
Supplementary	methods	

Microfluidics	system	

The	 cell	 suspension	was	 introduced	 into	 the	 lower	 inlet	 channel,	 the	middle	 channel	 contained	 the	 growth	

medium	and	the	top	inlet	channel	contained	the	media	with	the	new	glucose	conditions.	Individual	yeast	cells	were	

captured	with	optical	tweezers	and	positioned	in	a	6x5	cell	array.	The	device	was	pretreated	with	concanavalin	A	

resuspended	in	10	mM	Tris-HCL	and	100	mM	NaCl	(pH	8.0)	for	at	least	30	min	to	make	the	cell	stick	to	the	device	

surface.	The	three	inlets	were	connected	by	polytetrafluoroethylene	tubing	(Cole-Parmer,	Vernon	Hills,	 IL),	which	

were	 attached	 to	 250	 µl	 Hamilton	 glass	 syringes	 (Hamilton	 Co.,	 Switzerland)	 through	 needles.	 The	 flow	 was	

controlled	 with	 syringe	 pumps	 (CMA	 Microdialysis	 AB,	 Sweden).	 Both	 the	 lower	 and	 the	 middle	 inlet	 were	

connected	to	the	same	pump	(pump	1),	whereas	the	upper	inlet	was	connected	to	a	second	pump	(pump	2).	At	the	

start	of	the	experiment,	pump	1	was	set	to	80	nl/min,	and	pump	2	was	set	to	40	nl/min.	To	perform	the	medium	

shift	pump	1	was	 turned	off	 and	pump	2	was	 switched	 to	1000	nl/min.	The	 flow	changes	and	 image	acquisition	

events	were	 synchronized	 by	OpenLab	 (Improvision	 Inc.,	 Canada)	 and	 the	OpenLab	Automator	 extension	 of	 the	

OpenLab	software.		

Microscopy	

All	 experiments	 on	 the	 single	 hexotransporter	 strains	 were	 performed	 on	 a	 Leica	 DMI	 6000B	 inverted	

epifluorescense	microscope	containing	a	motorized	xy	stage.	Images	were	taken	using	a	14-bit	dynamic	range	EM-

CCD	 camera	 (C9100-12,	 Hamamatsu	 Photonics,	 Japan).	 For	 single	 cell	 trapping	 an	 extension	 of	 the	 1070-nm	

ytterbium	 fiber	 laser	 (YLD-5-LP-IPG	 laser)	 was	 used.	 A	 fluorescence	 light	 source	 (EL	 6000,	 Leica	 Microsystems,	

Germany)	was	used	 together	with	a	GFP	 filter	 cube	 (472/30	nm	exciter,	 520/35	nm	emitter,	 and	495LP	dichroic	

mirror,	 Semrock	 IDEX	 corp.,	 IL)	 and	 a	 mCherry	 filter	 cube	 (560/40	 nm	 exciter,	 630/75	 nm	 emitter,	 and	 585LP	

dichroic	 mirror,	 ET-texRed,	 Chroma,	 VT).	 The	 exposure	 times	 used	 were	 27	 ms,	 150	 ms	 and	 300	 ms	 for	 the	

transmission,	mCherry	and	GFP	states,	respectively.	

Cell	imaging		

Seven	 images	 with	 an	 axial	 distance	 of	 0.8	 µm	 were	 acquired	 in	 transmission	 and	 fluorescent	 light.	 The	

acquisition	time	of	these	images	at	each	time	point	was	±30	sec.	Images	were	acquired	at	different	time	points	(at	

30	sec	before	the	shift,	at	the	shift,	at	60	sec,	every	60	sec	for	420	sec,	every	120	sec	for	360	sec,	and	every	180	sec	

for	360	sec	after	the	shift),	adding	up	to	an	overall	experiment	time	of	20	min.	

