
Package ‘BacArena’
July 14, 2016

Title Modeling Framework for Cellular Communities in their
Environments

Version 1.5.0

Author Eugen Bauer [aut],
Johannes Zimmermann [aut, cre]

Maintainer Johannes Zimmermann <j.zimmermann@iem.uni-kiel.de>

Description Can be used for simulation of organisms living in
communities. Each organism is represented individually and genome scale
metabolic models determine the uptake and release of compounds. Biological
processes such as movement, diffusion, chemotaxis and kinetics are available
along with data analysis techniques.

URL https://github.com/euba/BacArena

BugReports https://github.com/euba/BacArena/issues

Depends R (>= 3.0.0), sybil (>= 1.3.0), ReacTran (>= 1.4.2), deSolve
(>= 1.12), Matrix (>= 1.2)

Imports igraph, methods, utils, stats, graphics, ggplot2, reshape2,
glpkAPI, Rcpp

Suggests sybilSBML, knitr, rmarkdown

LinkingTo Rcpp, RcppArmadillo, RcppEigen

License GPL-3

VignetteBuilder knitr

RoxygenNote 5.0.1

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-07-14 20:51:15

1

https://github.com/euba/BacArena
https://github.com/euba/BacArena/issues

2 R topics documented:

R topics documented:
addDefaultMed . 4
addEssentialMed . 4
addEval . 5
addOrg . 6
addSubs . 7
Arena-class . 8
Arena-constructor . 9
Bac-class . 9
Bac-Constructor . 10
BacArena . 10
cellgrowth . 11
changeDiff . 12
changeFobj . 13
changeOrg . 14
changeSub . 15
checkCorr . 16
checkPhen . 17
checkPhen_par . 18
chemotaxis . 18
constrain . 19
consume . 20
createGradient . 21
dat2mat . 22
diffuse . 23
diffusePDE . 23
diffuseR . 24
diffuse_par . 25
emptyHood . 26
Eval-class . 27
Eval-constructor . 27
evalArena . 28
extractMed . 29
findFeeding . 30
findFeeding2 . 31
findFeeding3 . 32
findInArena . 32
flushSubs . 33
getArena . 34
getCorrM . 35
getPhenoMat . 36
getPhenotype . 37
getSubHist . 38
getSublb . 38
getVarSubs . 39
growExp . 40
growLin . 40

R topics documented: 3

growth . 41
growth_par . 42
Human-class . 42
Human-constructor . 43
lsd . 43
lysis . 44
minePheno . 45
move . 46
NemptyHood . 47
openArena . 48
optimizeLP . 48
Organism-class . 49
Organism-constructor . 50
plotAbundance . 51
plotCurves . 51
plotCurves2 . 52
plotFluxVar . 54
plotGrowthCurve . 54
plotInterNum . 55
plotPhenCurve . 55
plotPhenNum . 56
plotShadowCost . 56
plotSpecActivity . 57
plotSubCurve . 57
plotSubUsage . 58
plotSubVar . 59
plotTotFlux . 59
redEval . 60
reset_screen . 61
rmSubs . 61
selPheno . 61
setKinetics . 62
simBac . 63
simBac_par . 64
simEnv . 65
simEnv_par . 66
simHum . 67
statPheno . 68
stirEnv . 69
Substance-class . 70
Substance-constructor . 71
usd . 71

Index 72

4 addEssentialMed

addDefaultMed Add default medium of an organism to arena.

Description

The generic function addDefaultMed uses the lower bounds defined in an organism’s model file to
compose minimal medium.

Usage

addDefaultMed(object, org)

S4 method for signature 'Arena'
addDefaultMed(object, org)

Arguments

object An object of class Arena.

org An object of class Organism

addEssentialMed Add minimal medium of an organism to arena.

Description

The generic function addEssentialMed uses flux variability analysis to determine a essential growth
medium components (eg. cofactors)

Usage

addEssentialMed(object, org)

S4 method for signature 'Arena'
addEssentialMed(object, org)

Arguments

object An object of class Arena.

org An object of class Organism

addEval 5

addEval Function for adding a simulation step

Description

The generic function addEval adds results of a simulation step to an Eval object.

Usage

addEval(object, arena, replace = F)

S4 method for signature 'Eval'
addEval(object, arena, replace = F)

Arguments

object An object of class Eval.

arena An object of class Arena.

replace A boolean variable indicating if the last simulation step should be replaced by
the new simulation step arena.

Details

The function addEval can be used in iterations to manipulate an Arena object and store the results
in an Eval object.

See Also

Eval-class and Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
addEval(eval,arena)

6 addOrg

addOrg Add individuals to the environment

Description

The generic function addOrg adds individuals to the environment.

Usage

addOrg(object, specI, amount, x = NULL, y = NULL, growth = NA)

S4 method for signature 'Arena'
addOrg(object, specI, amount, x = NULL, y = NULL,
growth = NA)

Arguments

object An object of class Arena.

specI An object of class Organism.

amount A numeric number giving the number of individuals to add.

x A numeric vector giving the x positions of individuals on the grid.

y A numeric vector giving the y positions of individuals on the grid.

growth A numeric vector giving the starting biomass of the individuals.

Details

The arguments x and y should be in the same length as the number of organisms added (given by
the argument amount).

See Also

Arena-class and Bac-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms

addSubs 7

addSubs Add substances to the environment

Description

The generic function addSubs adds specific substances to the environment.

Usage

addSubs(object, smax = 0, mediac = object@mediac, difunc = "pde",
difspeed = 6.7e-06, unit = "mmol/cell", add = TRUE)

S4 method for signature 'Arena'
addSubs(object, smax = 0, mediac = object@mediac,
difunc = "pde", difspeed = 6.7e-06, unit = "mmol/cell", add = TRUE)

Arguments

object An object of class Arena.

smax A numeric vector indicating the maximum substance concentration per grid cell.

mediac A character vector giving the names of substances, which should be added to the
environment (the default takes all possible substances).

difunc A character vector ("pde","cpp" or "r") describing the function for diffusion.

difspeed A number indicating the diffusion speed (given by number of cells per iteration).

unit A character used as chemical unit to set the amount of the substances to be added
(valid values are: mmol/cell, mmol/cm2, mmol/arena, mM)

add A boolean variable defining whether the amount of substance should be summed
or replaced

Details

If nothing but object is given, then all possible substrates are initilized with a concentration of 0.
Afterwards, changeSub can be used to modify the concentrations of specific substances.

See Also

Arena-class and changeSub

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,20,c("EX_glc(e)","EX_o2(e)","EX_pi(e)")) #add glucose, o2, pi

8 Arena-class

Arena-class Structure of the S4 class "Arena"

Description

Structure of the S4 class Arena to represent the environment in which Organisms and Substances
interact.

Slots

orgdat A data frame collecting information about the accumulated growth, type, phenotype, x and
y position for each individual in the environment.

specs A list of organism types and their associated parameters.

media A list of objects of class Substance-class for each compound in the environment.

phenotypes A list of unique phenotypes (metabolites consumed and produced), which occurred in
the environment.

mediac A character vector containing the names of all substances in the environment.

tstep A number giving the time (in h) per iteration.

stir A boolean variable indicating if environment should be stirred.

mflux A vector containing highly used metabolic reactions within the arena

shadow A vector containing shadow prices of metabolites present in the arena

n A number giving the horizontal size of the environment.

m A number giving the vertical size of the environment.

Lx A number giving the horizontal grid size in cm.

Ly A number giving the vertical grid size in cm.

gridgeometry A list containing grid geometry parameter

seed An integer refering to the random number seed used to be reproducible

scale A numeric defining the scale factor used for intern unit conversion.

models A list containing Objects of class sybil::modelorg which represent the genome scale metabolic
models

occupyM A matrix indicating grid cells that are obstacles

sublb A data matrix containing positions with amounts of substance for all organism

Arena-constructor 9

Arena-constructor Constructor of the S4 class Arena-class

Description

Constructor of the S4 class Arena-class

Usage

Arena(Lx = NULL, Ly = NULL, n = 100, m = 100, ...)

Arguments

Lx A number giving the horizontal grid size in cm.

Ly A number giving the vertical grid size in cm.

n A number giving the horizontal size of the environment.

m A number giving the vertical size of the environment.

... Arguments of Arena-class

Bac-class Structure of the S4 class "Bac"

Description

Structure of the S4 class Bac inheriting from class Organism-class representing bacterial cells.

Slots

chem A character vector indicating name of substance which is the chemotaxis attractant. Empty
character vector if no chemotaxis.

10 BacArena

Bac-Constructor Constructor of the S4 class Bac-class

Description

Constructor of the S4 class Bac-class

Usage

Bac(model, chem = "", ...)

Arguments

model model

chem A character vector indicating name of substance which is the chemotaxis attrac-
tant. Empty character vector if no chemotaxis.

... Arguments of Organism-class

Value

Object of class Bac-class

BacArena BacArena: An Agent-Based Modeling Framework for Cellular Com-
munities

Description

The BacArena package provides six classes: Arena (subclass Eval), Organism (subclasses Bac,
Human) and Substance. Accordingly there are three categories of important functions: Arena,
Organism and Substance.

