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Supplemental Methods
S1 Algorithm

We start with some basic tree and graph definitions. Let T' = (V(T'), E(T)) be an unrooted, full binary tree
with a set V(T) of nodes (or vertices) and a set F(T') of branches (or edges). Let L(T) C V(T') denote the
set of leaves, and for nodes u and v, let path(u,v) denote the set of branches along the unique simple path
from u to v in T. Similarly, let G = (V(G), E(G)) be an undirected graph with a set V(G) of vertices and
a set F(Q) of edges. Let C(G) denote the set of connected components of G, where C' € C(G) is a subgraph
of G denoting a single connected component.

Next, we define some locus terminology. Given a gene family, let locus set L be the set of species-specific
loci that have evolved within the gene family. In general, the relationship between loci in different species is
unknown. For locus [, let s(I) denote the species to which [ belongs.

Definition S1.1 (Locus Relationships). Consider the locus set L for a locus tree, and let Iy € L and lo € L
be two loci such that Iy # ls. l; and Iy are orthologous if their most recent common ancestor (MRCA)
corresponds to a speciation event, equivalent if they derived from their MRCA by speciation events alone,
and reconcilable if they could potentially be orthologous (Figure S3).

Remark. Locus equivalency is a transitive relationship, but locus orthology is not. Furthermore, equivalent
loci are necessarily orthologous, but orthologous loci are not necessarily equivalent.

Remark. Absent other evidence, two loci from different species are reconcilable (and thus could be orthologous
although they do not have to be). By contrast, two (different) loci from the same species are not reconcilable.

Because multiple species-specific loci may be equivalent and thus correspond to the same evolutionary
locus, we introduce the concept of a locus class.

Definition S1.2 (Locus Class). Let a collection LC = {C;} of nonempty sets form a partition over L such
that each locus [ € L belongs to a single locus class C; € LC.

In this work, we are given as input a gene tree topology G and a leaf mapping Le: L(G) — L. That
is, for each gene, we know the species-specific locus from which it was sampled and thus also the species in
which it was sampled. Because we have sampled multiple individuals per species, multiple g € L(G) may
map to the same [ € L. Note that we also typically know the individual from which the gene was sampled,
but this information is not used explicitly. Our goal is to determine whether G is reconcilable.

Definition S1.3 (Reconcilable Gene Tree). Given a gene tree G and a leaf mapping Le, for each g; € L(G),
let Le(g;) = l; denote the locus associated with g;. Then, G is reconcilable if there exists some mapping
L: L(G) U E(G) — LC of each leaf and edge of the gene tree to a single locus class, such that for each pair
g1 # g2, L is subject to the following constraints:

1. If Iy = I, then £(g1) = L(g2) and for each e € path(g1,9g2), L(e) = L(g1). (Allele Constraint)

2. If [y and Iy are irreconcilable, then £(g1) # L(g2). (Paralog Constraint)



Constraint 1 ensures that genes from the same (species-specific) locus are assigned the same locus class and
that the genes and edges assigned the same locus class form a subtree of the gene tree. This latter constraint
follows from our assumption that each duplication creates a unique new locus. Without this assumption,
two leaves could map to the same locus if, for example, along the path from their MRCA to one of the leaves,
there was a duplication to a new locus followed by a duplication back to the original locus. Constraint 2
ensures that genes from irreconcilable loci are not assigned the same locus class. That is, paralogous genes
by definition cannot be orthologous, so they must be in different locus classes.

Problem S1.1 (Reconciliation Feasibility). Given G and Le, determine whether G is reconcilable.
To solve Problem S1.1, we rely on two new data structures:

Definition S1.4 (Partially Labeled Coalescent Tree). Let P(L) denote the power set of L. Given G and
Le, the partially labeled coalescent tree (PLCT) is a mapping P : E(G) — P(LL) that labels branches with
the species-specific locus or loci to which the branch must belong. That is, for each e € E(G), P(e) contains
1 if and only if there exists a pair of genes mapped to [ and e lies along the path between those genes.

