Package 'BacArena'

July 14, 2016

Title Modeling Framework for Cellular Communities in their Environments

Version 1.5.0

Author Eugen Bauer [aut], Johannes Zimmermann [aut, cre]

Maintainer Johannes Zimmermann < j.zimmermann@iem.uni-kiel.de>

Description Can be used for simulation of organisms living in communities. Each organism is represented individually and genome scale metabolic models determine the uptake and release of compounds. Biological processes such as movement, diffusion, chemotaxis and kinetics are available along with data analysis techniques.

URL https://github.com/euba/BacArena

BugReports https://github.com/euba/BacArena/issues

Depends R (>= 3.0.0), sybil (>= 1.3.0), ReacTran (>= 1.4.2), deSolve (>= 1.12), Matrix (>= 1.2)

Imports igraph, methods, utils, stats, graphics, ggplot2, reshape2, glpkAPI, Rcpp

Suggests sybilSBML, knitr, rmarkdown

LinkingTo Rcpp, RcppArmadillo, RcppEigen

License GPL-3

VignetteBuilder knitr

RoxygenNote 5.0.1

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-07-14 20:51:15

${\sf R}$ topics documented:

addDefaultMed
addEssentialMed
addEval
addOrg
addSubs
Arena-class
Arena-constructor
Bac-class
Bac-Constructor
BacArena
cellgrowth
changeDiff
changeFobj
changeOrg
changeSub
checkCorr
checkPhen
checkPhen_par
chemotaxis
constrain
consume
createGradient
dat2mat
diffuse
diffusePDE
diffuseR
diffuse_par
emptyHood
Eval-class
Eval-constructor
evalArena
extractMed
findFeeding
findFeeding2
findFeeding3
findInArena
flushSubs
getArena
getCorrM
getPhenoMat
getPhenotype
getSubHist
getSublb
getVarSubs
growExp
growLin

4 addEssentialMed

Add default medium of an organism to arena.

Description

The generic function addDefaultMed uses the lower bounds defined in an organism's model file to compose minimal medium.

Usage

```
addDefaultMed(object, org)
## S4 method for signature 'Arena'
addDefaultMed(object, org)
```

Arguments

object An object of class Arena.

org An object of class Organism

addEssentialMed

Add minimal medium of an organism to arena.

Description

The generic function addEssentialMed uses flux variability analysis to determine a essential growth medium components (eg. cofactors)

Usage

```
addEssentialMed(object, org)
## S4 method for signature 'Arena'
addEssentialMed(object, org)
```

Arguments

object An object of class Arena.

org An object of class Organism

addEval 5

addEval

Function for adding a simulation step

Description

The generic function addEval adds results of a simulation step to an Eval object.

Usage

```
addEval(object, arena, replace = F)
## S4 method for signature 'Eval'
addEval(object, arena, replace = F)
```

Arguments

object An object of class Eval. arena An object of class Arena.

replace A boolean variable indicating if the last simulation step should be replaced by

the new simulation step arena.

Details

The function addEval can be used in iterations to manipulate an Arena object and store the results in an Eval object.

See Also

```
Eval-class and Arena-class
```

6 addOrg

addOrg

Add individuals to the environment

Description

The generic function addOrg adds individuals to the environment.

Usage

```
addOrg(object, specI, amount, x = NULL, y = NULL, growth = NA)
## S4 method for signature 'Arena'
addOrg(object, specI, amount, x = NULL, y = NULL,
    growth = NA)
```

Arguments

object	An object of class Arena.
specI	An object of class Organism.
amount	A numeric number giving the number of individuals to add.
x	A numeric vector giving the x positions of individuals on the grid.
У	A numeric vector giving the y positions of individuals on the grid.
growth	A numeric vector giving the starting biomass of the individuals.

Details

The arguments x and y should be in the same length as the number of organisms added (given by the argument amount).

See Also

```
Arena-class and Bac-class
```

addSubs 7

addSubs Add substances to the environment

Description

The generic function addSubs adds specific substances to the environment.