Data	analysis	

The	transmission	light	images	were	used	to	calculate	the	cell	size	and	segmentation.	For	the	segmentation	of	

the	whole	cell	the	software	Cellstat	was	used	[3].	The	fluorescent	images	from	the	mCherry	filter	was	the	nuclear	

size	 and	 localization	 obtained,	 and	 images	 from	 the	 GFP	 filter	 where	 used	 to	 obtain	 the	 dynamics	 of	 the	Mig1	

localization.	The	open	source	software	CellStress	was	used	for	both	detection	of	the	nucleus,	and	measurement	of	

GFP	 fluorescence	 intensity	 [4].	 Fluorescent	 intensity	 data	 are	 presented	 as	 the	 ratio	 of	 the	GFP	 intensity	 in	 the	



entire	nucleus	relative	to	the	intensity	 in	the	whole	cytosol	over	time.	 Images	analysis	of	the	experiments	on	the	

Hxt7-GFP	strain	is	performed	with	ImageJ	[5].	

Model	description	

The	dynamical	model	consists	of	8	species,	12	reactions	and	18	parameters	and	has	three	main	parts,	namely	

the	activity	of	glucose,	the	activity	of	Snf1	and	the	activity	of	Mig1.	In	Equation	1,	the	three	scalars	HXT1a,	HXT4a	

and	HXT7a	are	introduced	in	order	to	account	for	the	three	data	sets,	that	is	the	HXT1,	the	HXT7	and	the	WT	data	

sets.	 These	 three	 scalars	 are	 binary	 variables	 and	 the	 following	 three	 sets	 of	 the	 variables	were	 included	 in	 the	

modelling	of	the	Mig1	localization.	The	set	 HXT1a HXT4a HXT7a = 	 1 0 0 	is	used	in	order	to	model	the	

dynamics	 of	 the	 HXT1	 strain,	 the	 set	 HXT1a HXT4a HXT7a = 	 0 0 1 	 is	 used	 in	 order	 to	 model	 the	

dynamics	of	the	HXT7	strain	and	the	set	 HXT1a HXT4a HXT7a = 	 1 1 1 	 is	used	in	order	to	model	the	

dynamics	of	the	WT	strain.	

Estimating	the	fixed	effect	parameter	ϴ	

	We	 estimated	 the	 parameters	 by	 searching	 for	 the	 parameters	 that	 minimize	 the	 distance	 between	 the	

measured	 and	 simulated	 output.	 In	 which	𝑦 𝜃 = -./01(3)5-./016(3)
7./01(3)57./016(3)

	 denote	 the	 simulated	 output	 and	𝑦	 is	 the	

measured	output,	the	best	suited	parameter	would	solve	the	minimization	problem:	

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆	𝑳𝑺 𝜽 = 	 ||𝒚 − 𝒚 𝜽 ||𝟐																							 Equation	10	

where	 || ⋅ ||	 is	 the	 Euclidian	 distance	measure.	 The	 solution	𝜃	 to	 the	 problem	 in	 Equation	 10	 is	 called	 the	 least	

square	estimate[6].	To	 find	 the	optimal	 solution	vector	we	applied	a	descent	algorithm	belonging	 to	 the	class	of	

continuous	optimization	 technique	 -	a	gradient	based	method	that	searches	 for	a	minima	 in	 the	search	space	by	

“walking”	 in	the	direction	of	the	gradient	of	the	 least	square	∇𝐿𝑆(𝜃)	 (note	that	a	minima	is	characterized	by	the	

property	 ∇𝐿𝑆 𝜃 = 0 ⟹ 𝜃	𝑖𝑠	𝑚𝑖𝑛𝑖𝑚𝑎)	 [7-9].	 However,	 in	 order	 to	 narrow	 down	 the	 search	 space	 we	 added	

constraints	to	the	parameter	vector	𝜃	with	the	form	𝑎 ≤ 𝜃 ≤ 𝑏	where	𝑎, 𝑏 ∈ ℝ5
1S	are	two	vectors	that	contain	the	

lower	and	upper	bounds	of	the	parameters	contained	in	𝜃	(Table	4).	By	adding	the	constraints	to	the	minimization	

problem	in	Equation	10,	it	can	be	reformulated	as	in	Equation	11.								 		

