.94	3	56.99	0.007	0.0074	9948	4832.677	37	79.8335	6	99.9339
Mea		16	103		5002		3102				174071.		0.0067				74.06		99.891	
n	3.7	64	05.4	48.1976		48	2330	297641	46.37	2807.20	2	56.20	5	0.00719	7278	3591.396	493	76.58844	01	99.9281
Std.			36.6		46.4		2877				581.020		6.8718				0.087		0.0019	
error	0.495535	0	082	0.12194	0	1.68	35.6	10458	0.178	9.36999	8	0.184	4E-05	4.06885E-05	476	253.2112	26276	0.6881662	79251	0.000851535
Stan			115.																	
d.	1.5.5001		765	0.005.00	146.		9098	22071	0.5.0		1837.34	0.500	0.0002	0.000100550	1.505	000 50 (0.275	0.15(150	0.0062	0.000.0000000
dev	1.56/021	0	3	0.38563	/	5.33	99.7	330/1	0.563	29.6305	9	0.583	1/30/	0.000128668	1505	800.724	9491	2.1/61/3	5894	0.002692789
95%	1 1 2 1		80 F	0.2755	105	2.01	6510	22660	0.402	21.2	1215	0.417	0.0001	0.2E.05	1076	572.9	0.107	1 5565	0.004	0.002
+/-	1.121		02.3	0.2755	105	3.01	00	23000	0.405	21.2	1515	0.417	555	9.2E-03	1070	372.8	0.197	1.5565	0.004	0.002
.,																				
N	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
N Run_	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
N Run_ 2	10 Present-day	10 v wet so	10 cenario;	10 150 km in ti	10 hree days	10 ; 20° turr	10 n angle; o	10 cost map 2 (1	10 roughnes	10 s) with norm	10 al scaling; po	10 ermanent	10 springs (+1	10 hydrothermal) ma	10 ajor rivers,	10 perennial rivers,	10 saline lak	10 es, perennial wet	10 lands, and	10 fresh lakes.
N Run_ 2	10 Present-day	10 / wet so 93	10 cenario; 532	10 150 km in t	10 hree days	10 s; 20° turi	10 n angle; o 1477	10 cost map 2 (1 266637.	10 roughness 14.05	10 s) with norm 1721.08	10 al scaling; po 106722.	10 ermanent 34.83	10 springs (+1	10 nydrothermal) ma	10 ajor rivers, 3349.	10 perennial rivers,	10 saline lak 70.01	10 es, perennial wet	10 lands, and 99.836	10 fresh lakes.
N Run_ 2 Min	10 Present-day 11	10 7 wet so 93 5	10 cenario; 532 2	10 150 km in t 26.8003	10 hree days 2382	10 ;; 20° turi 43	10 n angle; o 1477 0470	10 cost map 2 (n 266637. 4	10 roughness 14.05 31	10 s) with norm 1721.08 8	10 al scaling; po 106722. 4	10 ermanent 34.83 85	10 springs (+1 0.0082	10 nydrothermal) ma 0.0014	10 njor rivers, 3349. 775	10 perennial rivers, 1607.645	10 saline lak 70.01 61	10 es, perennial wet 79.0909	10 lands, and 99.836 6	10 fresh lakes. 99.6255
N Run_2 Min	10 Present-day 11	10 v wet so 93 5 93 5	10 cenario; 532 2 552 2	10 150 km in ti 26.8003	10 hree days 2382	10 ;; 20° turn 43	10 n angle; o 1477 0470 1552	10 cost map 2 (1 266637. 4 328646.	10 roughness 14.05 31 16.35	10 s) with norm 1721.08 8 1758.84	10 al scaling; po 106722. 4 109063.	10 ermanent 34.83 85 35.58	10 springs (+1 0.0082	10 nydrothermal) ma 0.0014	10 ajor rivers, 3349. 775 5680.	10 perennial rivers, 1607.645	10 saline lak 70.01 61 71.82	10 es, perennial wet 79.0909	10 lands, and 99.836 6 99.858	10 fresh lakes. 99.6255