Remark. The PLCT can be thought of as a partial locus map that labels each gene tree branch with the
locus in which it evolved. It is a partial map for two reasons: (1) There can exist gene tree branches without
any label as branches are labeled only if they lie along the path between two alleles. (2) Branches are labeled
with species-specific loci, but multiple species-specific loci may be equivalent and correspond to the same
evolutionary locus.

Definition S1.5 (Locus Equivalence Graph). Given a PLCT P for G and Le, the locus equivalence graph
(LEG) is a graph G where V(G) = L and for each pair I; € L,y € L such that I; # lo, E(G) contains (I, 1)
if and only if there exists an edge in the gene tree that is labeled with both !; and Is in the PLCT.

That is, because the locus classes are defined over the species-specific loci, the PLCT captures the allele
constraints for each species-specific locus. These constraints are then put together in the LEG. In particular,
if an edge of the gene tree is labeled with multiple loci in the PLCT, then the multiple loci must correspond
to the same locus class and be equivalent. This equivalency constraint is captured in the LEG: the LEG
contains an edge between two loci if the loci are equivalent. Note, however, that the LEG captures the loci
pairs that must be equivalent, but these are not necessarily the only pairs that can be equivalent.

Next, we define the concept of a reconcilable LEG and relate it to gene tree reconcilability.

Definition S1.6 (Reconcilable Connected Component). A connected component C' of the locus equivalence
graph G is reconcilable if and only if all of the loci in that component are pairwise reconcilable.

Definition S1.7 (Reconcilable Locus Equivalence Graph). A locus equivalence graph G is reconcilable if
and only if all of its connected components are reconcilable.

Theorem S1.1. A gene tree is reconcilable if and only if its locus equivalence graph is reconcilable.

In other words, Theorem S1.1 states that that a gene tree is reconcilable if and only if every connected
component of the LEG contains no more than one locus from any species. Algorithm S1 summarizes how
to generate the PLCT and LEG and determine feasibility. We can then analyze the time complexity of our
algorithm.

Theorem S1.2. Gene tree reconcilability can be decided in a total time complexity of O(|L(G)|?).

S1.1 Proofs

Lemma S1.3. If v is an internal node of the gene tree, and some branch incident with v has label [ in the
PLCT, then some other branch incident with v must also have label [.

Proof. Suppose some branch incident with v is labeled I. Then, by the method used to label branches of
the PLCT in Algorithm S1, we know that v must lie on the path between two genes from the same species-
specific locus. The path between two genes must start and end at leaves of the gene tree. Therefore, since v
is an internal node of the gene tree, it must have two neighbors on this path, and it must have at least two
incident branches labeled . O



Algorithm S1 DETERMINING FEASIBILITY
Input: G, Le
Output: reconciliation feasibility (true/false)
{Generating the PLCT P (see also footnote 1)}
for each edge e € E(G) do

Initialize P(e) to @.
for each pair of nodes g; € L(G) and g2 € L(G) such that g1 # g2 and Le(g1) = Le(g2) do

for each edge e € path(g1,g2) do

Add locus Le(gy) to P(e).

{Generating the LEG G}
Initialize G to (&, @).
for each locus [ € L. do

Add node [ to V(G).
for each edge e € E(G) do
10:  for each pair of loci Iy € P(e) and Iy € P(e) such that l; # I3 do
11: Add edge (I1,12) to E(G).

{Determining Reconciliation Feasibility}

12: for each C € C(G) do
13:  for each pair of loci I; € C' and Iy € C such that [; # I3 do
14: if S(ll) = S(lg) then
15: Return false.
16: Return true.

L For locus I € L, let A(l) denote the set of genes mapped to [; that is, A(I) is a set of alleles. Then, if |A(l)| > 2, rather than
consider each pair of genes, we can equivalently find the subtree of G that spans A(l) and for each edge e in this subtree, add [

to P(e).