Usage

```
addSubs(object, smax = 0, mediac = object@mediac, difunc = "pde",
    difspeed = 6.7e-06, unit = "mmol/cell", add = TRUE)

## S4 method for signature 'Arena'
addSubs(object, smax = 0, mediac = object@mediac,
    difunc = "pde", difspeed = 6.7e-06, unit = "mmol/cell", add = TRUE)
```

Arguments

object	An object of class Arena.
smax	A numeric vector indicating the maximum substance concentration per grid cell.
mediac	A character vector giving the names of substances, which should be added to the environment (the default takes all possible substances).
difunc	A character vector ("pde", "cpp" or "r") describing the function for diffusion.
difspeed	A number indicating the diffusion speed (given by number of cells per iteration).
unit	A character used as chemical unit to set the amount of the substances to be added (valid values are: mmol/cell, mmol/cm2, mmol/arena, mM)
add	A boolean variable defining whether the amount of substance should be summed or replaced

Details

If nothing but object is given, then all possible substrates are initilized with a concentration of 0. Afterwards, changeSub can be used to modify the concentrations of specific substances.

See Also

```
Arena-class and changeSub
```

8 Arena-class

Arena-class

Structure of the S4 class "Arena"

Description

Structure of the S4 class Arena to represent the environment in which Organisms and Substances interact.

Slots

orgdat A data frame collecting information about the accumulated growth, type, phenotype, x and y position for each individual in the environment.

specs A list of organism types and their associated parameters.

media A list of objects of class Substance-class for each compound in the environment.

phenotypes A list of unique phenotypes (metabolites consumed and produced), which occurred in the environment.

mediac A character vector containing the names of all substances in the environment.

tstep A number giving the time (in h) per iteration.

stir A boolean variable indicating if environment should be stirred.

mflux A vector containing highly used metabolic reactions within the arena

shadow A vector containing shadow prices of metabolites present in the arena

- n A number giving the horizontal size of the environment.
- m A number giving the vertical size of the environment.
- Lx A number giving the horizontal grid size in cm.
- Ly A number giving the vertical grid size in cm.

gridgeometry A list containing grid geometry parameter

seed An integer refering to the random number seed used to be reproducible

scale A numeric defining the scale factor used for intern unit conversion.

models A list containing Objects of class sybil::modelorg which represent the genome scale metabolic models

occupyM A matrix indicating grid cells that are obstacles

sublb A data matrix containing positions with amounts of substance for all organism

Arena-constructor 9

Arena-constructor

Constructor of the S4 class Arena-class

Description

Constructor of the S4 class Arena-class

Usage

```
Arena(Lx = NULL, Ly = NULL, n = 100, m = 100, ...)
```

Arguments

Lx	A number giving the horizontal grid size in cm.
Ly	A number giving the vertical grid size in cm.
n	A number giving the horizontal size of the environment.
m	A number giving the vertical size of the environment.
	Arguments of Arena-class

Structure of the S4 class "Bac"

Description

Structure of the S4 class Bac inheriting from class Organism-class representing bacterial cells.

Slots

chem A character vector indicating name of substance which is the chemotaxis attractant. Empty character vector if no chemotaxis.

10 BacArena

Bac-	Con	cti	~1.1 <i>/</i>	^+^I	r
Dace	ווט. ו	51.1	111		

Constructor of the S4 class Bac-class

Description

Constructor of the S4 class Bac-class

Usage

```
Bac(model, chem = "", ...)
```

Arguments

model model

chem A character vector indicating name of substance which is the chemotaxis attrac-

tant. Empty character vector if no chemotaxis.

... Arguments of Organism-class

Value

Object of class Bac-class

BacArena

BacArena: An Agent-Based Modeling Framework for Cellular Communities

Description

The BacArena package provides six classes: Arena (subclass Eval), Organism (subclasses Bac, Human) and Substance. Accordingly there are three categories of important functions: Arena, Organism and Substance.

Arena functions

The Arena functions ...

Organism functions

The Organism functions ...

Substance functions

The Substance functions ...

cellgrowth 11

cellgrowth	Function implementing a growth model of a human cell	

Description

The generic function cellgrowth implements different growth models for an object of class Human.

Usage

```
cellgrowth(object, population, j, occupyM, fbasol)
## S4 method for signature 'Human'
cellgrowth(object, population, j, occupyM, fbasol)
```

Arguments

object An object of class Human.
population An object of class Arena.

j The number of the iteration of interest.

occupyM A matrix indicating grid cells that are obstacles

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Linear growth of organisms is implemented by adding the calculated growthrate by optimizeLP to the already present growth value. Exponential growth of organisms is implemented by adding the calculated growthrate multiplied with the current growth calculated by optimizeLP plus to the already present growth value.

Value

Boolean variable of the jth individual indicating if individual died.

See Also

```
Human-class, growLin and growExp
```

12 changeDiff

chan	σeΓ) i	ff
CHan	SCL	, т	

Change substance concentration patterns in the environment

Description

The generic function changeDiff changes specific substance concentration patterns in the environment.