Arena functions

The Arena functions ...

Organism functions

The Organism functions ...

Substance functions

The Substance functions ...

cellgrowth 11

cellgrowth Function implementing a growth model of a human cell

Description

The generic function cellgrowth implements different growth models for an object of class Hu-
man.

Usage

cellgrowth(object, population, j, occupyM, fbasol)

S4 method for signature 'Human'
cellgrowth(object, population, j, occupyM, fbasol)

Arguments

object An object of class Human.

population An object of class Arena.

j The number of the iteration of interest.

occupyM A matrix indicating grid cells that are obstacles

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Linear growth of organisms is implemented by adding the calculated growthrate by optimizeLP
to the already present growth value. Exponential growth of organisms is implemented by adding
the calculated growthrate multiplied with the current growth calculated by optimizeLP plus to the
already present growth value.

Value

Boolean variable of the jth individual indicating if individual died.

See Also

Human-class, growLin and growExp

12 changeDiff

changeDiff Change substance concentration patterns in the environment

Description

The generic function changeDiff changes specific substance concentration patterns in the environ-
ment.

Usage

changeDiff(object, newdiffmat, mediac)

S4 method for signature 'Arena'
changeDiff(object, newdiffmat, mediac)

Arguments

object An object of class Arena.

newdiffmat A matrix giving the new gradient matrix of the specific substances in the envi-
ronment.

mediac A character vector giving the names of substances, which should be added to the
environment (the default takes all possible substances).

Details

This function can be used to add gradients of specific substances in the environment. The default
conditions in changeSubs assumes an equal concentration in every grid cell of the environment.

See Also

Arena-class and changeSub

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,30) #add all substances with no concentrations.
gradient <- matrix(1:200,20,20)
arena <- changeDiff(arena,gradient,c("EX_glc(e)","EX_o2(e)","EX_pi(e)"))
add substances glucose, oxygen and phosphate

changeFobj 13

changeFobj Function for changing the objective function of the model

Description

The generic function changeFobj changes the objective function, which is used for the linear pro-
gramming in optimizeLP.

Usage

changeFobj(object, new_fobj, model, alg = "fba")

S4 method for signature 'Human'
changeFobj(object, new_fobj, model, alg = "fba")

Arguments

object An object of class Human.

new_fobj A character vector giving the reaction name of the new objective function.

model The original model structure which is converted into a problem object used for
the next optimization.

alg A character vector giving the algorithm which should be used for the optimiza-
tion (default is flux balance analysis).

Details

To avoid the bias to just one particular objective function, the objective can be changed dynamically
in this function.

See Also

Human-class and optimizeLP

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
human <- Human(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
changeFobj(human,'EX_glc(e)',Ec_core)

14 changeOrg

changeOrg Change organisms in the environment

Description

The generic function changeOrg changes organisms in the environment.

Usage

changeOrg(object, neworgdat)

S4 method for signature 'Arena'
changeOrg(object, neworgdat)

Arguments

object An object of class Arena.

neworgdat A data frame with new information about the accumulated growth, type, pheno-
type, x and y position for each individual in the environment.

Details

The argument neworgdat contains the same information as the orgdat slot of Arena-class. The
orgdat slot of an Arena object can be used to create neworgdat.

See Also

Arena-class and addOrg

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
neworgdat <- arena@orgdat #get the current orgdat
neworgdat <- neworgdat[-1,] #remove the first individual
arena <- changeOrg(arena,neworgdat)

changeSub 15

changeSub Change substances in the environment

Description

The generic function changeSub changes specific substances in the environment.

Usage

changeSub(object, smax, mediac, unit = "mmol/cell")

S4 method for signature 'Arena'
changeSub(object, smax, mediac, unit = "mmol/cell")

Arguments

object An object of class Arena.

smax A number or vector of numbers indicating the maximum substance concentra-
tion per grid cell.

mediac A character vector giving the names of substances, which should be added to the
environment (the default takes all possible substances).

unit A character used as chemical unit to set the amount of the substances to be added
(valid values are: mmol/cell, mmol/cm2, mmol/arena, mM)

Details

If nothing but object is given, then all possible substrates are initilized with a concentration of 0.
Afterwards, changeSub can be used to modify the concentrations of specific substances.

See Also

Arena-class and addSubs

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena) #add all substances with no concentrations.
arena <- changeSub(arena,20,c("EX_glc(e)","EX_o2(e)","EX_pi(e)"))
#add substances glucose, oxygen and phosphate

16 checkCorr

checkCorr Function to show correlations of a simulated organism or substrate

Description

The generic function checkCorr returns the correlation matrix of several objects.

Usage

checkCorr(object, corr = NULL, tocheck = list())

S4 method for signature 'Eval'
checkCorr(object, corr = NULL, tocheck = list())

Arguments

object An object of class Eval.

corr A correlation matrix (getCorrM)

tocheck A list with substrate, reactions or organism names whose correlations should be
shown

Details

Returns correlation matrix which can be used for statistical analysis

See Also

Eval-class and getCorrM

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
checkCorr(eval, tocheck="o2")

checkPhen 17

checkPhen Function for checking phenotypes in the environment

Description

The generic function checkPhen checks and adds the phenotypes of organisms in the environment.

Usage

checkPhen(object, org, cutoff = 1e-06, fbasol)

S4 method for signature 'Arena'
checkPhen(object, org, cutoff = 1e-06, fbasol)

Arguments

object An object of class Arena.

org An object of class Organism.

cutoff A number giving the cutoff for values of the objective function and fluxes of
exchange reactions.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential
substrate usages. Uptake of substances are indicated by a negative and production of substances by
a positive number.

Value

Returns a number indicating the number of the phenotype in the phenotype list.

See Also

Arena-class and getPhenotype

18 chemotaxis

checkPhen_par Function for checking phenotypes in the environment

Description

The generic function checkPhen_par checks and adds the phenotypes of organisms in the environ-
ment.

Usage

checkPhen_par(object, org, cutoff = 1e-06, fbasol)

S4 method for signature 'Arena'
checkPhen_par(object, org, cutoff = 1e-06, fbasol)

Arguments

object An object of class Arena.

org An object of class Organism.

cutoff A number giving the cutoff for values of the objective function and fluxes of
exchange reactions.

fbasol Problem object according to the constraints and then solved with optimizeProb.

chemotaxis Function for chemotaxis of bacteria to their prefered substrate

Description

The generic function chemotaxis implements a bacterial movement in the Moore neighbourhood
to the highest substrate concentration.

Usage

chemotaxis(object, population, j)

S4 method for signature 'Bac'
chemotaxis(object, population, j)

Arguments

object An object of class Bac.

population An object of class Arena.

j The number of the iteration of interest.

constrain 19

Details

Bacteria move to a position in the Moore neighbourhood which has the highest concentration of the
prefered substrate, which is not occupied by other individuals. The prefered substance is given by
slot chem in the Bac object. If there is no free space the individuals stays in the same position. If
the concentration in the Moore neighbourhood has the same concentration in every position, then
random movement is implemented.

See Also

Bac-class and emptyHood

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05, chem = "EX_o2(e)",

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
chemotaxis(bac,arena,1)

constrain Function for constraining the models based on metabolite concentra-
tions

Description

The generic function constrain changes the constraints of the model representation of an organ-
ism.

Usage

constrain(object, reacts, lb, dryweight, time, scale, j)

S4 method for signature 'Organism'
constrain(object, reacts, lb, dryweight, time, scale, j)

Arguments

object An object of class Organisms.
reacts A character vector giving the names of reactions which should be constrained.
lb A numeric vector giving the constraint values of lower bounds (e.g. avaible

metabolite concentrations
dryweight A number giving the current dryweight of the organism.
time A number giving the time intervals for each simulation step.
scale A numeric defining the scaling (units for linear programming has to be in certain

range)
j debuging index to track cell

20 consume

Details

The constraints are calculated according to the flux definition as mmol/(gDW*hr) with the parame-
ters dryweight and time.

Value

Returns the lower bounds, which carry the constraints and names of relevant reactions.

See Also

Organism-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
org <- Organism(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize an organism
lobnds <- constrain(org,org@medium,org@lbnd[org@medium],1,1)

consume Function to account for the consumption and production of substances

Description

The generic function consume implements the consumption and production of substances based on
the flux of exchange reactions of organisms

Usage

consume(object, sublb, cutoff = 1e-06, bacnum, fbasol)

S4 method for signature 'Organism'
consume(object, sublb, cutoff = 1e-06, bacnum, fbasol)

Arguments

object An object of class Organisms.

sublb A vector containing the substance concentrations in the current position of the
individual of interest.

cutoff A number giving the cutoff value by which value of objective function is con-
sidered greater than 0.

bacnum Integer indicating the number of bacteria individuals per gridcell

fbasol Problem object according to the constraints and then solved with optimizeProb.

createGradient 21

Details

The consumption is implemented by adding the flux of the exchange reactions to the current sub-
stance concentrations.

Value

Returns the updated vector containing the substance concentrations in the current position of the
individual of interest.

See Also

Organism-class

Examples

NULL

createGradient Change substance concentration patterns in the environment accord-
ing to a gradient

Description

The generic function createGradient changes specific substance concentration patterns in the
environment.