N Run_2 Min Max	10 Present-day 11 17	10 7 wet so 93 5 93 5 93 5	10 cenario; 532 2 552 3 542	10 150 km in ti 26.8003 27.4832	10 hree days 2382 2504	10 ;; 20° turn 43 53	10 n angle; o 1477 0470 1552 6980	10 cost map 2 (f 266637. 4 328646. 1	10 roughness 14.05 31 16.35 65	10 s) with norm 1721.08 8 1758.84 8	10 al scaling; po 106722. 4 109063. 9	10 ermanent 34.83 85 35.58 19	10 springs (+1 0.0082 0.0085	10 nydrothermal) ma 0.0014 0.0018	10 njor rivers, 3349. 775 5680. 048	10 perennial rivers, 1607.645 4952.547	10 saline lak 70.01 61 71.82 27	10 es, perennial wet 79.0909 89.258	10 lands, and 99.836 6 99.858 8	10 fresh lakes. 99.6255 99.7128
N Run_2 Min Max Mea	10 Present-day 11 17	10 v wet so 93 5 93 5 93 5 93 5 93 5	10 cenario; 532 2 552 3 543 07	10 150 km in t 26.8003 27.4832 27.1632	10 hree days 2382 2504 2430	10 ;; 20° turn 43 53 46 7	10 n angle; o 1477 0470 1552 6980 1506 8110	10 cost map 2 (1 266637. 4 328646. 1 289580. 6	10 roughness 14.05 31 16.35 65 15.04 826	10 s) with norm 1721.08 8 1758.84 8 1739.59	10 al scaling; po 106722. 4 109063. 9 107869. 9	10 ermanent 34.83 85 35.58 19 35.20 564	10 springs (+1 0.0082 0.0085 0.0084 2	10 nydrothermal) ma 0.0014 0.0018	10 ujor rivers, 3349. 775 5680. 048 4232. 159	10 perennial rivers, 1607.645 4952.547 3605 783	10 saline lak 70.01 61 71.82 27 70.96 984	10 es, perennial wet 79.0909 89.258 85.8662	10 lands, and 99.836 6 99.858 8 99.849 32	10 fresh lakes. 99.6255 99.7128
N Run_2 Min Max Mea n	10 Present-day 11 17 13.6	10 7 wet sc 93 5 93 5 93 5 93 5	10 cenario; 532 2 552 3 543 0.7	10 150 km in t 26.8003 27.4832 27.1632 2	10 hree days 2382 2504 2430	10 ; 20° turn 43 53 46.7	10 n angle; o 1477 0470 1552 6980 1506 8110	10 cost map 2 (1 266637. 4 328646. 1 289580. 6	10 roughness 14.05 31 16.35 65 15.04 826	10 s) with norm 1721.08 8 1758.84 8 1739.59 4	10 al scaling; pr 106722. 4 109063. 9 107869. 9	10 ermanent 34.83 85 35.58 19 35.20 564	10 springs (+1 0.0082 0.0085 0.0084 2	10 nydrothermal) ma 0.0014 0.0018 0.0016	10 ijor rivers, 3349. 775 5680. 048 4232. 159	10 perennial rivers, 1607.645 4952.547 3605.783	10 saline lak 70.01 61 71.82 27 70.96 984	10 es, perennial wet 79.0909 89.258 85.8662	10 lands, and 99.836 6 99.858 8 99.849 32	10 fresh lakes. 99.6255 99.7128 99.67257
N Run_2 Min Max Mea n	10 Present-day 11 17 13.6	10 7 wet so 93 5 93 5 93 5 93 5	10 cenario; 532 2 552 3 543 0.7 19.8 589	10 150 km in t 26.8003 27.4832 27.1632 2 0.07655	10 hree days 2382 2504 2430	10 ; 20° turi 43 53 46.7	10 n angle; o 1477 0470 1552 6980 1506 8110 7756	10 cost map 2 (1 266637. 4 328646. 1 289580. 6 7339.87	10 roughness 14.05 31 16.35 65 15.04 826	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4 52085	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280 332	10 ermanent 34.83 85 35.58 19 35.20 564 0.089	10 springs (+1 0.0082 0.0085 0.0084 2 2 9059	10 nydrothermal) ma 0.0014 0.0018 0.0016	10 ajor rivers, 3349. 775 5680. 048 4232. 159 239.7	10 perennial rivers, 1607.645 4952.547 3605.783	10 saline lak 70.01 61 71.82 27 70.96 984 0.194	10 es, perennial wet 79.0909 89.258 85.8662	10 ands, and 99.836 6 99.858 8 99.849 32 0.0021	10 fresh lakes. 99.6255 99.7128 99.67257