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆	𝑳𝑺(𝜽) = ||𝒚 − 𝒚(𝜽)||𝟐

𝒔𝒖𝒃𝒋𝒆𝒄𝒕	𝒕𝒐
𝜽 − 𝒃 ≤ 𝟎
𝜽 − 𝒂 ≥ 𝟎

										

	 Equation	11	 	

In	 Equation	 11	 the	 optimality	 conditions	 for	 the	 constrained	 problem	 are	 called	 the	 Karush	 Khun	 Tucker	 (KKT)	

conditions	 and	 are	 conditioned	 by	 adding	 the	 constraint	 functions	 to	 the	 objective	 function	 using	 Lagrange	

multipliers	[9].		



Table	S4.	Upper	and	lower	bounds	for	every	parameter.	The	upper	and	lower	bounds	for	Vmg1,	Km1,	Vmg4,	Km4,	

Vmg7	and	Km7	are	dependent	on	the	external	glucose	concentration,	in	this	table	there	are	given	for	the	upshift	to	

220	mM.		

Parameter	 Upper	bound	 Lower	bound	 Units	 Source	

Kim2	 0.1	 0.001	 𝑠^1 	 Estimated	

Kex2	 0.1	 0.01	 𝑠^1 	 Estimated	

Vmsa	 10^9	 10^8	 𝜇𝑀
𝑠

	 Estimated	

Kim1	 0.1	 0.01	 𝑠^1 	 Estimated	

Vmg4	 1.3958×10^8	 1.2010×10^8	 𝜇𝑀
𝑠

	 [10]	

Vmg7	 1.4347×10^9	 1.2703×10^9	 𝜇𝑀
𝑠

	 [1]	

Vmm	 10^9	 10^8	 𝑠^1 	 Estimated	

Vmg1	 1.0236×10^10	 7.2061×10^9	 	 [1]	

Kex1	 0.1	 0.01	 𝑠^1 	 Estimated	

Km7	 3	100	 1	900	 𝜇𝑀 	 [1]	

Ka1	 10^5	 10^4	 𝜇𝑀 	 Estimated	

Ki2	 10^5	 10^4	 𝜇𝑀 	 Estimated	

Km1	 324	000	 176	000	 𝜇𝑀 	 [1]	

Km4	 6	500	 5	900	 𝜇𝑀 	 [10]	

Vmsi	 0.0463	 0.0313	 𝑠^1 	 Estimated	

Vmd	 10^9	 10^8	 𝜇𝑀
𝑠

	 Estimated	

Ki1	 10^5	 10^4	 𝜇𝑀 	 Estimated	



Ka2	 10^5	 10^4	 𝜇𝑀 	 Estimated	

	

Estimating	the	covariance	matrix	σ	

Furthermore,	given	the	above	notation,	the	covariance	matrix	is	estimated	using	Equation	12	below	[6,	11].	

𝝈 = 𝒔𝟐 ⋅ 𝑿𝑻 ⋅ 𝑿 ^𝟏			 	 	 Equation	12	

In	 Equation	 12,	𝑠e	 is	 the	 estimate	 for	 the	 overall	 variance	 and	 is	 given	 by	𝑠e = fg(3)
-^6

		where	𝑛	 is	 the	 number	 of	

observations	and	𝑝	 is	the	number	of	estimated	parameters.	For	a	dynamical	system,	the	matrix	X	(which	has	the	

dimensions	𝑋 ∈ ℝ-×ℝ6)	in	Equation	12	is	the	Jacobian	matrix	[11].	To	solve	the	symmetric	matrix	 𝑋k ⋅ 𝑋 ^1	it	has	

to	be	estimated	based	on	the	stoichiometric	matrix	of	the	ODE	model.	

Construction	of	the	covariance	matrix	

In	 order	 to	 quantify	 the	 dependence	between	different	 variables,	 a	 covariance	matrix	 is	 often	 constructed.	 This	

matrix	 depends	 on	 the	 terms	 variance	 and	 covariance.	 The	 variance	 measures	 the	 spread	 of	 a	 data	 set	 or	 a	

parameter,	while	the	covariance	measures	the	nature	of	the	dependence	between	two	different	variables.	As	can	

be	 seen	 in	 equation	 12,	 the	 calculation	 of	 the	 covariance	 matrix	 depends	 on	 the	 estimation	 of	 the	 matrix	