Usage

createGradient(object, mediac, position, smax, steep, add = FALSE,
unit = "mmol/cell")

S4 method for signature 'Arena'
createGradient(object, mediac, position, smax, steep,
add = FALSE, unit = "mmol/cell")

Arguments

object An object of class Arena.

mediac A character vector giving the names of substances, which should be added to the
environment (the default takes all possible substances).

position A character vector giving the position (top, bottom, right and left) of the gradi-
ent.

smax A number giving the maximum concentration of the substance.

steep A number between 0 and 1 giving the steepness of the gradient (concentration
relative to the arena size).

22 dat2mat

add A boolean variable defining whether the amount of substance should be summed
or replaced

unit A character used as chemical unit to set the amount of the substances to be added
(valid values are: mmol/cell, mmol/cm2, mmol/arena, mM)

Details

This function can be used to add gradients of specific substances in the environment.

See Also

Arena-class and changeSub

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,30) #add all substances with no concentrations.
arena <- createGradient(arena,smax=50,mediac=c("EX_glc(e)","EX_o2(e)","EX_pi(e)"),

position='top',steep=0.5, add=FALSE)

dat2mat Function for transforming the organism data frame to a pres-
ence/absence matrix of organisms

Description

The generic function dat2mat simulates the event of mixing all substrates and organisms in the
environment.

Usage

dat2mat(object)

S4 method for signature 'Arena'
dat2mat(object)

Arguments

object An object of class Arena.

Value

Returns the presence/absence matrix of organisms on the grid based on the orgdat slot of the Arena
class.

diffuse 23

See Also

Arena-class and getSublb

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
occmat <- dat2mat(arena)
image(occmat)

diffuse Function for diffusion

Description

The generic function diffuse computes the media distribution via diffusion

Usage

diffuse(object, lrw, sublb)

S4 method for signature 'Arena'
diffuse(object, lrw, sublb)

Arguments

object An object of class Arena.

lrw A numeric value needed by solver to estimate array size (by default lwr is esti-
mated in the simEnv() by the function estimate_lrw())

sublb A matrix with the substrate concentration for every individual in the environ-
ment based on their x and y position.

diffusePDE Function for diffusion of the Substance matrix

Description

The generic function diffusePDE implements the diffusion by the solving diffusion equation.

24 diffuseR

Usage

diffusePDE(object, init_mat, gridgeometry, lrw = NULL, tstep)

S4 method for signature 'Substance'
diffusePDE(object, init_mat, gridgeometry, lrw = NULL,
tstep)

Arguments

object An object of class Substance.

init_mat A matrix with values to be used by the diffusion.

gridgeometry A list specifying the geometry of the Arena

lrw A numeric value needed by solver to estimate array size (by default lwr is esti-
mated in simEnv() by the function estimate_lrw())

tstep A numeric value giving the time step of integration

Details

Partial differential equation is solved to model 2d diffusion process in the arena.

See Also

Substance-class and diffuseR

Examples

arena <- Arena(n=100, m=100, stir=FALSE, Lx=0.025, Ly=0.025)
sub <- Substance(n=100,m=100,smax=0,name='test', difspeed=0.1,

gridgeometry=arena@gridgeometry) #initialize test substance
sub@diffmat[ceiling(100/2),ceiling(100/2)] <- 40
diffusePDE(sub, init_mat=as.matrix(sub@diffmat),

gridgeometry=arena@gridgeometry, tstep=arena@tstep)

diffuseR Function for naive diffusion (neighbourhood) of the Substance matrix

Description

The generic function diffuseR implements the diffusion in the Moore neighbourhood in R.

Usage

diffuseR(object)

S4 method for signature 'Substance'
diffuseR(object)

diffuse_par 25

Arguments

object An object of class Substance.

Details

The diffusion is implemented by iterating through each cell in the grid and taking the cell with
the lowest concentration in the Moore neighbourhood to update the concentration of both by their
mean.

See Also

Substance-class and diffusePDE

Examples

arena <- Arena(n=100, m=100, stir=FALSE, Lx=0.025, Ly=0.025)
sub <- Substance(n=20,m=20,smax=40,name='test',difunc='r',

gridgeometry=arena@gridgeometry) #initialize test substance
diffuseR(sub)

diffuse_par Function for parallelzied diffusion

Description

The generic function diffuse_par computes the media distribution via diffusion in parallel

Usage

diffuse_par(object, lrw, cluster_size, sublb)

S4 method for signature 'Arena'
diffuse_par(object, lrw, cluster_size, sublb)

Arguments

object An object of class Arena.

lrw A numeric value needed by solver to estimate array size (by default lwr is esti-
mated in the simEnv() by the function estimate_lrw())

cluster_size Amount of cores to be used

sublb A matrix with the substrate concentration for every individual in the environ-
ment based on their x and y position.

26 emptyHood

emptyHood Function to check if the there is a free place in the Moore neighbour-
hood

Description

The generic function emptyHood gives a free space which is present in the Moore neighbourhood
of an individual of interest.

Usage

emptyHood(object, pos, n, m, x, y)

S4 method for signature 'Organism'
emptyHood(object, pos, n, m, x, y)

Arguments

object An object of class Organisms.

pos A dataframe with all occupied x and y positions

n A number giving the horizontal size of the environment.

m A number giving the vertical size of the environment.

x A number giving the x position of the individual of interest in its environment.

y A number giving the y position of the individual of interest in its environment.

Value

Returns the free position in the Moore neighbourhood, which is not occupied by other individuals.
If there is no free space NULL is returned.

See Also

Organism-class

Examples

NULL

Eval-class 27

Eval-class Structure of the S4 class "Eval"

Description

Structure of the S4 class Eval inheriting from class Arena-class for the analysis of simulations.

Slots

medlist A list of compressed medium concentrations (only changes of concentrations are stored)
per time step.

simlist A list of the organism features per time step.

mfluxlist A list of containing highly used metabolic reactions per time step.

shadowlist A list of containing shadow prices per time step.

subchange A vector of all substrates with numbers indicating the degree of change in the overall
simulation.

Eval-constructor Constructor of the S4 class Eval-class

Description

Constructor of the S4 class Eval-class

Usage

Eval(arena)

Arguments

arena An object of class Arena.

28 evalArena

evalArena Function for plotting spatial and temporal change of populations
and/or concentrations

Description

The generic function evalArena plots heatmaps from the simulation steps in an Eval object.

Usage

evalArena(object, plot_items = "Population", phencol = F, retdata = F,
time = (seq_along(object@simlist) - 1), show_legend = TRUE,
legend_pos = "left")

S4 method for signature 'Eval'
evalArena(object, plot_items = "Population", phencol = F,
retdata = F, time = (seq_along(object@simlist) - 1), show_legend = TRUE,
legend_pos = "left")

Arguments

object An object of class Eval.

plot_items A character vector giving the items, which should be plotted.

phencol A boolean variable indicating if the phenotypes of the organisms in the environ-
ment should be integrated as different colors in the population plot.

retdata A boolean variable indicating if the data used to generate the plots should be
returned.

time A numeric vector giving the simulation steps which should be plotted.

show_legend A boolean variable indicating if a legend shuld be shown.

legend_pos Position of the legend.

Details

If phencol is TRUE then different phenotypes of the same organism are visualized by varying colors,
otherwise different organism types are represented by varying colors. The parameter retdata can
be used to access the data used for the returned plots to create own custom plots.

Value

Returns several plots of the chosen plot items. Optional the data to generate the original plots can
be returned.

See Also

Eval-class and Arena-class

extractMed 29

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
evalArena(eval)
Not run:
if animation package is installed a movie of the simulation can be stored:
library(animation)
saveVideo({evalArena(eval)},video.name="Ecoli_sim.mp4")

End(Not run)

extractMed Function for re-constructing a medium concentrations from simula-
tions

Description

The generic function extractMed re-constructs a list of vectors of medium concentrations from a
simulation step in an Eval object.

Usage

extractMed(object, time = length(object@medlist), mediac = object@mediac)

S4 method for signature 'Eval'
extractMed(object, time = length(object@medlist),
mediac = object@mediac)

Arguments

object An object of class Eval.

time A number giving the simulation step of interest.

mediac A character vector giving the names of substances, which should be added to the
environment (the default takes all possible substances).

Details

Medium concentrations in slot medlist of an object of class Eval store only the changes of con-
centrations in the simulation process. The function extractMed reconstructs the original and un-
compressed version of medium concentrations.

30 findFeeding

Value

Returns a list containing concentration vectors of all medium substances.