N Run_2 Min Max Mea n Std.	10 Present-day 11 17 13.6 0.6	10 7 wet so 93 5 93 5 93 5 93 5	10 cenario; 532 2 552 3 543 0.7 19.8 589 8	10 150 km in ti 26.8003 27.4832 27.1632 2 0.07655 12	10 hree days 2382 2504 2430 12.5 0866	10 ;; 20° turn 43 53 46.7 1.18 3685	10 n angle; c 1477 0470 1552 6980 1506 8110 7756 4.59	10 cost map 2 (r 266637. 4 328646. 1 289580. 6 7339.87 8	10 roughness 14.05 31 16.35 65 15.04 826 0.204 5157	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4.52085 5	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280.332 3	10 ermanent 34.83 85 35.58 19 35.20 564 0.089 68132	10 springs (+1 0.0082 0.0085 0.0084 2 2.9059 3E-05	10 nydrothermal) ma 0.0014 0.0018 0.0016 3.65148E-05	10 ijor rivers, 3349. 775 5680. 048 4232. 159 239.7 338	10 perennial rivers, 1607.645 4952.547 3605.783 315.1601	10 saline lak 70.01 61 71.82 27 70.96 984 0.194 7095	10 es, perennial wet 79.0909 89.258 85.8662 0.9426458	10 ands, and 99.836 6 99.858 8 99.849 32 0.0021 23823	10 fresh lakes. 99.6255 99.7128 99.67257 0.008224112
N Run_2 Min Max Mea n Std. error Stan	10 Present-day 11 17 13.6 0.6	10 7 wet so 93 5 93 5 93 5 93 5 0	10 cenario; 532 2 552 3 543 0.7 19.8 589 8 62.7	10 150 km in ti 26.8003 27.4832 27.1632 2 0.07655 12	10 hree days 2382 2504 2430 12.5 0866	10 ; 20° turi 43 53 46.7 1.18 3685	10 n angle; c 1477 0470 1552 6980 1506 8110 7756 4.59	10 cost map 2 (r 266637. 4 328646. 1 289580. 6 7339.87 8	10 roughnes: 14.05 31 16.35 65 15.04 826 0.204 5157	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4.52085 5	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280.332 3	10 ermanent 34.83 85 35.58 19 35.20 564 0.089 68132	10 springs (+1 0.0082 0.0085 0.0084 2 2.9059 3E-05	10 nydrothermal) ma 0.0014 0.0018 0.0016 3.65148E-05	10 ijor rivers, 3349. 775 5680. 048 4232. 159 239.7 338	10 perennial rivers, 1607.645 4952.547 3605.783 315.1601	10 saline lak 70.01 61 71.82 27 70.96 984 0.194 7095	10 es, perennial wet 79.0909 89.258 85.8662 0.9426458	10 lands, and 99.836 6 99.858 8 99.849 32 0.0021 23823	10 fresh lakes. 99.6255 99.7128 99.67257 0.008224112
N Run_2 Min Max Mea n Std. error Stan d.	10 Present-day 11 17 13.6 0.6	10 7 wet so 93 5 93 5 93 5 0	10 cenario; 532 2 552 3 543 0.7 19.8 589 8 62.7 995	10 150 km in t 26.8003 27.4832 27.1632 2 0.07655 12 0.24207	10 hree days 2382 2504 2430 12.5 0866 39.5	10 ; 20° turi 43 53 46.7 1.18 3685 3.74	10 n angle; c 1477 0470 1552 6980 1506 8110 7756 4.59 2452	10 cost map 2 (t 266637. 4 328646. 1 289580. 6 7339.87 8 23210.7	10 roughness 14.05 31 16.35 65 15.04 826 0.204 5157 0.646	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4.52085 5	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280.332 3 886.488	10 ermanent 34.83 85 35.58 19 35.20 564 0.089 68132 0.283	10 springs (+1 0.0082 0.0085 0.0084 2 2.9059 3E-05 9.1893	10 nydrothermal) ma 0.0014 0.0018 0.0016 3.65148E-05	10 ijor rivers, 3349. 775 5680. 048 4232. 159 239.7 338 758.1	10 perennial rivers, 1607.645 4952.547 3605.783 315.1601	10 saline lak 70.01 61 71.82 27 70.96 984 0.194 7095 0.615	10 es, perennial wet 79.0909 89.258 85.8662 0.9426458	10 lands, and 99.836 6 99.858 8 99.849 32 0.0021 23823 0.0021 23823	10 fresh lakes. 99.6255 99.7128 99.67257 0.008224112