𝑋k ⋅ 𝑋 ^1	 where	𝑋	 is	 the	 Jacobian	matrix	 of	 the	 system.	 However,	 since	 the	matrix	𝑋	 is	 unknown,	 the	matrix	

𝑋k ⋅ 𝑋 ^1	has	to	be	estimated	in	another	manner.	Note	that	the	matrix	 𝑋k ⋅ 𝑋 ^1	has	to	be	quadratic	(in	this	case	

it	 is	 a	 18×18-matrix	 since	 the	 parameter	 vector	 𝜃	 is	 a	 18×1-vector),	 it	 is	 symmetric	 (i.e.	 𝑋k ⋅ 𝑋 ^1 k =

𝑋k ⋅ 𝑋 ^1	which	means	that	each	row	is	equivalent	to	the	corresponding	column)	and	it	is	a	positive	semidefinite	

matrix	(i.e.	𝜆/ ≥ 0∀𝑖 ∈ {1, … ,18}	where	𝜆/	are	all	the	eigenvalues	of	the	matrix 𝑋k ⋅ 𝑋 ^1).		

Given	the	systems	of	ODE’s	that	governs	the	dynamics	of	the	Mig1-Snf1	pathway	(Equation1-8)	 ,	the	relationship	

between	the	various	species	(rows)	and	the	reactions	in	the	system	(columns)	can	be	illustrated	by	constructing	the	

stochiometric	matrix	(Table	5).		

Table	S5.	The	stochiometric	matrix.	The	columns	represent	the	reactions	and	the	rows	represent	the	species.	The	

values	in	the	matrix	are	either	-1,	0	or	1	depending	on	if	the	species	is	consumed	(value	-1),	not	present	(value	0)	or	

produced	in	the	respective	reaction	(value	1).	

	 𝐫𝟏	 𝐫𝟐	 𝐫𝟑	 𝐫𝟒	 𝐫𝟓	 𝐫𝟔	 𝐫𝟕𝐚	 𝐫𝟕𝐛	 𝐫𝟖	 𝐫𝟏𝐢	 𝐫𝟒𝐢	 𝐫𝟕𝐢	

cMig1p	 +1	 -1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

cMig1	 0	 +1	 -1	 0	 0	 0	 0	 0	 0	 0	 0	 0	

𝑮𝒊𝒏	 0	 0	 0	 -1	 0	 0	 0	 0	 0	 +1	 +1	 +1	



cSnf1	 0	 0	 0	 0	 +1	 -1	 0	 0	 0	 0	 0	 0	

cSnf1p	 0	 0	 0	 0	 -1	 +1	 -1	 +1	 0	 0	 0	 0	

nMig1	 0	 0	 +1	 0	 0	 0	 0	 0	 -1	 0	 0	 0	

nMig1p	 -1	 0	 0	 0	 0	 0	 0	 0	 +1	 0	 0	 0	

nSnf1p	 0	 0	 0	 0	 0	 0	 +1	 -1	 0	 0	 0	 0	

	

Now,	given	the	information	in	the	stoichiometric	matrix	the	covariance	matrix	is	constructed	by	using	the	following	

five	rules.		

1) The	covariance	between	two	parameters	that	correspond	to	two	reactions	that	are	not	connected	in	the	

stoichiometric	matrix	are	set	to	zero.	

2) All	the	variances	are	set	to	the	value	“var”.	

3) All	parameters	that	are	involved	in	the	same	reaction	are	set	to	the	value	“+cov”	(that	is	positive	

covariance)	which	means	that	if	one	parameter	in	the	reaction	increase	so	does	the	other.	

4) All	the	parameters	that	are	related	by	the	opposite	sign	in	the	stoichiometric	matrix	are	assigned	a	value	

“+cov”	(that	is	positive	covariance).					

5) All	the	parameters	that	are	related	by	the	same	sign	in	the	stoichiometric	matrix	are	assigned	a	value	“-

cov”	(that	is	negative	covariance).			