See Also

Eval-class and Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
med5 <- extractMed(eval,5)

findFeeding Function for investigation of feeding between phenotypes

Description

The generic function findFeeding

Usage

findFeeding(object, dict = NULL, tcut = 5, scut = NULL, org_dict = NULL,
legendpos = "topleft", lwd = 1)

S4 method for signature 'Eval'
findFeeding(object, dict = NULL, tcut = 5, scut = NULL,
org_dict = NULL, legendpos = "topleft", lwd = 1)

Arguments

object An object of class Eval.

dict List defining new substance names. List entries are intepreted as old names and
the list names as the new ones.

tcut Integer giving the minimal mutual occurence ot be considered (dismiss very
seldom feedings)

scut substance names which should be ignored

org_dict A named list/vector with names that should replace (eg. unreadable) IDs

legendpos A character variable declaring the position of the legend

lwd Line thickness scale in graph

findFeeding2 31

Value

Graph (igraph)

findFeeding2 Function for investigation of feeding between phenotypes

Description

The generic function findFeeding2

Usage

findFeeding2(object, time, mets, rm_own = T, ind_threshold = 0,
collapse = F)

S4 method for signature 'Eval'
findFeeding2(object, time, mets, rm_own = T,
ind_threshold = 0, collapse = F)

Arguments

object An object of class Eval.

time A numeric vector giving the simulation steps which should be plotted.

mets Character vector of substance names which should be considered

rm_own A boolean flag indicating if interactions within same species should be plotted

ind_threshold A number indicating the threshold of individuals to be considered as produc-
ers/consumers

collapse A boolean flag indicating if all phenotypes for every species should be collapsed
to either producers or consumers

Value

Graph (igraph)

32 findInArena

findFeeding3 Function for investigation of feeding between phenotypes

Description

The generic function findFeeding3

Usage

findFeeding3(object, time, mets)

S4 method for signature 'Eval'
findFeeding3(object, time, mets)

Arguments

object An object of class Eval.
time A numeric vector giving the simulation steps which should be plotted.
mets Character vector of substance names which should be considered

Value

Graph (igraph)

findInArena Function for searching a keyword in arena organisms and media

Description

The generic function findInArena tries to find information (e.g. full names) about a specific key-
word

Usage

findInArena(object, pattern, search_rea = TRUE, search_sub = TRUE)

S4 method for signature 'Arena'
findInArena(object, pattern, search_rea = TRUE,
search_sub = TRUE)

Arguments

object An object of class Arena.
pattern A pattern for searching
search_rea Only search for reactions
search_sub Only search for substances

flushSubs 33

Examples

data(Ec_core)
bac <- Bac(Ec_core)
arena <- Arena(n=20,m=20)
arena <- addOrg(arena,bac,amount=10)
findInArena(arena, "acetate")

flushSubs Remove all substances in the environment

Description

The generic function flushSubs removes specific substances in the environment.

Usage

flushSubs(object)

S4 method for signature 'Arena'
flushSubs(object)

Arguments

object An object of class Arena.

See Also

Arena-class and addSubs

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena, smax=40) #add all substances with no concentrations.
arena <- changeSub(arena,20,c("EX_glc(e)","EX_o2(e)","EX_pi(e)"))
#add substances glucose, oxygen and phosphate
arena <- flushSubs(arena) #remove all created substance concentrations

34 getArena

getArena Function for re-constructing an Arena object from a simulation step

Description

The generic function getArena re-constructs an Arena object from a simulation step within an Eval
object.

Usage

getArena(object, time = (length(object@medlist) - 1))

S4 method for signature 'Eval'
getArena(object, time = (length(object@medlist) - 1))

Arguments

object An object of class Eval.

time A number giving the simulation step of interest.

Details

The function addEval can be used to manipulate an Arena object from a simulation step to modify
the subsequent simulation steps.

Value

Returns an object of class Arena containing the organisms and substance conditions in simulation
step time.

See Also

Eval-class and Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
arena5 <- getArena(eval,5)

getCorrM 35

getCorrM Function to compute and return correlation matrix

Description

The generic function getCorrM returns the correlation matrix of several objects.

Usage

getCorrM(object, reactions = TRUE, bacs = TRUE, substrates = TRUE)

S4 method for signature 'Eval'
getCorrM(object, reactions = TRUE, bacs = TRUE,
substrates = TRUE)

Arguments

object An object of class Eval.

reactions A boolean indicating whether reactions should be included in correlation matrix

bacs A boolean indicating whether bacteria should be included in correlation matrix

substrates A boolean indicating whether substrates should be included in correlation matrix

Details

Returns correlation matrix which can be used for statistical analysis

Value

correlation matrix

See Also

Eval-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
getCorrM(eval)

36 getPhenoMat

getPhenoMat Function for getting a matrix of phenotypes from the dataset

Description

The generic function getPhenoMat reconstructs a matrix with the usage of exchange reactions of
the different organisms in the environment.

Usage

getPhenoMat(object, time = "total", sparse = F)

S4 method for signature 'Eval'
getPhenoMat(object, time = "total", sparse = F)

Arguments

object An object of class Eval.

time An integer indicating the time step to be used (default value is character "total")

sparse A boolean indicating whether zero entries should be removed from return matrix

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential
substrate usages.

Value

Returns a matrix with different phenotypes of the organism as rows and all possible exchange re-
actions as columns. A value of 1 means secretion, 2 means uptake and 0 means no usage of the
substance of interest.

See Also

Eval-class and getPhenotype

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
phenmat <- getPhenoMat(eval)

getPhenotype 37

getPhenotype Function to extract the phenotype of an organism object

Description

The generic function getPhenotype implements an identification of organism phenotypes.

Usage

getPhenotype(object, cutoff = 1e-06, fbasol, par = FALSE)

S4 method for signature 'Organism'
getPhenotype(object, cutoff = 1e-06, fbasol,
par = FALSE)

Arguments

object An object of class Organisms.

cutoff A number giving the cutoff value by which value of objective function is con-
sidered greater than 0.

fbasol Problem object according to the constraints and then solved with optimizeProb.

par A boolean indicating if running in parallel mode.

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential
substrate usages. Uptake of substances is indicated by a negative and production of substances by a
positive number.

Value

Returns the phenotype of the organisms where the uptake of substances is indicated by a negative
and production of substances by a positive number

See Also

Organism-class, checkPhen and minePheno

38 getSublb

getSubHist Function to get timeline of a substance

Description

The generic function getSubHist returns list with amount of substance for each timestep

Usage

getSubHist(object, sub)

S4 method for signature 'Eval'
getSubHist(object, sub)

Arguments

object An object of class Eval.

sub Name of a substance.

getSublb Function for calculated the substrate concentration for every organ-
ism

Description

The generic function getSublb calculates the substrate concentration for every individual in the
environment based on their x and y position.

Usage

getSublb(object)

S4 method for signature 'Arena'
getSublb(object)

Arguments

object An object of class Arena.

Value

Returns the substrate concentration for every individual in the environment with substrates as well
as x and y positions as columns and rows for each organism.

getVarSubs 39

See Also

Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
sublb <- getSublb(arena)

getVarSubs Function to get varying substances

Description

The generic function getVarSubs returns ordered list of substances that showed variance during
simulation

Usage

getVarSubs(object, show_products = TRUE, show_substrates = TRUE,
cutoff = 1e-06, size = NULL)

S4 method for signature 'Eval'
getVarSubs(object, show_products = FALSE,
show_substrates = FALSE, cutoff = 1e-06, size = NULL)

Arguments

object An object of class Eval.

show_products A boolean indicating if only products should be shown

show_substrates

A boolean indicating if only substrates should be shown

cutoff Value used to define numeric accuracy while interpreting optimization results

size Maximal number of returned substances (default: show all)

40 growLin

growExp Function for letting organisms grow exponentially

Description

The generic function growExp implements a growth model of organisms in their environment.

Usage

growExp(object, growth, fbasol)

S4 method for signature 'Organism'
growExp(object, growth, fbasol)

Arguments

object An object of class Organisms.

growth A number indicating the current biomass, which has to be updated.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Exponential growth of organisms is implemented by adding the calculated growthrate multiplied
with the current growth calculated by optimizeLP plus to the already present growth value

Value

Returns the updated biomass of the organisms of interest.

See Also

Organism-class and optimizeLP

growLin Function for letting organisms grow linearly

Description

The generic function growLin implements a growth model of organisms in their environment.

Usage

growLin(object, growth, fbasol)

S4 method for signature 'Organism'
growLin(object, growth, fbasol)

growth 41

Arguments

object An object of class Organisms.

growth A number indicating the current biomass, which has to be updated.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Linear growth of organisms is implemented by adding the calculated growthrate by optimizeLP to
the already present growth value.

Value

Returns the updated biomass of the organisms of interest.

See Also

Organism-class and optimizeLP

growth Function implementing a growth model of a bacterium

Description

The generic function growth implements different growth models for an object of class Bac.

Usage

growth(object, population, j, occupyM, fbasol)

S4 method for signature 'Bac'
growth(object, population, j, occupyM, fbasol)

Arguments

object An object of class Bac.

population An object of class Arena.

j The index of the organism of interest in orgdat.

occupyM A matrix indicating grid cells that are obstacles

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Linear growth of organisms is implemented by adding the calculated growthrate by optimizeLP
to the already present growth value. Exponential growth of organisms is implemented by adding
the calculated growthrate multiplied with the current growth calculated by optimizeLP plus to the
already present growth value

42 Human-class

Value

Boolean variable of the jth individual indicating if individual died.

See Also

Bac-class, growLin and growExp

growth_par Function implementing a growth model of a bacterium

Description

The generic function growth_par implements different growth models for an object of class Bac.