N Run_2 Min Max Mea n Std. error Stan d. dev	10 Present-day 11 17 13.6 0.6 1.897367	10 7 wet sc 93 5 93 5 93 5 0 0 0	10 cenario; 2 552 3 543 0.7 19.8 589 8 62.7 995 9	10 150 km in t 26.8003 27.4832 27.1632 2 0.07655 12 0.24207 61	10 hree days 2382 2504 2430 12.5 0866 39.5 5587	10 ;; 20° turn 43 53 46.7 1.18 3685 3.74 3142	10 n angle; c 1477 0470 1552 6980 1506 8110 7756 4.59 2452 80.8	10 cost map 2 (t 266637. 4 328646. 1 289580. 6 7339.87 8 23210.7 3	10 roughness 14.05 31 16.35 65 15.04 826 0.204 5157 0.646 7356	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4.52085 5 14.2962	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280.332 3 886.488 6	10 ermanent 34.83 85 35.58 19 35.20 564 0.089 68132 0.283 5973	10 springs (+1 0.0082 0.0085 0.0084 2 2.9059 3E-05 9.1893 7E-05	10 nydrothermal) ma 0.0014 0.0018 0.0016 3.65148E-05 0.00011547	10 ijor rivers, 3349. 775 5680. 048 4232. 159 239.7 338 758.1 047	10 perennial rivers, 1607.645 4952.547 3605.783 315.1601 996.6238	10 saline lak 70.01 61 71.82 27 70.96 984 0.194 7095 0.615 7256	10 es, perennial wet 79.0909 89.258 85.8662 0.9426458 2.980908	10 lands, and 99.836 6 99.858 8 99.849 32 0.0021 23823 0.0067 16117	10 fresh lakes. 99.6255 99.7128 99.67257 0.008224112 0.02600692
N Run_2 Min Max Mea n Std. error Stan d. dev 95%	10 Present-day 11 17 13.6 0.6 1.897367	10 7 wet sc 93 5 93 5 93 5 0 0 0	10 cenario; 532 2 552 3 543 0.7 19.8 589 8 62.7 995 9	10 150 km in t 26.8003 27.4832 27.1632 2 0.07655 12 0.24207 61	10 hree days 2382 2504 2430 12.5 0866 39.5 5587	10 ;; 20° turn 43 53 46.7 1.18 3685 3.74 3142 2.67	10 n angle; c 1477 0470 1552 6980 1506 8110 7756 4.59 2452 80.8 1755	10 cost map 2 (t 266637. 4 328646. 1 289580. 6 7339.87 8 23210.7 3	10 roughness 14.05 31 16.35 65 15.04 826 0.204 5157 0.646 7356 0.462	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4.52085 5 14.2962	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280.332 3 886.488 6	10 ermanent 34.83 85 35.58 19 35.20 564 0.089 68132 0.283 5973	10 springs (+1 0.0082 0.0085 0.0084 2 2.9059 3E-05 9.1893 7E-05 6.57E-	10 nydrothermal) ma 0.0014 0.0018 0.0016 3.65148E-05 0.00011547	10 ijor rivers, 3349. 775 5680. 048 4232. 159 239.7 338 758.1 047 542.3	10 perennial rivers, 1607.645 4952.547 3605.783 315.1601 996.6238	10 saline lak 70.01 61 71.82 27 70.96 984 0.194 7095 0.615 7256 0.440	10 es, perennial wet 79.0909 89.258 85.8662 0.9426458 2.980908	10 lands, and 99.836 6 99.858 8 99.849 32 0.0021 23823 0.0067 16117	10 fresh lakes. 99.6255 99.7128 99.67257 0.008224112 0.02600692