Lemma S1.4. Suppose Cy and Cy are mazximal disjoint connected components of the locus equivalence graph.
Neat, suppose that g1 € L(G) is a gene from locus l; € C1 and g2 € L(G) is a gene from locus ly € Cs.
Then, there exists an edge between g1 and go of the gene tree that is unlabeled in the PLCT.

Proof. Note that I; = Le(g1) and lo = Le(g2) are the labels associated with the loci of g1 and gs, respectively.
Assume, by way of contradiction, that there is no unlabeled edge on the path p from g; to gs.

Now consider the traversal of p from g; to go. The first edge in this traversal must be labeled I;. To see
this, note that every edge of p is labeled with some [;. By our definition of the PLCT, edges are only labeled
when they lie on the path between two genes with the same species-specific locus. Since the first edge in p
is incident to a leaf sampled from (1, it is impossible to label the first branch of p anything but /;. The same
argument shows that the last edge in p must be labeled Is.

Thus, p begins with label [; and ends with label l5. Then, if we traverse p from g; to gs, there must be
some “first edge” ey labeled /;, where [; and [; are from different connected components of the LEG. We
know this is true because [; and ls are from disjoint connected components of the LEG.

Let v be the vertex immediately preceding edge ey in p. We know that v is incident with an edge with
label [; and with an edge with label [;. Then, by Lemma S1.3, v must be incident with at least two edges
with label /; and with at least two edges with label [;. However, since v is an internal vertex of a binary
tree, it has degree 3. Therefore, some edge incident with v must be labeled both /; and I;, and thus, [; and
l; must be connected in the LEG. This is a contradiction because we claimed that [; and [; were loci from
different connected components of the LEG.

We have reached a contradiction, so there must be some unlabeled edge on the path p from g1 to go. O

Lemma S1.5. A gene tree is reconcilable if and only if the following conditions hold:
N1. There exists no duplication along the path between two genes from the same locus. (Allele Constraint)
N2. There exists a duplication along the path between two genes from irreconcilable loci. (Paralog Con-
straint)



Proof. We will show that these criteria are equivalent to our original criteria for a reconcilable gene tree,
which are repeated here:

1. Genes from the same locus must be assigned the same locus class, and all edges along the path between

these genes must be assigned the same locus class as the genes. (Allele Constraint)

2. Genes from irreconcilable loci must not be assigned the same locus class. (Paralog Constraint)
Throughout this proof, note that each gene or edge of the gene tree is assigned a single locus class. Most
importantly, we observe that a duplication along a path must result in a change of locus class; moreover,
this is the only way for a branch to change locus class, and the change is not reversible — a subsequent
duplication along the path cannot revert back to a previously used locus class. Thus, Constraint 1 and
Constraint N1 are equivalent, as genes from the same locus are assigned the same locus class along with all
the edges between them precisely when there is no duplication along the path. Similarly, Constraint 2 and
Constraint N2 are equivalent since genes from irreconcilable loci are assigned different locus classes if and
only if there is a duplication somewhere on the path between the two. O

Proof of Theorem S1.1

Suppose the locus equivalence graph is reconcilable. By Lemma S1.5, we have a definition for a reconcil-
able gene tree in terms of duplications, the constraints of which are repeated here:

N1. There exists no duplication along the path between two genes from the same locus.

N2. There exists a duplication along the path between two genes from irreconcilable loci.

That is, if we have a procedure to add duplications to our gene tree such that these constraints hold, then
we have demonstrated that the gene tree is reconcilable. Consider the following procedure. For each pair of
genes g1 € L(G), g2 € L(G) such that g1 # g2 and l; = Le(g1) and lo = Le(g2) are irreconcilable, consider
the path from g; to go. Since the LEG is reconcilable, two irreconcilable loci must be found in different
connected components of the LEG, so by Lemma S1.4, there is an unlabeled edge on this path. Add a
duplication on some unlabeled edge. Now, we have satisfied Constraint N2. We also claim that we have
satisfied Constraint N1 because we never added a duplication on an edge that was labeled by the PLCT;
therefore, we never added a duplication on the path between two genes from the same locus.