Usage

growth_par(object, population, j, fbasol)

S4 method for signature 'Bac'
growth_par(object, population, j, fbasol)

Arguments

object An object of class Bac.

population An object of class Arena.

j The index of the organism of interest in orgdat.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Value

A list

Human-class Structure of the S4 class "Human"

Description

Structure of the S4 class Human inheriting from class Organism-class representing human cells.

Slots

objective A character vector representing the current reaction which should be used as an objec-
tive function for the flux balance analysis.

Human-constructor 43

Human-constructor Constructor of the S4 class Human-class

Description

Constructor of the S4 class Human-class

Usage

Human(model, objective = model@react_id[which(model@obj_coef == 1)],
speed = 0, ...)

Arguments

model model

objective A character vector representing the current reaction which should be used as an
objective function for the flux balance analysis.

speed A integer vector representing the speed by which bacterium is moving (given by
cell per iteration).

... Arguments of Organism-class

Value

Object of class Human-class

lsd Computer standard deviation lower bound

Description

Helper function to get lower error bounds in plotting

Usage

lsd(y)

Arguments

y Vector with numbers

44 lysis

lysis Lysis function of organismal cells by adding biomass_compounds to
the medium

Description

The generic function lysis implements cell lysis by the stochiometric concentration of the biomass
compounds of organisms to the concentration of substances in the environment

Usage

lysis(object, sublb, factor = object@minweight)

S4 method for signature 'Organism'
lysis(object, sublb, factor = object@minweight)

Arguments

object An object of class Organisms.

sublb A vector containing the substance concentrations in the current position of the
individual of interest.

factor A number given the factor with which the biomass compound concentrations are
multiplied to achieve the final concentration which is added to the environment

Details

Lysis is implemented by taking the intersect between biomass compounds and the substances in the
environment and adding the normalized stochiometric concentrations of the biomass compounds to
the medium.

Value

Returns the updated vector containing the substance concentrations in the current position of the
dead individual of interest.

See Also

Organism-class and optimizeLP

Examples

NULL

minePheno 45

minePheno Function for mining/analyzing phenotypes which occured on the arena

Description

The generic function minePheno mines the similarity and differences of phenotypes reconstructed
by getPhenoMat for each simulation step in an Eval object.

Usage

minePheno(object, plot_type = "pca", legend = F, time = "total")

S4 method for signature 'Eval'
minePheno(object, plot_type = "pca", legend = F,
time = "total")

Arguments

object An object of class Eval.
plot_type A character vector giving the plot which should be returned (either "pca" for a

principle coordinate analysis or "hclust" for hierarchical clustering).
legend Boolean variable indicating if legend should be plotted
time An integer indicating the time step to be used (default value is character "total")

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential
substrate usages.

Value

Returns a plot for each simulation step representing the similarity of phenotypes of organisms within
the environment.

See Also

Eval-class and getPhenoMat

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
minePheno(eval)

46 move

move Function for random movement of organisms

Description

The generic function move implements a random movement in the Moore neighbourhood of an
individual.

Usage

move(object, pos, n, m, j, occupyM)

S4 method for signature 'Organism'
move(object, pos, n, m, j, occupyM)

Arguments

object An object of class Organism.

pos A dataframe with all occupied x and y positions

n A number giving the horizontal size of the environment.

m A number giving the vertical size of the environment.

j The number of the iteration of interest.

occupyM A matrix indicating grid cells that are obstacles

Details

Organisms move in a random position the Moore neighbourhood, which is not occupied by other
individuals. If there is no free space the individuals stays in the same position.

See Also

Organism-class, emptyHood

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
move(bac,n=20,m=20,j=1,pos=arena@orgdat[,c('x','y')], occupyM=arena@occupyM)

NemptyHood 47

NemptyHood Function to check if the there is a free place in the Moore neighbour-
hood

Description

The generic function NemptyHood gives a free space which is present in the Moore neighbourhood
of an individual of interest.

Usage

NemptyHood(object, pos, n, m, x, y)

S4 method for signature 'Organism'
NemptyHood(object, pos, n, m, x, y)

Arguments

object An object of class Organisms.

pos A dataframe with all occupied x and y positions

n A number giving the horizontal size of the environment.

m A number giving the vertical size of the environment.

x A number giving the x position of the individual of interest in its environment.

y A number giving the y position of the individual of interest in its environment.

Value

Returns the free position in the Moore neighbourhood, which is not occupied by other individuals.
If there is no free space NULL is returned.

See Also

Organism-class

Examples

NULL

48 optimizeLP

openArena Start simulation

Description

The function openArena can be used to start a default simulation.

Usage

openArena()

Value

Returns an object of class Eval which can be used for subsequent analysis steps.

Examples

sim <- openArena()
evalArena(sim, time=7, phencol = TRUE,

plot_items=c("Population", "EX_o2(e)", "EX_for(e)",
"EX_glc(e)", "EX_for(e)"))

optimizeLP Function for computing the linear programming according to the
model structure

Description

The generic function optimizeLP implements a linear programming based on the problem structure
and refined constraints.

Usage

optimizeLP(object, lpob = object@lpobj, lb = object@lbnd,
ub = object@ubnd, cutoff = 1e-06, j, sec_obj = "none")

S4 method for signature 'Organism'
optimizeLP(object, lpob = object@lpobj,
lb = object@lbnd, ub = object@ubnd, cutoff = 1e-06, j,
sec_obj = "none")

Organism-class 49

Arguments

object An object of class Organisms.

lpob A linear programing object encoding the problem to solve.

lb A numeric vector giving the constraint values of lower bounds.

ub A numeric vector giving the constraint values of upper bounds.

cutoff value used to define numeric accuracy while interpreting optimization results

j debuging index to track cell

sec_obj character giving the secondary objective for a bi-level LP if wanted.

Value

Modified problem object according to the constraints and then solved with optimizeProb.

See Also

Organism-class, optimizeProb and sysBiolAlg

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
org <- Organism(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a organism
org@fbasol <- optimizeLP(org)

Organism-class Structure of the S4 class "Organism"

Description

Structure of the S4 class Organism representing the organisms present in the environment.

Slots

lbnd A numeric vector containing the lower bounds of the model structure.

ubnd A numeric vector containing the upper bounds of the model structure.

type A character vector containing the description of the organism.

medium A character vector containing all exchange reactions of the organism.

lpobj A sybil optimization object containing the linear programing problem.

fbasol A list with the solutions of the flux balance analysis.

lyse A boolean variable indicating if the organism should lyse after death.

feat A list containing conditional features for the object (contains at the momement only biomass
components for lysis).

50 Organism-constructor

deathrate A numeric value giving the factor by which the growth should be reduced in every
iteration (unit: fg)

minweight A numeric value giving the growth limit at which the organism dies.
growtype A character vector giving the functional type for growth (linear or exponential).
kinetics A List containing Km and v_max values for each reactions.
speed A integer vector representing the speed by which bacterium is moving (given by cell per

iteration).
cellarea A numeric value indicating the surface that one organism occupies (unit: mu cm^2)
maxweight A numeric value giving the maximal dry weight of single organism (unit: fg)
cellweight_mean A numeric giving the mean of starting biomass
cellweight_sd A numeric giving the standard derivation of starting biomass
model Object of class sybil::modelorg containging the genome sclae metabolic model

Organism-constructor Constructor of the S4 class Organism

Description

The constructor to get a new object of class Organism

Usage

Organism(model, algo = "fba", ex = "EX_", ex_comp = NA,
csuffix = "\\[c\\]", esuffix = "\\[e\\]", lyse = F,
feat = list(), typename = NA, setExInf = TRUE, ...)

Arguments

model Object of class sybil::modelorg containging the genome sclae metabolic model
algo A single character string giving the name of the algorithm to use. See SYBIL_SETTINGS
ex Identifier for exchange reactions
ex_comp ex_comp
csuffix csuffix
esuffix esuffix
lyse A boolean variable indicating if the organism should lyse after death.
feat A list containing conditional features for the object (contains at the momement

only biomass components for lysis).
typename A string defining the name (set to model name in default case)
setExInf Enable if all lower bounds of exchange reaction which are set to zero (i.e. no

uptake possible!) should be set to -infitity
... Arguments of Organism-class

Value

Object of class Organism

plotAbundance 51

plotAbundance Plot abundances of species

Description

The function plotAbundance takes a list of simulations and return a boxplot with species abun-
dances

Usage

plotAbundance(simlist, time = c(NULL, NULL), col = colpal3,
return_dat = F, use_biomass = F)

Arguments

simlist A list of simulations (eval objects).

time A vector with start and end time to be considered (default: total time)

col Vector with color that should be used

return_dat Should plain text mean abundances be returned? (default false)

use_biomass If enabled then biomass is used instead of cell number

plotCurves Function for plotting the overall change as curves

Description

The generic function plotCurves plots the growth curves and concentration changes of substances
from simulation steps in an Eval object.