Usage

```
changeDiff(object, newdiffmat, mediac)
## S4 method for signature 'Arena'
changeDiff(object, newdiffmat, mediac)
```

Arguments

object An object of class Arena.

newdiffmat A matrix giving the new gradient matrix of the specific substances in the envi-

ronment.

mediac A character vector giving the names of substances, which should be added to the

environment (the default takes all possible substances).

Details

This function can be used to add gradients of specific substances in the environment. The default conditions in changeSubs assumes an equal concentration in every grid cell of the environment.

See Also

Arena-class and changeSub

changeFobj 13

changeFobj	Function for changing the objective function of the model

Description

The generic function changeFobj changes the objective function, which is used for the linear programming in optimizeLP.

Usage

```
changeFobj(object, new_fobj, model, alg = "fba")
## S4 method for signature 'Human'
changeFobj(object, new_fobj, model, alg = "fba")
```

Arguments

object	An object of class Human.
new_fobj	A character vector giving the reaction name of the new objective function.
model	The original model structure which is converted into a problem object used for the next optimization.
alg	A character vector giving the algorithm which should be used for the optimization (default is flux balance analysis).

Details

To avoid the bias to just one particular objective function, the objective can be changed dynamically in this function.

See Also

```
Human-class and optimizeLP
```

14 changeOrg

char	rge()rg
Cilai	1500	ハら

Change organisms in the environment

Description

The generic function changeOrg changes organisms in the environment.

Usage

```
changeOrg(object, neworgdat)
## S4 method for signature 'Arena'
changeOrg(object, neworgdat)
```

Arguments

object An object of class Arena.

neworgdat A data frame with new information about the accumulated growth, type, pheno-

type, x and y position for each individual in the environment.

Details

The argument neworgdat contains the same information as the orgdat slot of Arena-class. The orgdat slot of an Arena object can be used to create neworgdat.

See Also

```
Arena-class and addOrg
```

changeSub 15

|--|

Description

The generic function changeSub changes specific substances in the environment.

Usage

```
changeSub(object, smax, mediac, unit = "mmol/cell")
## S4 method for signature 'Arena'
changeSub(object, smax, mediac, unit = "mmol/cell")
```

Arguments

object	An object of class Arena.
smax	A number or vector of numbers indicating the maximum substance concentration per grid cell.
mediac	A character vector giving the names of substances, which should be added to the environment (the default takes all possible substances).
unit	A character used as chemical unit to set the amount of the substances to be added (valid values are: mmol/cell, mmol/cm2, mmol/arena, mM)

Details

If nothing but object is given, then all possible substrates are initilized with a concentration of 0. Afterwards, changeSub can be used to modify the concentrations of specific substances.

See Also

Arena-class and addSubs

16 checkCorr

checkCorr

Function to show correlations of a simulated organism or substrate

Description

The generic function checkCorr returns the correlation matrix of several objects.

Usage

```
checkCorr(object, corr = NULL, tocheck = list())
## S4 method for signature 'Eval'
checkCorr(object, corr = NULL, tocheck = list())
```

Arguments

object An object of class Eval.

corr A correlation matrix (getCorrM)

tocheck A list with substrate, reactions or organism names whose correlations should be

shown

Details

Returns correlation matrix which can be used for statistical analysis

See Also

```
Eval-class and getCorrM
```

checkPhen 17

checkPhen	Function for checking phenotypes in the environment

Description

The generic function checkPhen checks and adds the phenotypes of organisms in the environment.

Usage

```
checkPhen(object, org, cutoff = 1e-06, fbasol)
## S4 method for signature 'Arena'
checkPhen(object, org, cutoff = 1e-06, fbasol)
```

Arguments

object	An object of class Arena.
org	An object of class Organism.
cutoff	A number giving the cutoff for values of the objective function and fluxes of exchange reactions.
fbasol	Problem object according to the constraints and then solved with optimizeProb.

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential substrate usages. Uptake of substances are indicated by a negative and production of substances by a positive number.

Value

Returns a number indicating the number of the phenotype in the phenotype list.

See Also

Arena-class and getPhenotype

18 chemotaxis

checkPhen_par Function for checking phenotypes in the environment	
---	--

Description

The generic function checkPhen_par checks and adds the phenotypes of organisms in the environment.