For the converse, we will prove the contrapositive: if the locus equivalence graph is irreconcilable, then
the gene tree is also irreconcilable. Suppose the LEG is irreconcilable, and assume, by way of contradiction,
that the gene tree is reconcilable using our original definition for a reconcilable gene tree, the constraints of
which are repeated here:

1. Genes from the same locus must be assigned the same locus class, and all edges along the path between

these genes must be assigned the same locus class as the genes.

2. Genes from irreconcilable loci must not be assigned the same locus class.

Throughout the remainder of this proof, we say that a (species-specific) locus is assigned a locus class if all
genes associated with that locus are assigned the locus class, and similarly, two (species-specific) loci are
assigned different locus classes if all pairs of genes, one from each loci, are assigned different locus classes.

Since the LEG is irreconcilable, there must be some connected component that is irreconcilable and this
connected component must contain some pair of loci /; and I3 that are irreconcilable. Thus, by Constraint 2,
l; and Iy must not be assigned the same locus class. Next, recall that the LEG contains an edge between
two loci if the loci are equivalent. Since locus equivalency is transitive, any two loci in a given connected
component must be equivalent. So, since /; and ls are in the same connected component, they must be
equivalent (and correspond to the same evolutionary locus) and, by Constraint 1, be assigned the same locus
class. We have reached a contradiction in that loci /; and I3 must be assigned and not be assigned the same
locus class, so the gene tree must be irreconcilable. O

Remark. The proof for the converse does not rely on any lemmas and, in particular, does not require a
binary gene tree. Thus, for a non-binary gene tree, it holds that if the LEG is irreconcilable, the gene tree
is irreconcilable. But, it does not hold that if the LEG is reconcilable, the gene tree is reconcilable.

Remark. If a reconcilable gene tree exists, this proof yields a procedure for generating a valid labeling of the
gene tree, that is, a labeling that satisfies Definition S1.3. We consider all pairs of irreconcilable loci and for
each, insert a duplication on an unlabeled edge between the two loci. Next, we cut the tree at the duplications
and assign each leaf and edge within the same subgraph to a single locus class. As stated in the proof, this
necessarily satisfies the definition of a reconcilable gene tree, thus, yielding a valid labeling. Because there
may be multiple ways to insert duplications according to this procedure, multiple valid labelings may exist.



Proof of Theorem S1.2

We consider the time complexity for each subroutine of Algorithm S1 line-by-line. Let n = |L(G)| and
k = |L|. We assume that L is represented using non-negative integers and that the mapping of loci to species
is implemented using an array of size k so that for I € L, s(I) requires O(1) time. Further, for each e € E(G),
P(e) is implemented as a boolean array of size k using one-hot encoding: for each [ € L, index [ of P(e) is
TRUE if P(e) contains [ and is FALSE otherwise. So, initializing P(e) to @ requires O(k) time and adding an
element to P(e) requires O(1) time. Additionally, we assume that G is implemented as an adjacency matrix
so that adding vertices and edges requires O(1) time.

The initialization at lines 1-2 requires O(nk) time. The outer ‘for’ loop at line 3 is executed O(n?) times.
Determining the path between two nodes requires O(n) time, so the total complexity for all paths in line 4
in O(n?). Furthermore, the inner ‘for’ loop at line 4 is executed O(n) times, and since line 5 requires O(1)
time, the total complexity of line 5 is O(n?). Thus, the PLCT subroutine requires O(nk + n3) time.

The graph initialization at line 6 requires O(1) time, and the next ‘for’ loop at lines 7-8 requires O(k)
time. The ‘for’ loops at lines 9 and 10 are executed O(n) and O(k?) times, respectively, giving a total
complexity of O(nk?) for line 11. Thus, the LEG subroutine requires O(nk?) time.