Usage

plotCurves(object, medplot = object@mediac, retdata = F, remove = F,
legend = F)

S4 method for signature 'Eval'
plotCurves(object, medplot = object@mediac, retdata = F,
remove = F, legend = F)

52 plotCurves2

Arguments

object An object of class Eval.

medplot A character vector giving the name of substances which should be plotted.

retdata A boolean variable indicating if the data used to generate the plots should be
returned.

remove A boolean variable indicating if substances, which don’t change in their concen-
tration should be removed from the plot.

legend Boolean variable indicating if legend should be plotted

Details

The parameter retdata can be used to access the data used for the returned plots to create own
custom plots.

Value

Returns two graphs in one plot: the growth curves and the curves of concentration changes. Optional
the data to generate the original plots can be returned.

See Also

Eval-class and Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
plotCurves(eval)

plotCurves2 Function for plotting the overall change as curves with maximally dis-
tinct colors

Description

The generic function plotCurves2 plots the growth curves and concentration changes of the most
changing substances from simulation steps in an Eval object using maximally distinct colors.

plotCurves2 53

Usage

plotCurves2(object, legendpos = "topleft", ignore = c("EX_h(e)", "EX_pi(e)",
"EX_h2o(e)"), num = 10, phencol = FALSE, biomcol = FALSE, dict = NULL,
subs = list(), growthCurve = TRUE, subCurve = TRUE)

S4 method for signature 'Eval'
plotCurves2(object, legendpos = "topright",
ignore = c("EX_h(e)", "EX_pi(e)", "EX_h2o(e)"), num = 10,
phencol = FALSE, biomcol = FALSE, dict = NULL, subs = list(),
growthCurve = TRUE, subCurve = TRUE)

Arguments

object An object of class Eval.

legendpos A character variable declaring the position of the legend

ignore A list of character variables with substance names that sould be omitted in the
plot

num An integer defining the number of substrates to be plot

phencol Boolean variable indicating whether phenotypes should be higlighted

biomcol A boolean indicating if biomass should be included in gowth curve

dict List defining new substance names. List entries are intepreted as old names and
the list names as the new ones.

subs List of substance names. If empty, substances with highest variance will be used.

growthCurve True if growth curve should be shown (default TRUE)

subCurve True if substance curve should be shown (default TRUE)

Details

The parameter retdata can be used to access the data used for the returned plots to create own
custom plots.

Value

Returns two graphs in one plot: the growth curves and the curves of concentration changes

See Also

Eval-class and Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances

54 plotGrowthCurve

eval <- simEnv(arena,5)
plotCurves2(eval)

plotFluxVar Plot population flux variations

Description

The function plotFluxVar takes a list of simulations and metabolites, returning a plot with metabo-
lite fluxes for each species

Usage

plotFluxVar(simlist, metsel)

Arguments

simlist A list of simulations (eval objects).

metsel A vector with the name of exchange reactions of interest

plotGrowthCurve Plot growth curve for several simulations

Description

The function plotGrowthCurve takes a list of simulations and plots the time course of species with
standard deviation.

Usage

plotGrowthCurve(simlist, bcol = colpal3, time = c(NULL, NULL))

Arguments

simlist A list of simulations (eval objects).

bcol Vector with color that should be used

time Vector with two entries defining start and end time

plotInterNum 55

plotInterNum Plot number of variation in number of interactions for several simula-
tions

Description

The function plotInterNum takes a list of simulations and plots the time course of the number of
metabolic interactions with standard deviation.

Usage

plotInterNum(simlist, title = "Variation in number of interactions",
size = 1)

Arguments

simlist A list of simulations (eval objects).

title Title of the plot

size A scaling factor for plot text and line size

plotPhenCurve Plot growth curve for several simulations

Description

The function plotPhenCurve takes a list of simulations and plots the time course of species with
standard deviation.

Usage

plotPhenCurve(simlist, subs, phens = NULL, time = c(NULL, NULL),
ret_phengroups = FALSE, cluster = TRUE, col = colpal3)

Arguments

simlist A list of simulations (eval objects).

subs A vector of substance names that are used for phenotype clustering.

phens If phencurve is given then phens specifies the phenotypes which sould be plotted
again.

time Vector with two entries defining start and end time

ret_phengroups True if clustered phenotype groups should be returned.

cluster True phenotypes should be clustered/condensed.

col Vector with color that should be used

56 plotShadowCost

plotPhenNum Plot number of phenotypes curve for several simulations

Description

The function plotPhenNum takes a list of simulations and plots the time course of the number of
phenotypes with standard deviation.

Usage

plotPhenNum(simlist, title = "Phenotype number variation", size = 1)

Arguments

simlist A list of simulations (eval objects).

title Title of the plot

size A scaling factor for plot text and line size

plotShadowCost Function to plot substance shadow costs for a specie

Description

The generic function plotShadowCost plots substances have the highest impact on further growth
(shadow cost < 0)

Usage

plotShadowCost(object, spec_nr = 1, sub_nr = 10, cutoff = -1)

S4 method for signature 'Eval'
plotShadowCost(object, spec_nr = 1, sub_nr = 10,
cutoff = -1)

Arguments

object An object of class Eval.

spec_nr Number of the specie

sub_nr Maximal number of substances to be show

cutoff Shadow costs should be smaller than cutoff

Details

Returns ggplot objects

plotSpecActivity 57

plotSpecActivity Function to plot substance usage for every species

Description

The generic function plotSpecActivity displays the input/output substances with the highest vari-
ance (could also be defiened manually) for all species

Usage

plotSpecActivity(simlist, subs = list(), var_nr = 10, spec_list = NULL,
ret_data = FALSE)

Arguments

simlist An object of class Eval or a list with objects of class Eval.

subs List of substance names

var_nr Number of most varying substances to be used (if subs is not specified)

spec_list List of species names to be considered (default all)

ret_data Set true if data should be returned

Details

Returns ggplot objects

plotSubCurve Plot substance curve for several simulations

Description

The function plotSubCurve takes a list of simulations and plots the time course of substances with
standard deviation.

Usage

plotSubCurve(simlist, mediac = NULL, time = c(NULL, NULL), scol = NULL,
unit = "mmol", ret_data = FALSE, num_var = 10)

58 plotSubUsage

Arguments

simlist A list of simulations (eval objects).

mediac A vector of substances (if not specified most varying substances will be taken.)

time Vector with two entries defining start and end time.

scol Vector with colors that should be used.

unit Unit for the substances which should be used for plotting (default: mmol)

ret_data Set true if data should be returned

num_var Number of varying substances to be shown (if mediac is not specified)

Value

list of three ggplot object for further formating

plotSubUsage Function to plot usage of substances species wise

Description

The generic function plotSubUsage displays for given substances the quantities of absorption and
production for each species

Usage

plotSubUsage(simlist, subs = list(), cutoff = 0.01, ret_data = FALSE)

Arguments

simlist An object of class Eval or a list with objects of class Eval.

subs List of substance names

cutoff Total values below cutoff will be dismissed

ret_data Set true if data should be returned

Details

Returns ggplot objects

plotSubVar 59

plotSubVar Plot substance variations

Description

The function plotSubVar takes a list of simulations and return a barplot with most varying sub-
stances

Usage

plotSubVar(simlist, metsel)

Arguments

simlist A list of simulations (eval objects).
metsel A vector with the name of exchange reactions of interest

plotTotFlux Function for plotting the overall change in reaction activity

Description

The generic function plotTotFlux plots the time course of reactions with high variation in activity
for an Eval object.

Usage

plotTotFlux(object, legendpos = "topright", num = 20)

S4 method for signature 'Eval'
plotTotFlux(object, legendpos = "topright", num = 20)

Arguments

object An object of class Eval.
legendpos A character variable declaring the position of the legend
num An integer defining the number of substrates to be plot

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
plotTotFlux(eval)

60 redEval

redEval Function for reducing the size of an Eval object by collapsing the
medium concentrations

Description

The generic function redEval reduces the object size of an Eval object.

Usage

redEval(object, time = "all")

S4 method for signature 'Eval'
redEval(object, time = 1:length(object@medlist))

Arguments

object An object of class Eval.

time A number giving the simulation step of interest.

Details

The function redEval can be used to reduce the size of an Eval object from a simulation step.

Value

Returns an object of class Arena containing the organisms and substance conditions in simulation
step time.

See Also

Eval-class and Arena-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
eval_reduce <- redEval(eval,5)

reset_screen 61

reset_screen Reset plotting screen

Description

The function reset_screen set plotting window to default

Usage

reset_screen()

rmSubs Remove substances

Description

The generic function rmSubs removes all amounts of substances available in the arena for given
compounds.

Usage

rmSubs(object, mediac)

S4 method for signature 'Arena'
rmSubs(object, mediac)

Arguments

object An object of class Arena.

mediac A character vector giving the names of substances, which should be added to the
environment (the default takes all possible substances).

selPheno Function for selecting phenotypes which occured on the arena from
specific iterations and species

Description

The generic function selPheno selects phenotypes from specific simulation step in an Eval object.

62 setKinetics

Usage

selPheno(object, time, type, reduce = F)

S4 method for signature 'Eval'
selPheno(object, time, type, reduce = F)

Arguments

object An object of class Eval.

time A numeric vector giving the simulation steps which should be plotted.

type A names indicating the species of interest in the arena.

reduce A boolean variable indicating if the resulting matrix should be reduced.