N Run_2 Min Max Mea n Std. error Stan d. dev 95% +/-	10 Present-day 11 17 13.6 0.6 1.897367 1.357	10 7 wet sc 93 5 93 5 93 5 0 0	10 cenario; 532 2 552 3 543 0.7 19.8 589 8 62.7 995 9 44.9	10 150 km in t 26.8003 27.4832 27.1632 2 0.07655 12 0.24207 61 0.173	10 hree days 2382 2504 2430 12.5 0866 39.5 5587 28.3	10 ; 20° turn 43 53 46.7 1.18 3685 3.74 3142 2.67 8	10 n angle; c 1477 0470 1552 6980 1506 8110 7756 4.59 2452 80.8 1755 00	10 cost map 2 (t 266637. 4 328646. 1 289580. 6 7339.87 8 23210.7 3 16600	10 roughness 31 16.35 65 15.04 826 0.204 5157 0.646 7356 0.462 5	10 s) with norm 1721.08 8 1758.84 8 1739.59 4 4.52085 5 14.2962 10.2	10 al scaling; pr 106722. 4 109063. 9 107869. 9 280.332 3 886.488 6 630	10 ermanent 34.83 85 35.58 19 35.20 564 0.089 68132 0.283 5973 0.203	10 springs (+1 0.0082 0.0085 0.0084 2 2.9059 3E-05 9.1893 7E-05 6.57E- 05	10 nydrothermal) ma 0.0014 0.0018 0.0016 3.65148E-05 0.00011547 8.26E-05	10 ijor rivers, 3349. 775 5680. 048 4232. 159 239.7 338 758.1 047 542.3 5	10 perennial rivers, 1607.645 4952.547 3605.783 315.1601 996.6238 712.95	10 saline lak 70.01 61 71.82 27 70.96 984 0.194 7095 0.615 7256 0.440 5	10 es, perennial wet 79.0909 89.258 85.8662 0.9426458 2.980908 2.1325	10 lands, and 99.836 6 99.858 8 99.849 32 0.0021 23823 0.0067 16117 0.0045	10 fresh lakes. 99.6255 99.7128 99.67257 0.008224112 0.02600692 0.0185

Supplementary Table 2: Continued.

										TE	ED					PROX		CONN		COHES
		No						PD		[Path	[Path			AREA_A		_AM		ECT		ION
	Network	de	Edge	% Path	NP -			[Path		Clas	Clas		AREA	M [Path	PROX	[Path	CONNE	[Path	COHESI	[Path
	Numbers	S	s	by Area	Total	NP-Paths	PD	Class]	LPI-Path	s]	s]	LSI	_AM	Class]	_AM	Class]	CT	Class]	ON	Class]
Run_	- Descent day according 150 km in three days 200 km analysis act man 2 (revelance) with normal caping norman at annings (thydrothermal) maior rivers, caling labor, and the table is a direct labor.																			
3	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.																			
		142					9859			895.	5552				1657.	264.82				99.171
Min	36	3	7360	10.6608	1590	22	382	136419.1	2.7947	36	0.1	18.6754	0.0126	0.0003	192	13	69.5816	67.3333	99.8283	5
		142					1056			940.	5832				2135.	2109.1				99.390
Max	45	3	7695	10.9226	1704	29	6280	179825.2	4.7081	544	1.9	19.5696	0.0126	0.0005	501	73	72.7804	78.6325	99.8442	1
		142	7497.	10.7955	1656.7		1027			918.	5694			0.00045454	1889.	981.52	71.3139			99.321
Mean	41.18182	3	091	5	27	25.81818	3150	160095.2	4.383609	368	6.8	19.12879	0.0126	6	233	65	8	74.43701	99.83795	58
Std.	0.772459		29.11	0.02554	12.151	0.615233	7534		0.165701	4.42	274.4	0.0874604		2.07305E-	57.57	157.20	0.34615	0.947667	0.001550	0.0183
error	8		652	877	39	6	9.16	3814.983	9	6748	969	4	0	05	262	08	81	1	036	7311
Stand.			96.56	0.08473	40.301		2499			14.6	910.4			6.87552E-	190.9	521.37	1.14807		0.005140	0.0609
dev	2.561959		858	57	59	2.040499	04.9	12652.87	0.549571	8186	032	0.2900735	0	05	468	61	6	3.143056	888	367
95%							1680			9.86					128.2					
+/-	1.721		64.9	0.0565	27.05	1.371	00	8505	0.3692	5	611.5	0.195	0	0.00004619	5	350.27	0.771	2.112	0.003	0.041
N	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Run				•				•				•		•			•	•		
4	Dry scenari	io; 150	km in th	ree days; 20°	turn angle;	cost map 2 (roughnes	s) with norm	al scaling; 23	ka perma	anent spri	ngs low flow r	ivers and fi	esh lakes.						
