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Supplementary Figur e 1. DLS analyses of DSPE-PEG;p—Amine-DC(8,9)PC-LM (a) immediately after its
preparation and (b) after 3 days.
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Supplementary Figure 2. Particle size distribution of LM nanocapsules (N = 100) from TEM observation.
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Supplementary Fig ure3 . TEM images of (a—¢) DSPE-PEGjy—Amine-DC(8,9)PC-LM and (f)
DSPE-PEGjpp0—Amine-LM. White arrows represent polymeric shell structure of UV-cured DSPE-PEG;yy—Amine

and DC(8,9)PC molecules.
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Supplementary Figure 4. STEM/EDS mapping of DSPE-PEG;(5—Amine—DC(8,9)PC-LM nanocapsules.
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Supplementary Figur e 5. Water dispersibility of LM nanocapsules. (a) Aqueous suspensions of (left)

DSPE-PEG;yp0—Amine—DC(8,9)PC—LM and (right) DSPE-PEG;¢0—Amine-LM. (b) UV-Vis-NIR absorbance of LM

nanoconjugates after centrifugation at 1,000 rpm for 10 min at 20 °C.
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Supplementary Figure 6. Thermographic images on the surface of (a) a representative LM droplet (1 mg) and (b)
filter paper, using a 785-nm NIR laser at 1 W (~80 mW mm ) for 5 min.
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Supplementary Figure 7. Photothermal stability of LM after 785-nm NIR laser irradiation at 1 W (~80 mW mm?)
for 1 hour. LM was dispersed in water by DSPE-PEG,(—Amine.
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Supplementary Figure 8. (a) Optical absorbance and (b) photothermal property of Au-NRI1 solution after 785-nm
NIR laser irradiation at 1 W (~80 mW mm ) for 5 min. Concentration of Au-NR1 = 100 ug ml .
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Supplementary Figure 9. (a) Optical absorbance of Au-NR1 before (brown line) and after freezing (yellow line). (b)
Heating and freezing resistances of LM nanocapsules. Concetrions of LM and Au-NR were adjusted at 500 pg ml .

Temperature of heating and freezing were 80 and -80°C, respectively.

It is well known that Au-NRs are very unstable against freezing and heating due to the shape deformations
(degradation)."” Indeed, optical absorbance of Au-NR1 was obviously decreased when it was frozen in an aqueous
solution (-80°C) for 1 hour because of coalescent reshaping of Au-NRs (Supplementary Figure 9a)."* These molecular

degradations could be caused to reduce the photothermal conversion efficiency of Au-NRs.
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Supplementary Figure 10. TEM images of DSPE-PEGyy—Amine-DC(8,9)PC—LM after laser irradiation for 1 or 3
min (785 nm, 1 W, ~80 mW mm’z).
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Supplementary Figure 11. DLS analyses of DSPE-PEG;¢00—Amine—DC(8,9)PC—LM before and laser irradiation for
1 h (785 nm, 1 W, ~80 mW mm 2).
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Supplementary Fig ure 12. Thermal expansion of LMs. (a) Laser-induced temperature changing and thermal
expansion of a Galinstan thermometer. (b and c) Thermal expansion and shape changing of an EGaln LM droplet by

heating. (d) Thermographic images on the surface of a LM droplet during heating.
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Supplementary Figur e 13. DLS analyses of (a) LM nanocapsule and (b) DSPE-PEG;0-Amine and DC(8,9)PC
nanocapsule without LM before and after heating at 130°C for 30 min. (¢) TEM images of LM nanocapsules after
heating at 130°C for 30 min.
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Supplementary Figure 14. Degradation of LM nanocapsules by H,O,- and enzymatic-oxidative treatments. Error

bars represent standard deviations of three separate measurements.
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Supplementary Figu re 15 . Proposed mechanism for laser-induced disintegration and transformation of LM

nanocapsules.
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Supplementary Figur e 16. UV-Vis—NIR absorbance of DSPE-PEGy—Amine-DC(8,9)PC-LM encapsulating
carmofur in water (red line; LM concentration: 270 pg ml’l), DSPE-PEGy¢p—Amine-DC(8,9)PC—LM in water (blue

line; LM concentration: 270 ug ml™"), and carmofur in ethanol (black line; carmofur concentration: 267 pg ml ™).
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Supplementary Figur e 17. Confocal microscopic differential-interference-contrast (DIC) images of HeLa cells
incubated for 4 h with (a) DSPE-PEG;p—Amine-DC(8,9)PC-LM (LM concentration: 100 pg/mL) and (b) control

without LM nanocapsules. Objective, 40x.
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Supplementary Figure 18. Real-time elimination of HeLa cells caused by laser-induced LM nanocapsules before and

after laser irradiation (808 nm, 564 mW, ~287 pW um2). The red circle shows laser irradiation position and area.
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Supplementary Fig ure 19 . Surface temperature of tumors treated with injections of (a) HEPES, (b)
Avidin—-DSPE-PEG;(00—Amine-DC(8,9)PC-LM, and ()
Anti-EGFR-Biotin—Avidin—-DSPE—PEG,(y;—Amine—DC(8,9)PC—LM after laser irradiatin for 1 min.
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Supplementary Fig ure 20. Relative body weight of mice in the cancer phototherapy testing period. Error bars

represent standard deviations of measurements from nine mice.
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Supplementary Figure 21. Propidium iodide staining for dead cells. Magnification, 20x; (808 nm; laser 133 mW; 68

uW pm ). Irradiated areas are marked in red.
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Supplementary Figure 22. Photothermal conversion of LM nanocapsules by various wavelengths laser irradiation.

Data represent the mean of three determinations; error bars show the SD.

Photothermal conversion of LM nanocapsules was able to be conducted over a wide range of irradiation wavelengths
(670, 785, and 1064 nm) (Supplementary Figure 22). Meanwhile, conventional NIR reagents (Au-NR1 and ICG)
could be available by exciting with only monochromic light source at 785 nm (Supplementary Figure 22).
Wide-ranging analyses generally require the use of a wide range of wavelengths of excitation laser. Thus, the
photothermal property of LM nanocapsules would be induced and controlled at the desired wavelengths by exploiting
suitable lasers for these wide-ranging analytical methods. More importantly, the utilization of second NIR optical
window (NIR-II, 1000-1700 nm, also be divided into NIR-ITa and NIR-IIb separated by 1400 nm>*) light leads to
promising applications of LM nanocapsules treating deep-tissue-buried diseases or supplying energy to subcutaneous
implantable bioelectronic devices.” However, only a few examples of NIR-II materials have been demonstrated,

involving several photothermal compounds, such as Au nanoparticles’™ and organic dye molecules®*.
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Supplementary Figure 23. (a) PA intensity of various LM nanocapsule concentrations at an excitation wavelength of

680 nm. (b) Ex vivo PA imaging of phantom samples. Error bars represent standard deviations of three separate

measurements. Excitation wavelength of laser is 680 nm.
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Supplementary Figur e 24. PA intensity of LM nanocapsule and Au-NR2 at various excitation wavelength. Data

represent the mean of three determinations; error bars show the SD.
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Supplementary Figure 25. Effect of various concentrations of LM nanocapsules on the PA signal in vivo. Error bars

represent standard deviations of measurements from three mice. Excitation wavelength of laser is 680 nm.
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Supplementary Figure 26. PA signal in tumors treated with antibody-functionalised LM and plain LM nanocapsules

before and after injections.
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