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Figure S1. Vibrational coherence dynamics in the PSII RC at 80 K for the 730 cm-1 2D frequency map.   

(a) The 2D frequency map at 730 cm-1 (this panel has been adapted from ref. 12 in the main text).                     

(b) Experimental wavelet scalograms for the most intense 2D frequency map features. 
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Figure S2. Vibrational coherence dynamics in the PSII RC at 277 K for the 740 cm-1 2D frequency map.   

(a) The 2D frequency map at 730 cm-1 (this panel has been adapted from ref. 12 in the main text)                      

(b) Experimental wavelet scalograms for the most intense 2D frequency map features. 

 

The 730 cm-1 vibrational mode is far from all exciton splittings, however, the electronic (exciton and 

CTs) states have vibrational satellites separated from the zero-phonon level (ZPL) by values close to 

730 cm-1 (which are affected by the exciton couplings) . As a result, immediately after excitation we 

observe several states oscillating in phase around 730 cm-1 which produce an intense peak at short 

times (within 300 fs). At longer times, these coherent oscillations decrease in amplitude due to 

environment-induced dephasing1-2.     
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Figure S3. Effect of the Fb value in the frequency/time wavelet resolution relation. (a) Scalogram for the 

main cross-peak in the 120 cm-1 2D frequency map at (675,681) nm: (top) Fb = 10, high time resolution, 

(middle) Fb = 2, optimal compromise between time and frequency resolution, (bottom) Fb = 0.5, high frequency 

resolution. (b) Scalogram for the (665,680) nm cross-peak in the 340 cm-1 2D frequency map: (top) Fb = 10, 

high time resolution, (middle) Fb = 2, optimal compromise between time and frequency resolution,            

(bottom) Fb = 0.5, high frequency resolution. 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

 

 

Figure S4. Dynamics in PSII RC at 80 K for the diagonal bands scanned at 2.5 nm intervals. The black 

horizontal lines indicate the 120, 265, 340 and 440 cm-1 oscillation frequencies. 

 

The diagonal bands wavelet data (shown as frequency-time scalograms) shows a complex pattern 

where the diagonal bands oscillate at several frequencies during different time ranges. This 

complexity arises from the contribution of vibrational coherences associated with several electronic 

states (with time-dependent populations), electrochromic shifts induced by charge-transfer and 

charge-separated states, strong spectral overlap, and presence of a non-trivial interplay between mixed 

exciton-vibrational coherences1. Therefore, with the available 2DES experimental data and the 

analysis presented here, we conclude that the interpretation of the diagonal bands wavelet data is not 

possible at this stage and it is out of the scope of the present work. Further experiments and modeling 

are needed to interpret the diagonal bands wavelet data.  
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Figure S5. Dynamics of vibronic coherence in the PSII RC at 277K: time-resolved 2D frequency 

maps (a,c) and wavelet traces (b,d).  (a) 100 cm-1 time-resolved 2D frequency maps at T = 200, 500 

and 800 fs. The black arrows in the 200 fs time-resolved 2D frequency map indicate the position of 

the selected 2D traces. (b) 100 cm-1 2D wavelet traces. (c) 345 cm-1 time-resolved 2D frequency maps 

at T = 260, 400 and 800 fs. The black arrows in the 260 fs time-resolved 2D frequency map indicate 

the position of the selected 2D wavelet traces. (d) 340 cm-1 2D wavelet traces. The black arrows in the 

200 fs time-resolved 2D frequency map indicate the position of the selected 2D wavelet traces. 

 

The dynamics at 277 K are very similar to the dynamics at 80 K presented in Fig. 2 in the main text. 
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Figure S6. 120 cm-1 FT band analysis and 2D frequency maps at 80 K. (a) 110, 120 and 130 cm-1 2D 

frequency maps along the FT band at 80 K. (b) FT amplitude of the 120 cm-1 band at 80 K. The frequencies 

displayed in panels a are indicated by arrows. This figure has been adapted from ref. 12 in the main text. 