Using	the	above	rules	and	by	listing	the	parameters	(excluding	Kd)	in	the	same	order	as	they	appear	in	Table	2	(in	

the	main	 text),	 the	 estimate	 of	 the	matrix	 𝑋k ⋅ 𝑋 ^1	 can	 be	 constructed	 (Equation	 13).	 For	 each	 row,	 and	 by	

definition	for	each	column,	the	elements	of	the	matrix	 𝑋k ⋅ 𝑋 ^1	can	be	interpreted	as	follows.	The	element	1×1	

is	proportional	to	the	interaction	between	the	first	and	the	first	parameter,	the	element	1×2	is	proportional	to	the	

interaction	 between	 the	 first	 and	 the	 second	 parameter,	 the	 element	 1×3	 is	 proportional	 to	 the	 interaction	

between	the	first	and	the	third	parameter	etcetera.	Subsequently,	all	diagonal	elements	will	be	denoted	“𝑣𝑎𝑟”	(as	

in	variance)	and	all	the	remaining	nonzero	elements	will	be	denoted	“𝑐𝑜𝑣”	(as	in	covariance).	Note	that	a	negative	

covariance	corresponds	to	a	negative	correlation	or	 inverse	proportionality	between	the	 two	parameters	while	a	

positive	covariance	corresponds	to	a	positive	correlation	or	proportionality	between	the	two	parameters.	Thus,	by	

knowing	how	the	reactions	are	connected	in	the	system	depicted	in	Figure	1,	the	interaction	between	the	various	

reactions	constants	can	be	estimated	by	connecting	each	reaction	constant	with	its	corresponding	reaction	through	

the	information	stored	in	Table	5.	

Equation	13	



	

Note	that	the	value	of	“𝑐𝑜𝑣⋆”	in	Equation	13	are	zero	for	the	HXT1	and	HXT7	data	sets	while	it	is	nonzero	in	the	WT	

data	sets.	These	covariance	elements	correspond	to	the	interaction	between	the	various	hexose	transporters	in	the	

model	and	consequently	they	depend	on	the	data	set.		

In	order	to	generate	the	simulations	in	Figure	8,	the	variance	is	assigned	the	arbitrary	value	of	1,	that	is	𝑣𝑎𝑟 = 1.	

Furthermore,	it	is	of	great	importance	to	choose	the	values	of	the	nonzero	covariance	elements	(values	of	“cov”	in	

Equation	13)	 in	 relation	 to	 the	variance	elements	 (values	of	 “var”	 in	Equation	13)	 that	will	 result	with	a	positive	

semidefinite	 matrix.	 This	 can	 be	 achieved	 by	 using	 the	 Gershgorin’s	 Theorem,	 [12],	 which	 states	 that	 the	

eigenvalues	𝜆/	 (where	 𝑖 ∈ {1, … ,18})	of	(𝑋k ⋅ 𝑋)^1	 live	 in	balls	 centered	at	 the	diagonal	element	 “var”	and	with	

radius	 equal	 to	 the	 sum	 of	 the	 absolute	 value	 of	 the	 covariance	 elements	 which	 is	 written	 as	 𝜆/ ∈

𝐵(𝑣𝑎𝑟, |𝑥/�|1S
��1,��/ )	where	𝑖 ∈ {1, … ,18}	and	𝑥/� 	is	the	element	of	(𝑋k ⋅ 𝑋)^1	that	is	found	in	the	ith	row	and	the	

jth	 column.	 Thus,	 in	 order	 to	 have	 a	 positive	 eigenvalue	 𝜆/	 it	 is	 necessary	 to	 impose	 the	 condition	 𝑣𝑎𝑟 ≥

|𝑥/�|1S
��1,��/ ,	and	by	studying	the	matrix	in	Equation	13	it	is	clear	that	the	largest	value	(for	any	𝑖 ∈ {1, … ,18})	that	

the	sum	 |𝑥/�|1S
��1,��/ 	can	take	is		(5 ⋅ 𝑐𝑜𝑣).	Thus	provided	that			𝑣𝑎𝑟 = 1,	choosing	the	covariance	to	𝑐𝑜𝑣 = 1

�
			will	

result	in	a	positive	semidefinite	matrix.		