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential
substrate usages.

Value

Returns a matrix with the substrate usage and the number of individuals using the phenotype.

See Also

Eval-class and getPhenoMat

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
selPheno(eval,time=5,type='ecoli_core_model',reduce=TRUE)

setKinetics Function to set Michaelis-Menten kinetics for uptake of a substance

Description

The generic function setKinetics provides kinetics for exchange reactions.

simBac 63

Usage

setKinetics(object, exchangeR, Km, vmax)

S4 method for signature 'Organism'
setKinetics(object, exchangeR, Km, vmax)

Arguments

object An object of class Organisms.

exchangeR Name of an exchange reaction

Km Parameter Michaelis-Menten-Kinetics (in mM)

vmax Parameter Michaelis-Menten-Kinetics (in mmol/(g*h))

simBac Function for one simulation iteration for objects of Bac class

Description

The generic function simBac implements all neccessary functions for the individuals to update the
complete environment.

Usage

simBac(object, arena, j, sublb, bacnum, sec_obj = "none", cutoff = 1e-06,
pcut = 1e-06)

S4 method for signature 'Bac'
simBac(object, arena, j, sublb, bacnum, sec_obj = "none",
cutoff = 1e-06, pcut = 1e-06)

Arguments

object An object of class Bac.

arena An object of class Arena defining the environment.

j The index of the organism of interest in orgdat.

sublb A vector containing the substance concentrations in the current position of the
individual of interest.

bacnum integer indicating the number of bacteria individuals per gridcell

sec_obj character giving the secondary objective for a bi-level LP if wanted.

cutoff value used to define numeric accuracy.

pcut A number giving the cutoff value by which value of objective function is con-
sidered greater than 0.

64 simBac_par

Details

Bacterial individuals undergo step by step the following procedures: First the individuals are con-
strained with constrain to the substrate environment, then flux balance analysis is computed with
optimizeLP, after this the substrate concentrations are updated with consume, then the bacterial
growth is implemented with growth, the potential new phenotypes are added with checkPhen, fi-
nally the additional and conditional functions lysis, move or chemotaxis are performed. Can be
used as a wrapper for all important bacterial functions in a function similar to simEnv.

Value

Returns the updated enivironment of the population parameter with all new positions of individu-
als on the grid and all new substrate concentrations.

See Also

Bac-class, Arena-class, simEnv, constrain, optimizeLP, consume, growth, checkPhen, lysis,
move and chemotaxis

Examples

NULL

simBac_par Function for one simulation iteration for objects of Bac class

Description

The generic function simBac_par implements all neccessary functions for the individuals to update
the complete environment.

Usage

simBac_par(object, arena, j, sublb, bacnum, lpobject, sec_obj = "none",
cutoff = 1e-06)

S4 method for signature 'Bac'
simBac_par(object, arena, j, sublb, bacnum, lpobject,
sec_obj = "none", cutoff = 1e-06)

Arguments

object An object of class Bac.

arena An object of class Arena defining the environment.

j The index of the organism of interest in orgdat.

sublb A vector containing the substance concentrations in the current position of the
individual of interest.

simEnv 65

bacnum integer indicating the number of bacteria individuals per gridcell
lpobject linar programming object (copy of organism@lpobj) that have to be a deep copy

in parallel due to pointer use in sybil.
sec_obj character giving the secondary objective for a bi-level LP if wanted.
cutoff value used to define numeric accuracy

Value

Returns the updated enivironment of the population parameter with all new positions of individu-
als on the grid and all new substrate concentrations.

simEnv Main function for simulating all processes in the environment

Description

The generic function simEnv for a simple simulation of the environment.

Usage

simEnv(object, time, lrw = NULL, continue = FALSE, reduce = FALSE,
diffusion = TRUE, diff_par = FALSE, cl_size = 2, sec_obj = "none",
cutoff = 1e-06, pcut = 1e-06)

S4 method for signature 'Arena'
simEnv(object, time, lrw = NULL, continue = FALSE,
reduce = FALSE, diffusion = TRUE, diff_par = FALSE, cl_size = 2,
sec_obj = "none", cutoff = 1e-06, pcut = 1e-06)

Arguments

object An object of class Arena or Eval.
time A number giving the number of iterations to perform for the simulation
lrw A numeric value needed by solver to estimate array size (by default lwr is esti-

mated in the simEnv() by the function estimate_lrw())
continue A boolean indicating whether the simulation should be continued or restarted.
reduce A boolean indicating if the resulting Eval object should be reduced
diffusion True if diffusion should be done (default on).
diff_par True if diffusion should be run in parallel (default off).
cl_size If diff_par is true then cl_size defines the number of cores to be used in paral-

lelized diffusion.
sec_obj character giving the secondary objective for a bi-level LP if wanted.
cutoff value used to define numeric accuracy
pcut A number giving the cutoff value by which value of objective function is con-

sidered greater than 0.

66 simEnv_par

Details

The returned object itself can be used for a subsequent simulation, due to the inheritance between
Eval and Arena.

Value

Returns an object of class Eval which can be used for subsequent analysis steps.

See Also

Arena-class and Eval-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)

simEnv_par Main function for simulating in parallel all processes in the environ-
ment

Description

The generic function simEnv_par for a simple in parallel all simulation of the environment.

Usage

simEnv_par(object, time, lrw = NULL, continue = FALSE, reduce = FALSE,
cluster_size = NULL, diffusion = TRUE, sec_obj = "none",
cutoff = 1e-06)

S4 method for signature 'Arena'
simEnv_par(object, time, lrw = NULL, continue = FALSE,
reduce = FALSE, cluster_size = NULL, diffusion = TRUE,
sec_obj = "none", cutoff = 1e-06)

Arguments

object An object of class Arena or Eval.

time A number giving the number of iterations to perform for the simulation

lrw A numeric value needed by solver to estimate array size (by default lwr is esti-
mated in the simEnv() by the function estimate_lrw())

simHum 67

continue A boolean indicating whether the simulation should be continued or restarted.

reduce A boolean indicating if the resulting Eval object should be reduced

cluster_size Number of cpu cores to be used.

diffusion True if diffusion should be done (default on).

sec_obj character giving the secondary objective for a bi-level LP if wanted.

cutoff value used to define numeric accuracy

Details

The returned object itself can be used for a subsequent simulation, due to the inheritance between
Eval and Arena.

Value

Returns an object of class Eval which can be used for subsequent analysis steps.

See Also

Arena-class and Eval-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)

simHum Function for one simulation iteration for objects of Human class

Description

The generic function simHum implements all neccessary functions for the individuals to update the
complete environment.

Usage

simHum(object, arena, j, sublb, bacnum)

S4 method for signature 'Human'
simHum(object, arena, j, sublb, bacnum)

68 statPheno

Arguments

object An object of class Human.

arena An object of class Arena defining the environment.

j The number of the iteration of interest.

sublb A vector containing the substance concentrations in the current position of the
individual of interest.

bacnum integer indicating the number of bacteria individuals per gridcell

Details

Human cell individuals undergo the step by step the following procedures: First the individuals are
constrained with constrain to the substrate environment, then flux balance analysis is computed
with optimizeLP, after this the substrate concentrations are updated with consume, then the cell
growth is implemented with cellgrowth, the potential new phenotypes are added with checkPhen,
finally the conditional function lysis is performed. Can be used as a wrapper for all important cell
functions in a function similar to simEnv.

Value

Returns the updated enivironment of the arena parameter with all new positions of individuals on
the grid and all new substrate concentrations.

See Also

Human-class, Arena-class, simEnv, constrain, optimizeLP, consume, cellgrowth, checkPhen
and lysis

Examples

NULL

statPheno Function for investigating a specific phenotype of an organism

Description

The generic function statPheno provides statistical and visual information about a certain pheno-
type.

Usage

statPheno(object, type_nr = 1, phenotype_nr, dict = NULL)

S4 method for signature 'Eval'
statPheno(object, type_nr = 1, phenotype_nr, dict = NULL)

stirEnv 69

Arguments

object An object of class Eval.
type_nr A number indicating the Organism type of the phenotype to be investigated

(from orgdat)
phenotype_nr A number indicating the phenotype to be investigated (from orgdat)
dict A character vector of all substance IDs with names that should be used instead

of possibly cryptic IDs

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential
substrate usages.

See Also

Eval-class

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
eval <- simEnv(arena,5)
statPheno(eval, type_nr=1, phenotype_nr=2)

stirEnv Function for stirring/mixing the complete evironment

Description

The generic function stirEnv simulates the event of mixing all substrates and organisms in the
environment.

Usage

stirEnv(object, sublb)

S4 method for signature 'Arena'
stirEnv(object, sublb)

Arguments

object An object of class Arena.
sublb A matrix with the substrate concentration for every individual in the environ-

ment based on their x and y position.

70 Substance-class

Details

The stirring is implemented as a random permutation of organism positions and the equalization of
of all substrate concentrations.

Value

Returns the substrate concentration for every individual in the environment with substrates as well
as x and y positions as columns and rows for each organism.