Determining connected components requires O(|V (G)| + |E(G)|) = O(k?) time using breadth-first-search
or depth-first-search, where |V (G)| = k and |E(G)| < @ The outer ‘for’ loop at line 12 is executed O(k)
times since there are at most k connected components, and the inner ‘for’ loop at line 13 is executed O(k?)
times since a single component has at most k vertices. This gives a total time complexity of O(k®) for line
15. Thus, the feasibility subroutine requires O(k%) time.

Put together, the total time complexity of the algorithm is O(n® + nk + nk? + k). Since k < n, the
complexity can alternatively be written as O(n?).

S1.2 Optimization

The approach for generating the PLCT in Algorithm S1 can be decreased from a total time complexity of
O(n?) to a complexity of O(nk), where k = |L|]. We accomplish this optimization by rooting the gene tree
arbitrarily along any branch, allowing us to traverse it in preorder and postorder.

Throughout this section, let T' = (V(T'), E(T)) be a rooted, full binary tree with a set V(T') of nodes
and a set E(T) of directed branches. Let L(T) C V(T) be the set of leaves, I(T) = V(T) \ L(T') be the set
of internal nodes, and r(T') € I(T) be the root node. For node v, let left(v) be its left child, right(v) be its
right child, parent(v) be its parent, and T'(v) be the (maximal) subtree of T rooted at v.

Additionally, we define a modified PLCT P’: V(G) — P(L) that labels each gene tree node with the
species-specific locus or loci to which the node must belong. That is, for each ¢ € L(G), P’(g) contains
Le(g), and for each g € I(G), P’(g) contains [ if and only if there exists a pair of genes mapped to [ and g
lies along the path between those genes. Then, for each e = (u,v) € E(G), the original PLCT can be defined
as P(e) = P'(u) NP’(v); that is, an edge is labeled with [ if the path goes through both vertices of the edge.

Algorithm S2 summarizes the optimized algorithm for generating the PLCT. Note that substituting
Algorithm S2 for the PLCT component of Algorithm S1 (lines 1-5) reduces the total time complexity for
Algorithm S1 from O(n3) to O(nk + nk? + k%) = O(nk? + k3), which is in general faster because k < n.

Proof of Correctness

In the postorder traversal, for each gene g € V(G), we compute set U(g), which, for leaves, contains
the species-specific locus of g (line 4), and for internal nodes, contains the labels that appear in any leaf
descended from g (line 7). Next, for each leaf g € L(G), P’(g) contains only Le(g) (line 5). For each internal
node g € I(Q), if U(left(g)) and U(right(g)) contain the same label [, then there must exist a pair of genes
g1 € L(T(left(g))) and g2 € L(T(right(g))) [that is, g1 and g2 are in the set of leaves in the left and right
subtrees of g, respectively] such that g; and go map to the same locus I. Thus, there exists a path between
g1 and g2, both mapped to [, that goes through ¢, and so P’(g) must contain ! (line 8). So, at the end of the
postorder traversal, for each g € L(G), P'(g) is computed correctly, and for each g € I(G), P’(g) contains
[ if and only if there exists a pair of genes in the subtree of G rooted at g such that both genes map to [
and ¢ lies along the path between those genes. Note that since T'(r(G)) = G, it must be that P'(r(G)) is
computed correctly.



Algorithm S2 PLCT OPTIMIZATION

Input: G, Le
Output: P
{Generating the PLCT}
1: Root G arbitrarily.
2: for each node g € V(G) in postorder do
3: if g € L(G) then

4 Set U(g) = {Le(g)}

5 lSet P'(g) = {Le(9)}-

6: else

7: Set U(g) = U(left(g)) UU(right(g)).
8 Set P'(g) = U(left(g)) NU(right(g)).
9: for each node g € V(G) in preorder do