Parameter	perturbation	and	model	variation	 In	order	 to	test	 the	robustness	of	 the	model	sensitivity	analysis	

and	model	variation	analysis	were	conducted.	Two	different	values	of	 the	glucose	degradation	constant	Kd	have	

been	implemented,	namely	Kd1~10
-3	and	Kd2~10

6	in	combination	with	two	different	initial	conditions	that	differed	

merely	 in	 how	 the	 initial	Mig1-localization	 was	 distributed.	 The	 first	 initial	 condition,	 denoted	 Initial1,	 had	 zero	

phosphorylated	Mig1,	that	 is	cMig1p	=	nMig1p	=	0,	while	the	second	initial	condition,	denoted	 Initial2,	had	equal	

amounts	of	phosphorylated	and	unphosphorylated	Mig1,	that	is	cMig1	=	cMig1p	and	nMig1	=	nMig1p.	

The	results	in	Table	6	show	that	the	value	of	the	degradation	constant	Kd	and	the	initial	conditions	have	little	effect	

on	 the	 least	 square	 in	 the	parameter	 estimation	procedure.	 This	 implies	 that	 how	 the	 initial	 conditions	 and	 the	



parameter	Kd	are	chosen	is	of	little	relevance	regarding	the	estimation	of	the	remaining	parameters,	and	therefore	

these	should	be	chosen	by	considering	the	biological	properties	at	hand.	Since	the	constant	Kd2	results	in	the	most	

reasonable	 steady	 state	 intracellular	 glucose	 concentration,	 Gp(t	 =	∞)~	 103	 μM	 and	 the	 second	 initial	 condition	

Initial2	 that	 corresponds	 to	 the	most	 biologically	 relevant	 initial	 condition	 (since	 the	 amount	 of	 phosphorylated	

protein	is	not	zero)	was	implemented	subsequently.	

The	 purpose	 of	 varying	 the	 model	 is	 to	 determine	 the	 magnitude	 of	 the	 change	 in	 the	 output	 of	 a	 model	 in	

response	 to	a	 change	 in	a	 certain	parameter	of	 the	model.	 In	 this	particular	model,	each	parameter	 in	 the	 fixed	

effect	parameter	vector	ϴ	has	been	perturbed	individually	by	multiplying	the	parameter	of	interest	with	a	scalar	of	

the	value	exp	 (𝑠e).For	 simplicity	we	denote	 the	perturbed	vector	𝛳6���	where	 	 𝑖 ∈ 	 1, … , 18 	 is	 the	 index	of	 the	

parameter	that	is	being	perturbed.	Given	the	above	notation,	a	measure	of	the	change	in	the	output	in	response	to	

the	perturbation	in	the	model	is	given	by	Equation	14:		

𝑒/ =
� � ^�(�����)

�
														Equation	14	

where	𝑒/	 is	 the	mean	model	 variation	 error	 of	 parameter	 𝑖 ∈ 	 1, … , 18 	and	 𝑙	 is	 the	 number	 of	 time	 points	 for	

which	 the	 output	 has	 been	 measured.	 By	 comparing	 the	 mean	 model	 variation	 error	 in	 Equation	 14	 for	 each	

parameter	it	is	possible	to	determine	the	parameter	in	the	model	that	is	responsible	for	the	cell-to-cell	variability	in	

the	measured	output.			

Table	 S6.	 Sensitivity	 Analysis.	 The	 least	 square	 values	 (LS)	 of	 two	 different	 values	 of	 the	 glucose	 degradation	

constant	Kd1~10
-3	and	Kd2~10

6	with	two	different	initial	conditions	are	given.	The	first	initial	condition,	Initial1,	had	

zero	 phosphorylated	 Mig1,	 that	 is	 cMig1p	 =	 nMig1p	 =	 0,	 while	 the	 second	 initial	 condition,	 Initial2,	 had	 equal	

amounts	of	phosphorylated	and	unphosphorylated	Mig1,	that	is	cMig1	=	cMig1p	and	nMig1	=	nMig1p.	