See Also

Arena-class and getSublb

Examples

data(Ec_core, envir = environment()) #get Escherichia coli core metabolic model
bac <- Bac(Ec_core,deathrate=0.05,

minweight=0.05,growtype="exponential") #initialize a bacterium
arena <- Arena(n=20,m=20) #initialize the environment
arena <- addOrg(arena,bac,amount=10) #add 10 organisms
arena <- addSubs(arena,40) #add all possible substances
sublb <- getSublb(arena)
stirEnv(arena,sublb)

Substance-class Structure of the S4 class "Substance"

Description

Structure of the S4 class Substance representing substances in the environment which can be pro-
duced or consumed.

Slots

smax A number representing the start concentration of the substance for each grid cell in the envi-
ronment.

diffmat A sparse matrix containing all concentrations of the substance in the environment.

name A character vector representing the name of the substance.

id A character vector representing the identifier of the substance.

difunc A character vector ("pde","cpp" or "r") describing the function for diffusion.

difspeed A number indicating the diffusion speed (given by cm^2/s).

diffgeometry Diffusion coefficient defined on all grid cells (initially set by constructor).

pde R-function that computes the values of the derivatives in the diffusion system

boundS A number defining the attached amount of substance at the boundary (Warning: boundary-
function must be set in pde!)

Substance-constructor 71

Substance-constructor Constructor of the S4 class Substance

Description

The constructor to get a new object of class Substance

Usage

Substance(n, m, smax, gridgeometry, difspeed = 6.7e-06, ...)

Arguments

n A number giving the horizontal size of the environment.

m A number giving the vertical size of the environment.

smax A number representing the start concentration of the substance for each grid cell
in the environment.

gridgeometry A list containing grid geometry parameter

difspeed A number indicating the diffusion speed (given by cm^2/s).

... Arguments of Substance-class

Value

Object of class Substance

usd Computer standard deviation upper bound

Description

Helper function to get upper error bounds in plotting

Usage

usd(y)

Arguments

y Vector with numbers

Index

addDefaultMed, 4
addDefaultMed,Arena-method

(addDefaultMed), 4
addEssentialMed, 4
addEssentialMed,Arena-method

(addEssentialMed), 4
addEval, 5
addEval,Eval-method (addEval), 5
addOrg, 6, 14
addOrg,Arena-method (addOrg), 6
addSubs, 7, 15, 33
addSubs,Arena-method (addSubs), 7
Arena (Arena-constructor), 9
Arena-class, 8, 9
Arena-constructor, 9

Bac (Bac-Constructor), 10
Bac-class, 9, 10
Bac-Constructor, 10
BacArena, 10
BacArena-package (BacArena), 10

cellgrowth, 11
cellgrowth,Human-method (cellgrowth), 11
changeDiff, 12
changeDiff,Arena-method (changeDiff), 12
changeFobj, 13
changeFobj,Human-method (changeFobj), 13
changeOrg, 14
changeOrg,Arena-method (changeOrg), 14
changeSub, 7, 12, 15, 15, 22
changeSub,Arena-method (changeSub), 15
checkCorr, 16
checkCorr,Eval-method (checkCorr), 16
checkPhen, 17, 37
checkPhen,Arena-method (checkPhen), 17
checkPhen_par, 18
checkPhen_par,Arena-method

(checkPhen_par), 18
chemotaxis, 18

chemotaxis,Bac-method (chemotaxis), 18
constrain, 19
constrain,Organism-method (constrain),

19
consume, 20
consume,Organism-method (consume), 20
createGradient, 21
createGradient,Arena-method

(createGradient), 21

dat2mat, 22
dat2mat,Arena-method (dat2mat), 22
diffuse, 23
diffuse,Arena-method (diffuse), 23
diffuse_par, 25
diffuse_par,Arena-method (diffuse_par),

25
diffusePDE, 23, 25
diffusePDE,Substance-method

(diffusePDE), 23
diffuseR, 24, 24
diffuseR,Substance-method (diffuseR), 24

emptyHood, 19, 26, 46
emptyHood,Organism-method (emptyHood),

26
Eval (Eval-constructor), 27
Eval-class, 27, 27
Eval-constructor, 27
evalArena, 28
evalArena,Eval-method (evalArena), 28
extractMed, 29
extractMed,Eval-method (extractMed), 29

findFeeding, 30
findFeeding,Eval-method (findFeeding),

30
findFeeding2, 31
findFeeding2,Eval-method

(findFeeding2), 31

72

INDEX 73

findFeeding3, 32
findFeeding3,Eval-method

(findFeeding3), 32
findInArena, 32
findInArena,Arena-method (findInArena),

32
flushSubs, 33
flushSubs,Arena-method (flushSubs), 33

getArena, 34
getArena,Eval-method (getArena), 34
getCorrM, 16, 35
getCorrM,Eval-method (getCorrM), 35
getPhenoMat, 36, 45, 62
getPhenoMat,Eval-method (getPhenoMat),

36
getPhenotype, 17, 36, 37
getPhenotype,Organism-method

(getPhenotype), 37
getSubHist, 38
getSubHist,Eval-method (getSubHist), 38
getSublb, 23, 38, 70
getSublb,Arena-method (getSublb), 38
getVarSubs, 39
getVarSubs,Eval-method (getVarSubs), 39
growExp, 11, 40, 42
growExp,Organism-method (growExp), 40
growLin, 11, 40, 42
growLin,Organism-method (growLin), 40
growth, 41
growth,Bac-method (growth), 41
growth_par, 42
growth_par,Bac-method (growth_par), 42

Human (Human-constructor), 43
Human-class, 42, 43
Human-constructor, 43

lsd, 43
lysis, 44
lysis,Organism-method (lysis), 44

minePheno, 37, 45
minePheno,Eval-method (minePheno), 45
move, 46
move,Organism-method (move), 46

NemptyHood, 47
NemptyHood,Organism-method

(NemptyHood), 47

openArena, 48
optimizeLP, 13, 40, 41, 44, 48
optimizeLP,Organism-method

(optimizeLP), 48
optimizeProb, 49
Organism (Organism-constructor), 50
Organism-class, 49
Organism-constructor, 50

plotAbundance, 51
plotCurves, 51
plotCurves,Eval-method (plotCurves), 51
plotCurves2, 52
plotCurves2,Eval-method (plotCurves2),

52
plotFluxVar, 54
plotGrowthCurve, 54
plotInterNum, 55
plotPhenCurve, 55
plotPhenNum, 56
plotShadowCost, 56
plotShadowCost,Eval-method

(plotShadowCost), 56
plotSpecActivity, 57
plotSubCurve, 57
plotSubUsage, 58
plotSubVar, 59
plotTotFlux, 59
plotTotFlux,Eval-method (plotTotFlux),

59

redEval, 60
redEval,Eval-method (redEval), 60
reset_screen, 61
rmSubs, 61
rmSubs,Arena-method (rmSubs), 61

selPheno, 61
selPheno,Eval-method (selPheno), 61
setKinetics, 62
setKinetics,Organism-method

(setKinetics), 62
simBac, 63
simBac,Bac-method (simBac), 63
simBac_par, 64
simBac_par,Bac-method (simBac_par), 64
simEnv, 64, 65, 68
simEnv,Arena-method (simEnv), 65
simEnv_par, 66

74 INDEX

simEnv_par,Arena-method (simEnv_par), 66
simHum, 67
simHum,Human-method (simHum), 67
statPheno, 68
statPheno,Eval-method (statPheno), 68
stirEnv, 69
stirEnv,Arena-method (stirEnv), 69
Substance (Substance-constructor), 71
Substance-class, 70
Substance-constructor, 71
SYBIL_SETTINGS, 50
sysBiolAlg, 49

usd, 71

	addDefaultMed
	addEssentialMed
	addEval
	addOrg
	addSubs
	Arena-class
	Arena-constructor
	Bac-class
	Bac-Constructor
	BacArena
	cellgrowth
	changeDiff
	changeFobj
	changeOrg
	changeSub
	checkCorr
	checkPhen
	checkPhen_par
	chemotaxis
	constrain
	consume
	createGradient
	dat2mat
	diffuse
	diffusePDE
	diffuseR
	diffuse_par
	emptyHood
	Eval-class
	Eval-constructor
	evalArena
	extractMed
	findFeeding
	findFeeding2
	findFeeding3
	findInArena
	flushSubs
	getArena
	getCorrM
	getPhenoMat
	getPhenotype
	getSubHist
	getSublb
	getVarSubs
	growExp
	growLin
	growth
	growth_par
	Human-class
	Human-constructor
	lsd
	lysis
	minePheno
	move
	NemptyHood
	openArena
	optimizeLP
	Organism-class
	Organism-constructor
	plotAbundance
	plotCurves
	plotCurves2
	plotFluxVar
	plotGrowthCurve
	plotInterNum
	plotPhenCurve
	plotPhenNum
	plotShadowCost
	plotSpecActivity
	plotSubCurve
	plotSubUsage
	plotSubVar
	plotTotFlux
	redEval
	reset_screen
	rmSubs
	selPheno
	setKinetics
	simBac
	simBac_par
	simEnv
	simEnv_par
	simHum
	statPheno
	stirEnv
	Substance-class
	Substance-constructor
	usd
	Index