 

The 80 K FT band centred at 120 cm-1 contains two separated maxima at 110 and 130 cm-1. The         

110 cm-1 2D frequency map shows one maximum at (677, 683) nm, the 130 cm-1 map shows one 

maximum at (675, 681) nm, whereas the 120 cm-1 map sows both maxima at (675, 681) nm and     

(677, 683) nm. This indicates that the 120 cm-1 map represents a superposition of the 110 and         

130 cm-1 frequencies. Each of these two maxima correspond to coherence between two different 

realizations of the disorder, the (675, 681) nm maximum corresponds to coherence between 

(PD2
δ+PD1

δ-)*≈675nm and (ChlD1
δ+PheD1

δ-)*≈681nm whereas the (677, 683) nm maximum corresponds to 

coherence between (PD2
δ+PD1

δ-)*≈677nm and (ChlD1
δ+PheD1

δ-)*≈683nm (where the subscripts indicate the 

central absorption wavelength of each realization of the disorder and the superscripts δ+/δ- indicate 

CT character). Furthermore, taking into account the width of the diagonal band red shifted 120 cm-1 

below the diagonal, it should be noted that other realizations where the (PD2
δ+PD1

δ-)* and 

(ChlD1
δ+PheD1

δ-)* states absorb at higher and lower energies are also present within that bandwidth. 
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Figure S7. Windowed Fourier transform: comparison of windows with increasing full width at half 

maximum (fwhm). (Top) Fast Fourier transform (FFT) of the (665,680) nm 2D trace at 80 K, window applied 

with fwhm of 20 (a), 40 (b) and 80 cm-1 (c), and the convolution of the FFT with the window. (Bottom) 

(665,680) nm 2D trace (after two exponential decay has been subtracted from the data) and the back FFT of the 

convoluted windowed FFT (windowed 2D trace).  

 

As explained in the main text, the interference artifact is observed only when closely spaced 

frequencies are included in the windowed FFT: with a 20 cm-1 fwhm window there is no interference 

present and the 2D trace just shows a decay whereas with a 40 and 80 cm-1 fwhm window the 

interference artifact is clearly present. 
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Figure S8. Windowed Fourier transform: cross-peaks below diagonal in the 340 cm-1 2D frequency map 

with a 25 cm-1 (fwhm) window. (Top) Fast Fourier transform (FFT) of the (665,680) (a), (664,692) (b) and 

(680,694) nm (c) 2D traces, window applied with 25 cm-1 (fwhm) , and the convolution of the FFT with the 

window. (Middle) (665,680) (a), (664,692) (b) and (680,694) nm (c) 2D traces (after two exponential decay has 

been subtracted from the data) and the back FFT of the convoluted windowed FFT. (d) Comparison of the 

windowed (665,680), (664,692) and (680,694) nm 2D traces. 
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Investigating the origins of the amplitude modulations observed in the wavelet data 

 

Here we explore the possible origins of the amplitude modulations observed in the wavelet data 

further. Specifically, we compare time-frequency signals caused by interferences between different 

frequencies (interference artefact) with signals which rise/decay due to the creation, regeneration 

and/or transfer of electronic coherences (real dynamics). We show that in principle these signals 

cannot be distinguished. However the context in which they appear in the 2D spectra, including their 

position, frequency and a comparison with the known vibrational modes and electronic states in the 

PSII RC complex can provide further insight on how to distinguish between an interference artefact 

and real dynamics of coherence. 

 

Comparison of artificial signals 

 

Recent work has suggested that vibronic coherences might be regenerated in photosynthetic light 

harvesting complexes3. These coherences can be observed as oscillations in the 2D traces and the 

dynamics of such coherences are expected to modulate the amplitudes of these oscillations (real 

dynamics). However, since multiple vibrational modes exist in photosynthetic complexes, these 

modes can interfere with each other, which also leads to a modulation of the oscillation amplitudes 

(interference artefact). 

 

In order to investigate the differences between these two contrasting signal origins, we consider two 

artificial signals, given by: 

 

A1 T = cos ωc+ωm T + cos ωc-ωm T   Eq. 1 

       A2 T = A+ cos ωmT cos ωcT    Eq. 2 

 

where T is the population time, and ωc and ωm are the oscillation frequencies with ωc > ωm.  

 

Eq. 1 gives the superposition of two cosine oscillations at different frequencies, ωc ± ωm and 

represents the case of an artefact, where two oscillation frequencies interfere. On the other hand, Eq. 2 

corresponds to the case of real dynamics of a coherence: the cosine wave at frequency ωc represents 

the vibronic coherent oscillation frequency, whose amplitude is modulated by a cosine wave with 

frequency ωm to simulate the effect of regeneration or transfer of the vibronic coherence.  
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If A = 0, these signals are identical (up to a factor of two in the overall amplitude). They cannot 

therefore be distinguished from each other in a wavelet analysis. We briefly note that adding arbitrary 

phases to the two sinusoids in Eq.1 changes the temporal profile of the signal but adding a suitable 

phase to the envelope and/or carrier factors in Eq.2 can also exactly reproduce this signal (when A=0). 