10: if g € I(G)\ {r(G)} then
11: Update P’'(g) = P'(g) U (P’ (parent(g)) NU(g))-

Then, for each internal node g that is not the root, what remains is to update P’(g) with the labels
induced by pairs of genes, one in the subtree of G rooted at g and one in the rest of G, such that both
genes map to [. We preorder traverse the gene tree to perform this update and prove by induction that
we correctly update P’(g). For the base case, observe that P’(r(G)) is correct. Assume, without loss of
generality, that we are updating P’(g) where g = left(r(G)). Recall that U(g) contains labels that appear
in any leaf descended from g. At the same time, P’(parent(g)) contains labels that must be “propagated”
down the tree. So, if U(g) and P’(parent(g)) contain the same label I, then there must exist a pair of genes
g1 € L(T(g)) and g2 € L(G) \ L(T(g)) such that g; and go map to the same locus I. And, as before, there
exists a path between g; and ga, both mapped to [ that goes through g, and so P’(g) must contain [ (line
11). Thus, the sets P’(g) for each g = left(r(G)) and g = right(r(G)) are computed correctly. Induction
completes our proof. O

Proof of Complexity

We consider the time complexity for each component of Algorithm S2 line-by-line. As before, we assume
that, for each g € V(G), U(g) and P’(g) are implemented using arrays of size | with one-hot encoding. Thus,
the union and intersection of two sets requires O(k) time.

Rooting a tree requires O(n) time. The first ‘for’ loop at line 2 is executed O(n) times, and lines 4-5
each require O(1) time and lines 7-8 each O(k) time, giving a total time complexity of O(nk) for lines 3-8.
The second ‘for’ loop at line 9 is also executed O(n) times, and line 11 requires O(k) time, giving a total
time complexity of O(nk) for line 11. Thus, the total time complexity of the algorithm is O(nk). O

S2 Biological Gene Trees

We analyzed seven species or subspecies within the great apes clade: humans (Homo sapiens), Western chim-
panzees (Pan troglodytes verus), bonobos (Pan paniscus), Eastern lowland gorilla (Gorilla beringei graueri),
Western lowland gorilla (Gorilla gorilla gorilla), Sumatran orangutans (Pongo abelii), and Bornean organu-
tans (Pongo pygmaeus). We obtained reference genomes and variants from Prado-Martinez et al. (2013) and
genome annotations from Ensembl release 72 (Flicek et al. 2014). For species without a reference genome
(bonobos and Bornean orangutans), we used as reference the genome of its closest relative (chimpanzees and
Sumatran orangutans). For the non-human species, we retained only variants that passed all filters using
VCFtools (Danecek et al. 2011), imputed and phased genotypes using Beagle 4.0 (Browning and Browning
2007), and extracted autosomal variants in protein-coding regions and applied them to the reference fasta
sequences using VCFtools. For humans, we performed a similar procedure except that we imputed and
phased genotypes against the 1000 Genomes Project (The 1000 Genomes Project Consortium 2012). To
reduce the number of samples and proteins under consideration, we retained the two highest-depth samples
from each species and analyzed the longest protein sequence per gene.



Next, we obtained 10,800 autosomal gene family definitions from Ensembl release 72 (Flicek et al. 2014)
and retained 7988 families that contained a variant in at least one gene within the family, yielding 15,976
families across two haplotypes. Of these, we retained 6298 “non-trivial” families that contained at least two
loci from any one species. We aligned protein sequences using MUSCLE (Edgar 2004), reverse translated
the protein alignment to a (codon-aligned) nucleotide alignment, and reconstructed gene trees using four
programs: PHYLIP (Felsenstein 1989), BioNJ (Gascuel 1997), PhyML (Guindon et al. 2010) with the GTR
model, and RAXML (Stamatakis 2006) with 100 fast bootstraps and the GTRGAMMA model.