							2728			277.	1720				395.3					98.031
Min	34	563	2792	3.1442	440	26	382	161222.6	0.888	408	1.71	6.5309	0.015	0.0001	072	3.6466	78.3896	69.8851	99.8544	5
							3162			301.	1868				545.2	61.012				98.205
Max	45	563	2947	3.2999	510	33	443	204628.7	1.0574	408	9.92	7.0031	0.0151	0.0001	174	3	82.5537	77.5132	99.8648	8
			2868.				2988			293.	1820				475.5	33.772	80.0144			98.117
Mean	39.6	563	8	3.24589	482	29.6	819	183545.7	0.98136	6032	5.95	6.84925	0.01502	0.0001	652	66	2	74.11673	99.85791	9
Std.			15.28	0.01603	6.4927		4026		0.019094	2.40	149.2	0.0473758	1.33333	4.51751E-	13.96	7.5916	0.39024		0.000966	0.0195
error	1.0873	0	456	512	31	0.718022	0.58	4452.36	67	7098	61	5	E-05	21	711	81	11	0.900199	489	0178
Stand.			48.33	0.05070	20.531		1273		0.060382	7.61	472.0		4.21637	1.42856E-	44.16		1.23405		0.003056	0.0616
dev	3.438346	0	402	752	82	2.270585	15.1	14079.6	64	1912	047	0.1498156	E-05	20	789	24.007	1	2.846679	305	7005
95%							9110			5.44					31.59	17.173				
+/-	2.46	0	34.6	0.0363	14.69	1.624	0	-92000	0.043215	5	338	0.10715	3E-05	0	5	5	0.8825	2.0365	0.002	0.044
Ν	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Run_1	Wet scenario; 150 km in three days; 20° turn angle; cost map-2 (roughness) with normal scaling; all perennial and seasonal water bodies.
Run_2	Present-day wet scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, perennial rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_3	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_4	Dry scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; 23ka permanent springs low flow rivers and fresh lakes.
Run_5	Dry scenario; 150 km in three days; 20° turn angle; cost map-2 roughness with normal scaling; 23ka permanent springs (+hydrothermal) low flow rivers and fresh lakes.
Run_6	Present-day scenario; 150 km in three days; 20° turn angle; cost map 1 (slope) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_7	Present-day scenario; 150 km in three days; 20° turn angle; cost map 3 (relief + roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_8	Present-day scenario; 150 km in three days; 20° turn angle; cost map 4 (relief+ slope) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run-9	Present-day scenario; 150 km in three days; 20° turn angle; cost map 5 (slope + roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_10	Present-day scenario; 150 km in three days; 20° turn angle; cost map zero (no cost) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_11	Present-day scenario; 180 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_12	Present-day scenario; 120 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_13	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with low scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_14	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with very low scaling; permanent springs (+hydrothermal) major rivers, saline lakes, perennial wetlands, and fresh lakes.
Run_15	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; permanent springs (+hydrothermal) only.
Run_16	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; saline lakes and fresh lakes only.
Run_17	Present-day scenario; 150 km in three days; 20° turn angle; cost map 2 (roughness) with normal scaling; major rivers only.

Supplementary Table 3: Main model runs used, bold text highlights the significant difference between each run.

Supplementary Table 4: Metric definitions.