Given this inherent ambiguity we ignore such phases in the following. This underlines the heart of the 

problem: the fact that the oscillation frequency amplitude modulation caused by regeneration of 

coherences over the population time, T, (Eq. 2) is in principle indistinguishable from the amplitude 

modulation caused by interference between two closely spaced frequencies (Eq. 1). In Figure S9 we 

show an experimental 2D spectral trace as well as the calculated time signal (analogous to the 2D 

spectral trace). We also plot the corresponding wavelet pattern (equivalent to the scalograms, the 

frequency-population time plots) for either A1(T) or A2(T) (with A = 0), where ωc = 340 cm-1 and ωm = 

35 cm-1, as an example of the type of interference pattern produced. To perform the wavelet analysis of 

the calculated time signals we use a Gabor wavelet of frequency 8, with 10 octaves and 15 voices per 

octave. The data is padded to reduce boundary effects and the sample rate is 20 fs (in line with the 

experimental data presented in the main text).  

 

 

 

 

Figure S9. Signal amplitude and corresponding wavelet scalogram for the signal A1(T), in which two 

oscillations with different frequencies interfere. (Left) A1(T) plotted for ωc = 340 cm-1 and ωm = 35 cm-1. 

(Right) Corresponding wavelet signal. Note that these plots are identical to those for A2(T) with A = 0. The 

horizontal dashed black line indicates the 340 cm-1 oscillation frequency. 
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Note that for this case, where A = 0, we could also have written a more general, complex form of the 

equations above as follows: 

 

A3 T = exp i ωc+ωm T + exp i ωc-ωm T  Eq. 3 

             A4 T = exp iωcT cos ωmT   Eq. 4 

 

Here both the real and imaginary parts of the signals are again identical (up to an arbitrary amplitude) 

and therefore cannot be distinguished. However, in practice it may be possible to distinguish between 

these types of signals by the context in which they occur, as will be explored below. 

 

1. Population time at which the oscillation frequency amplitude modulation occurs 

 

For Eq. 1, the period at which the apparent amplitude modulation occurs due to interference effects is 

set by the difference between the two frequencies ωc ± ωm, which is determined by ωm in our case. In 

practice, the frequencies at which the 2D spectral amplitude oscillates are known (they are obtained 

by Fourier transform of the 2D data over the population time), therefore, it is straightforward to 

calculate such a period (as indicated in the main text). The fact that the observed period of amplitude 

modulation corresponds to the difference between the two oscillation frequencies is therefore a strong 

indication that such modulation does not reflect real coherent dynamics but an artefact due to 

interference effects. 

 

For Eq. 2, the oscillation amplitude over the population time depends on both ωm and A. Note that in 

the 2D frequency maps the term A in Eq. 2 could be non-zero due to an additional long-lived 

vibrational coherence which may appear at the same position in the 2D map as the feature 

corresponding to vibronic coherence. Due to the complexity of multichromophoric systems, the 

vibronic and vibrational features may overlap in some positions in the 2D frequency maps1,4-5. 

However, we note that this overlap could be avoided if a specific polarisation sequence is applied in 

the 2DES experiment6. Figure S13 shows the effect of changing the amplitude, A, on the time signals 

and the wavelet analysis, respectively. The results show that changing A defines whether the 

amplitude of oscillations falls to zero, the population times at which this occurs and the overall 

amplitude of the amplitude modulations. In this case, it is not straightforward to distinguish between 

real and apparent coherence dynamics. 
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Figure S13. Signal amplitudes and corresponding wavelet scalograms for the signal A2(T) with different 

values of the constant A. (Left panels) A2(T) plotted for ωc = 340 cm-1 and ωm = 35 cm-1 with (top) A = 0.5, 

(middle) A = 1, (bottom) A = 2. (Right panels) Corresponding wavelet signal with (top) A = 0.5, (middle) A = 1, 

(bottom) A = 2. The horizontal dashed black line indicates the 340 cm-1 oscillation frequency. 
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Changing position in 2D spectrum 

 