S3 Simulated Gene Trees

In Rasmussen and Kellis (2012), the authors used the species tree of the Drosophila 12 Genomes Consortium
(2007) with estimated divergence times (Tamura et al. 2004), gene duplication and loss rates of 0.0012
events/gene/million years (Hahn et al. 2007), and a generation time of 10 generations/year (Sawyer and
Hartl 1992, Pollard et al. 2006). While Drosophila melanogaster is estimated to have an effective population
size N, of ~1.15 million individuals (Charlesworth 2009), they used a wide range of population sizes and
also a range of duplication-loss rates to investigate the effects of varying levels of gene tree-species tree
incongruence, with each set of parameters used to simulate 500 gene families. For each parameter setting,
we retained only the “non-trivial” families that contained at least two loci from any one species.

As our algorithm relies on multiple samples per species, we used the locus trees of Rasmussen and Kellis
(2012) and, for each locus tree, simulated gene trees with N samples per species for N = 2,5,10. These gene
trees are necessarily reconcilable; that is, they have no topological error that could result in infeasible reconcil-
iations. Thus, we simulated alignments of 1000 nucleotides for each gene tree under a HKY model (Hasegawa
et al. 1985) and with a substitution rate of 5 x 1079 substitutions/site/generation (Kimura 1968, Haag-
Liautard et al. 2007) using seq-gen (Rambaut and Grassly 1997), and finally, we reconstructed gene trees
from these alignments using RAXxML (Stamatakis 2006) with 100 fast bootstraps and the GTRGAMMA
model.

Note that, in line with our model assumptions, our simulation procedure does not allow for events such
as horizontal gene transfer or gene conversion. Those interested in this more general model may consider
SimPhy (Mallo et al. 2016).



Supplemental Figures
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Fig S1. Generative process for the DLCoal model. Given a species tree with known topology and
divergence times, a top-down duplication-loss process generates a locus tree. Branches that evolve in the
daughter locus (rather than in the mother locus) of a duplication are denoted in a separate color. From the
locus tree, a bottom-up coalescent process generates a gene tree. Mappings between the trees indicate how
one tree “fits inside” the other. This diagram depicts the same gene evolutionary history as Figure lc-d.
[Figure and caption adapted with permission from Wu et al. (2014) and Rasmussen and Kellis (2012).]
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Fig S2. Duplication and loss hemiplasy. A new (a) gene duplicate or (b) gene loss can undergo
hemiplasy, in which the mutation fixes in some lineages and goes extinct in others. [Parts of this figure and
caption adapted with permission from Rasmussen and Kellis (2012).]



Locus 1 Locus 2

species mmmsp [ocus wmmml) gene

duplication-loss coalescent
P tree

process process tree

tree

Fig S3. Locus relationships. Evolution of a gene family is shown using (a) the unified model, (b) the
three-tree model, and (c) the LCT.

1. A locus set L contains the set of species-specific loci that have evolved within the gene family. In this

example, L = {aq, b1, by}, where species A has locus {a;} and species B has loci {b1, b2} such that the
relationship between loci in different species is unknown.

. Two loci are orthologous if their MRCA corresponds to a speciation event (white circle in the locus
tree). For the depicted history, loci a1 and b, and loci a; and by are orthologous.

. Two loci are equivalent if they derived from their MRCA by speciation events alone. For the depicted
history, loci a; and by are equivalent. Note that loci a; and by are orthologous but not equivalent
because a duplication (yellow star) created a new locus (“locus 2”) distinct from the original locus
(“locus 17).

. Two loci are reconcilable if they could potentially be orthologous. In this example, loci a; and b; and
loci a; and by are reconcilable. The depicted history shows how a; and b; would be orthologous. For
a different history in which b; evolved in the new locus and b, in the original locus, a; and by would
be orthologous. In contrast, loci by and by from the same species must be paralogs; thus, they cannot
be orthologous and are not reconcilable.



Supplemental Tables

Table S1. Bootstrap support.

conflict type branch type sample size median mean | Mann-Whitney U statistic  one-sided p-value
non-conflicting 62,337 25 33.2 7 133

weak conflicting 1,033 3 14.2 1.6 10 201> 10
non-conflicting 62,884 25 33.0 7 _45

strong conflicting 486 5 17.9 2.1 x10 1.44 x 10
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