Least	square	value,	LS	
Gex	[mM]	 (Kd1,Initial1	)	 (Kd1,Initial2	)	 (Kd2,Initial1	)	 (Kd2,Initial2	)	

HXT7	data	

220	 3.834417	 3.835097	 3.834370	 3.835050	

55	 2.937918	 2.937862	 2.937918	 2.937862	

27.5	 3.898142	 3.897893	 3.898141	 3.897892	

11	 4.627039	 4.626970	 4.627039	 4.626970	



2.75	 5.373709	 5.373644	 5.373709	 5.373644	

0	 0.390279	 0.390275	 0.390279	 0.390275	

HXT1	data	

220	 39.551342	 39.551222	 39.551341	 39.551221	

55	 33.373048	 33.372956	 33.373048	 33.372956	

27.5	 1.665347	 1.665321	 1.665346	 1.665321	

11	 2.661176	 2.661053	 2.661176	 2.661053	

2.75	 3.655134	 3.655117	 3.655134	 3.655117	

0	 0.211134	 0.211129	 0.211134	 0.211129	

WT	data	

220	 12.116645	 12.116561	 12.116644	 12.116560	

55	 4.557102	 4.557085	 4.557102	 4.557085	

27.5	 2.430639	 2.430716	 2.430584	 2.430661	

11	 0.693698	 0.693666	 0.693699	 0.693666	

2.75	 1.543187	 1.543168	 1.543187	 1.543168	

0	 0.148027	 0.148072	 0.148027	 0.148072	

 
References	

1.	 Elbing,	 K.,	 et	 al.,	Role	 of	 hexose	 transport	 in	 control	 of	 glycolytic	 flux	 in	 Saccharomyces	 cerevisiae.	 Appl	
Environ	Microbiol,	2004.	70(9):	p.	5323-30.	

2.	 Snowdon,	 C.,	 C.	 Hlynialuk,	 and	 G.	 van	 der	 Merwe,	 Components	 of	 the	 Vid30c	 are	 needed	 for	 the	
rapamycin-induced	degradation	of	the	high-affinity	hexose	transporter	Hxt7p	in	Saccharomyces	cerevisiae.	
FEMS	Yeast	Res,	2008.	8(2):	p.	204-16.	

3.	 Kvarnstrom,	 M.,	 et	 al.,	 Image	 analysis	 algorithms	 for	 cell	 contour	 recognition	 in	 budding	 yeast.	 Opt	
Express,	2008.	16(17):	p.	12943-57.	

4.	 Smedh,	M.,	et	al.	CellStress	-	open	source	image	analysis	program	for	single-cell	analysis.	2010.	
5.	 Schneider,	 C.A.,	W.S.	 Rasband,	 and	 K.W.	 Eliceiri,	NIH	 Image	 to	 ImageJ:	 25	 years	 of	 image	 analysis.	 Nat	

Methods,	2012.	9(7):	p.	671-5.	
6.	 Rice,	J.A.,	Mathematical	statistics	and	data	analysis.	Vol.	3.	2007,	Belmont,	Calif:	Thomson	Brooks/Cole.	
7.	 Andréasson,	 N.,	 et	 al.,	 An	 introduction	 to	 continuous	 optimization:	 foundations	 and	 fundamental	

algorithms.	Vol.	2.,	[rev.].	2013,	Lund:	Studentlitteratur.	
8.	 Lasdon,	L.S.,	Optimization	theory	for	large	systems.	2002,	Mineola,	N.Y:	Dover	Publications.	



9.	 Snyman,	J.,	Practical	Mathematical	Optimization.	1	ed.	Applied	Optimization.	Vol.	97.	2005:	Springer	US.	
XX,	258.	

10.	 Maier,	A.,	et	al.,	Characterisation	of	glucose	transport	in	Saccharomyces	cerevisiae	with	plasma	membrane	
vesicles	(countertransport)	and	intact	cells	(initial	uptake)	with	single	Hxt1,	Hxt2,	Hxt3,	Hxt4,	Hxt6,	Hxt7	or	
Gal2	transporters.	FEMS	Yeast	Res,	2002.	2(4):	p.	539-50.	

11.	 Seber,	G.	and	C.J.	Wild,	Nonlinear	Regression.	1989,	New	York:	John	Wiley	&	Sons.	
12.	 Elsner,	L.,	Geršgorin	and	His	Circles.	2006,	Mathematical	Association	of	America:	Washington.	p.	379-381.	

	