Metrics	Description
Network Types	Classification of sub-network types [Matlab output]
Network Numbers	Total number of sub-networks [Matlab output]
Nodes	Number of nodes [Matlab output]
Edges	Number of edges between nodes [Matlab output]
% PATH by Area	Percentage landcover patch area containing successful routes [PATH; Fragstats output]
NP -Total	Total number of landcover patches [PATH and Non-PATH; Fragstats output]
NP-PATH	Total number of landcover patches [PATH only; Fragstats output]
PD	Total patch density all types [PATH and Non-PATH; Fragstats output]
PD [PATH Class]	Total patch density of patches contains successful routes [PATH only; Fragstats output]
LPI [PATH Class]	Larges patch index for patches containing successful routes [PATH only; Fragstats output]
TE [PATH Class]	Total edge length of patches containing successful routes [PATH only; Fragstats output]
ED [PATH Class]	Total edge density of patches containing successful routes [PATH only; Fragstats output]
LSI	Landscape shape index [PATH and Non-PATH; Fragstats output]
AREA_AM	Area-weighted mean patch size [PATH and Non-PATH; Fragstats output]
AREA_AM [PATH Class]	Area-weighted mean patch size [PATH only; Fragstats output]
PROX_AM [PATH Class]	Area-weighted mean proximity index [PATH only; Fragstats output]
CONNECT	Patch connectance index [PATH and Non-PATH; Fragstats output]
CONNECT [Path Class]	Patch connectance index [PATH only; Fragstats output]
COHESION	Patch cohesion index [PATH and Non-PATH; Fragstats output]
COHESION [Path Class]	Patch cohesion index [PATH only; Fragstats output]

						ND		DD	11	TE	FD									
Run ID	Netw	No	Ed	% Path	NP - Total	NP- Path	PD	PD [Path Class]	LPI- Path	TE [Path Class]	ED [Path Class]	I SI	AREA	AREA_AM	PROX AM	PROX_AM	CON NECT	CONNECT	COHE	COHESION
112	OIR #	ues	500	<i>oyrnea</i>	Total	5	270	Chubbj	Tutti	Chubbj	Chubbj	Loi		[I ull Cluss]		[I ull Cluss]	THEOT	[I ull Cluss]	51011	[I ull Cluss]
Run 5	40	56 3	27 92	3 1836	451	26	659 2	161223	0.93 15	306 496	19005	7.10	0.0151	0.0001	490.52 4	34 7232	81.309 4	80 9231	99.860 4	98 0503
0	.0	5	/	511050	.01	20	352	101220	10	2001.20	19000	00	0.0101	010001		0 11/202		000201	•	2010202
Run		14	47				829		0.53			7 97			310.25		70 746		99 867	
6	151	23	25	3 3536	569	262	5	1624628	43	350 784	21751	07	0.015	0	86	17 1406	2	73 8323	1	95 1152
_0	151	23	25	5.5550	507	202	336	1024020	-13	550.704	21751	07	0.015	0	00	17.1400		15.0525	1	<i>JJ.1152</i>
Run		14	57				707		0.49			9 27			183 87		75 426		99 862	
7	116	23	26	4 2208	5/13	120	2	744104	0.47	417 312	25876	71	0.0147	0	+05.07	73 9674	73. 4 20	70 7423	5	96 8689
_′	110	23	20	4.2200	545	120	330	744104	7	417.512	23870	/1	0.0147	0	52	73.7074	0	70.7425	5	70.0007
Run		14	19				807		0.61		22325 11	8 1 5			310.05		70 659		99 865	
8	145	23	05	3 6225	5/18	208	6	1289781	/3	360.032	22525.11	24	0.01/9	0	7	13 0555	10.057	70 5732	0.005	95 9574
_0	145	23	05	5.0225	540	200	276	1207701	-13	500.052	51	24	0.0147	0	,	45.0555	,	10.5752	/	75.7574
Run		14	53				558		0.31		22751 73	8 28			274.02		7/ 719		99 872	
_0	120	23	63	3 /61/	116	167	558	1035545	0.51	366.012	22751.75	0.20	0.015	0	12	57 3/65	/4./19	69 7208	99.072	94 9773
,	120	23	05	5.4014	-++0	107	0	1055545	05	500.712	55	15	0.015	0	12	57.5405	0	07.1200	0	74.7775