Here we consider how the 2D wavelet traces vary as a function of the position (ωτ, ωt) in the 2D 

frequency maps. In the 2D spectra, the diagonal peaks are expected to contain a superposition of 

states which oscillate at different frequencies and thus create a complicated pattern of interfering 

frequencies (interference artefact) overlapped with potential real coherence dynamics. In this case, 

advanced modelling of the experimental data is required to disentangle the different contributions in 

the observed signal. However, the areas above and below the diagonal are less prone to spectral 

congestion. For instance, the vibronic coherence between states A and B (absorbing at ωA and ωB, 

respectively, with ωA > ωB) appears in the (ωA - ωB) 2D frequency map with a maximum amplitude at 

position (ωA, ωB), and the weight of this frequency decreases when moving away from position (ωA, 

ωB). Using this rationale, here we investigate the effect of the varying contributions of different 

frequencies in the wavelet pattern (or wavelet traces) when moving away from a cross-peak 

maximum. For simplicity, we take a fixed ωτ and a varying ωt. 

 

Firstly, we consider signals arising from interference between two frequencies, as in Eq. 1, which can 

be generalised to: 

 

A1
' T =α cos ωc+ωm T +β cos ωc-ωm T  Eq. 5 

 

where we introduce α and β, which allow us to vary the weight of contributions from different 

oscillation frequencies. As the weighting of the two cosine waves changes, the amplitude of the 

pattern observed in the wavelets will shift to different frequencies along the y-axis, as shown in Figure 

S11. However the population time at which the recurrence occurs remains the same (as determined by 

ωm; see above). Also notice that interference between waves at two different frequencies can cause 

oscillations in the amplitude of the wavelet even if one of the amplitudes α or β is significantly larger 

than the other and it is not obvious from the wavelet results that two different frequencies are 

involved. 
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Figure S11. Wavelet scalograms for the signal A1’(T) with different weightings of α and β. Wavelet signal 

for A1’(T) with ωc = 340 cm-1 and ωm = 35 cm-1 and  (top) α = 0.75 and β = 0.25, (middle) α = 0.25 and β = 0.75 

and (bottom) α = 0.9 and β = 0.1. The horizontal dashed black line indicates the 340 cm-1 oscillation frequency. 
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For amplitude modulation of the type given by Eq. 2, changing ωc will change the frequency (on the y 

axis) at which the pattern in the wavelets occurs but not the weighting of the pattern itself; see Figure 

S12. Therefore shifts in the weighting of the pattern may indicate that the signal arises from 

interference between different frequencies (as described above). 

 

 

Figure S12. Wavelet scalogram for the signal A2(T). Wavelet signal for Eq. 2 with ωc = 380 cm-1 and               

ωm = 35 cm-1 and A = 0. The frequency on the y-axis shifts compared to Fig. 1, but the pattern over the 

population time is unchanged. The horizontal dashed black line indicates the 340 cm-1 oscillation frequency. 

 

 

Conclusions 

 

In conclusion, by considering artificial signals we have shown that the time signal from two 

interfering oscillations with different frequencies can be identical to the signal from amplitude 

modulation of an oscillation which might arise from regeneration of a vibronic coherence. Therefore 

in principle these two different signal origins cannot be distinguished, either by a wavelet analysis or 

any other technique. 

 

However, 2D spectroscopy provides a wealth of information beyond that which is contained in a 

single time, therefore this additional information can give further insight into the signal dynamics 

origin. In particular, in the case of interference between two oscillations with different frequencies, 

the period of the interfering envelope is determined by the frequency difference between the 

oscillations. This means that the period of the oscillations expected from this effect can be calculated 

and compared to the experimental results (as in the main text). We note that care should be taken if 

there are overlapping signals in the 2D spectra (for example, from ground-state bleach), since these 

can change the amplitude and period of the oscillations observed. In that case, it may be helpful to 

simulate the signals in order to make quantitative predictions. 
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In addition, we highlight that interference between waves at two different frequencies can cause 

oscillations in the amplitude of the wavelet even if one of the oscillations has a significantly larger 

amplitude than the other. In this case it may be very difficult to discern from a visual inspection of the 

wavelet results that two different frequencies are interfering. 

 

Finally, changing the position considered in the 2D spectrum is expected to have different effects 

depending on the signal origin. Notably, as the position in the 2D spectrum changes, for interference 

effects the weighting of the pattern observed in the wavelet scalograms is expected to shift, whereas 

for the amplitude modulation expected from electronic coherences, the period of the modulation 

changes. 
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