Run		14	96		1021		6.3E		87.0		112466.9	36.4			125.35		68.397		99.868	
_10	3	23	31	87.0912	2	4	+07	24803.5	887	1813.73	022	49	0.0123	0.014	57	7.9998	8	100	7	99.9909
							435													
Run		14	65				921		1.11		32413.18	11.3			832.14		76.414		99.854	
_11	80	23	14	5.7147	703	82	1	508471	63	522.72	39	454	0.0142	0.0001	6	237.7534	9	67.9012	6	98.1108
							286													
Run		14	54				480		0.17		22868.80	8.32			332.73		74.208		99.868	
_12	126	23	90	3.4211	462	153	2	948733	76	368.8	59	46	0.015	0	73	63.669	8	69.0488	8	94.8065
Run		14	75				1E+		4.69		57742.49	19.3			1886.1		72.802		99.841	
13	36	23	59	10.8873	1693	22	07	136419	23	931.2	47	785	0.0126	0.0005	834	710.0526	2	74.8918	3	99.3703
			0.7								100501.6				0005.0		= 1 000		-	
Run	1.5	14	97	24,2024		0	2.8E	10 607	24.2	1751.00	108591.6	35.5	0.0070	0.0020	8385.3	202 2207	74.300	70 5714	00.000	00.0665
_14	15	23	03	24.3934	4454	8	+07	49607	65	1/51.23	07	047	0.00/3	0.0039	464	282.2207	5	/8.5/14	99.822	99.8665
			•				119		0.50										00.004	
Run		35	20	1 5505	100	20	056	005 (00	0.52	05.004	5272.227	2.74	0.0156	0	225.39	10.0.00	68.215	540054	99.894	07.01
_15	80	6	94	1.5587	192	38	./	235633	27	85.024	1	5	0.0156	0	65	12.2607	3	/4.3954	3	97.31
Run		10	21				285		0.04		2262.077	1.78					68.634		99.947	
_16	42	7	0	0.3848	46	29	240	179825	73	36.48	1	97	0.016	0	10.392	4.7789	7	67.734	1	91.4097
							177													
Run		86	52				344		0.76		14197.51	5.57			270.16		83.535		99.880	
_17	7	5	49	2.5892	286	14	9	86812.2	97	228.96	03	49	0.0153	0.0001	02	72.5317	9	71.4286	3	98.141

Supplementary Table 5: Typical network metrics and Fragstat output for selected model runs, showing the impact of different costing and scaling scenarios. See Supplementary Table 3 for the run definitions and Supplementary Table 4 for description of the metrics.

Metrics Run_1 [N=10] Run_2 [N=10] Run_3 [N=11] Run_4 [N=10] Mean 95% +/-Mean 95% +/-Mean 95% +/-Mean 95% +/-41.18182* 3.7 1.121 13.6 1.357 1.721* 39.6* 2.46* Network Numbers 44.9 Edges 10305.4 82.5 5430.7 7497.091 64.9 2868.8 34.6 % Path by Area 48.19762 0.2755 27.16322 0.173 10.79555 0.0565 3.24589 0.0363 NP -Total 5002.9 105 2430 28.3 1656.727 27.05 482 14.69 175500 10273150 PD 3100000 651000 1510000 168000 2988819 91100 LPI-Path 0.4625 4.383609 46.37813 0.403 15.04826 0.3692 0.98136 0.043215 TE [Path Class] 2807.206 21.2 1739.594 10.2 918.368 9.865 293.6032 5.445 ED [Path Class] 611.5 174071.2 1315 107869.9 630 56946.8 18205.95 338 LSI 56.20748 0.4175 35.20564 0.203 19.12879 0.195 6.84925 0.10715 0.01502 6.57E-05 AREA_AM 0.00675 0.0001555 0.00842 0.0126 0 3E-05 PROX_AM 7278.063 1076.95 4232.159 542.35 1889.233 128.25 475.5652 31.595 PROX_AM [Path Class] 712.95 981.5265 350.27 3591.396 572.8 3605.783 33.77266 17.1735 2.1325 CONNECT [Path Class] 76.58844 1.5565 85.8662 74.43701 2.112 74.11673 2.0365 0.002 99.32158 98.1179 COHESION [Path Class] 99.9281 99.67257 0.0185 0.041 0.044

Supplementary Table 6: Typical network metrics and Fragstat output for selected model runs, showing the impact of different costing and scaling scenarios. All results are statistically different at 95% except for those indicated with *.