Usage

```
checkPhen_par(object, org, cutoff = 1e-06, fbasol)
## S4 method for signature 'Arena'
checkPhen_par(object, org, cutoff = 1e-06, fbasol)
```

Arguments

object	An object of class Arena.
org	An object of class Organism.
cutoff	A number giving the cutoff for values of the objective function and fluxes of exchange reactions.
fbasol	Problem object according to the constraints and then solved with optimizeProb.

chemotaxis	Function for chemotaxis of bacteria to their prefered substrate

Description

The generic function chemotaxis implements a bacterial movement in the Moore neighbourhood to the highest substrate concentration.

Usage

```
chemotaxis(object, population, j)
## S4 method for signature 'Bac'
chemotaxis(object, population, j)
```

Arguments

```
object An object of class Bac.
population An object of class Arena.
```

j The number of the iteration of interest.

constrain 19

Details

Bacteria move to a position in the Moore neighbourhood which has the highest concentration of the prefered substrate, which is not occupied by other individuals. The prefered substance is given by slot chem in the Bac object. If there is no free space the individuals stays in the same position. If the concentration in the Moore neighbourhood has the same concentration in every position, then random movement is implemented.

See Also

Bac-class and emptyHood

Examples

constrain

Function for constraining the models based on metabolite concentrations

Description

The generic function constrain changes the constraints of the model representation of an organism.

Usage

```
constrain(object, reacts, lb, dryweight, time, scale, j)
## S4 method for signature 'Organism'
constrain(object, reacts, lb, dryweight, time, scale, j)
```

object	An object of class Organisms.
reacts	A character vector giving the names of reactions which should be constrained.
lb	A numeric vector giving the constraint values of lower bounds (e.g. avaible metabolite concentrations
dryweight	A number giving the current dryweight of the organism.
time	A number giving the time intervals for each simulation step.
scale	A numeric defining the scaling (units for linear programming has to be in certain range)
i	debuging index to track cell

20 consume

Details

The constraints are calculated according to the flux definition as mmol/(gDW*hr) with the parameters dryweight and time.

Value

Returns the lower bounds, which carry the constraints and names of relevant reactions.

See Also

```
Organism-class
```

Examples

consume

Function to account for the consumption and production of substances

Description

The generic function consume implements the consumption and production of substances based on the flux of exchange reactions of organisms

Usage

```
consume(object, sublb, cutoff = 1e-06, bacnum, fbasol)
## S4 method for signature 'Organism'
consume(object, sublb, cutoff = 1e-06, bacnum, fbasol)
```

object	An object of class Organisms.
sublb	A vector containing the substance concentrations in the current position of the individual of interest.
cutoff	A number giving the cutoff value by which value of objective function is considered greater than 0.
bacnum	Integer indicating the number of bacteria individuals per gridcell
fbasol	Problem object according to the constraints and then solved with optimizeProb.

createGradient 21

Details

The consumption is implemented by adding the flux of the exchange reactions to the current substance concentrations.

Value

Returns the updated vector containing the substance concentrations in the current position of the individual of interest.

See Also

```
Organism-class
```

Examples

NULL

createGradient	Change substance concentration patterns in the environment according to a gradient
----------------	--

Description

The generic function createGradient changes specific substance concentration patterns in the environment.

Usage

```
createGradient(object, mediac, position, smax, steep, add = FALSE,
   unit = "mmol/cell")

## S4 method for signature 'Arena'
createGradient(object, mediac, position, smax, steep,
   add = FALSE, unit = "mmol/cell")
```

object	An object of class Arena.
mediac	A character vector giving the names of substances, which should be added to the environment (the default takes all possible substances).
position	A character vector giving the position (top, bottom, right and left) of the gradient.
smax	A number giving the maximum concentration of the substance.
steep	A number between 0 and 1 giving the steepness of the gradient (concentration relative to the arena size).

22 dat2mat

add	A boolean variable defining whether the amount of substance should be summed or replaced
unit	A character used as chemical unit to set the amount of the substances to be added (valid values are: mmol/cell mmol/cm2 mmol/arena mM)

Details

This function can be used to add gradients of specific substances in the environment.

See Also

```
Arena-class and changeSub
```

Examples

dat2mat

Function for transforming the organism data frame to a presence/absence matrix of organisms

Description

The generic function dat2mat simulates the event of mixing all substrates and organisms in the environment.

Usage

```
dat2mat(object)
## S4 method for signature 'Arena'
dat2mat(object)
```

Arguments

object An object of class Arena.

Value

Returns the presence/absence matrix of organisms on the grid based on the orgdat slot of the Arena class.

diffuse 23

See Also

```
Arena-class and getSublb
```

Examples

diffuse

Function for diffusion

Description

The generic function diffuse computes the media distribution via diffusion

Usage

```
diffuse(object, lrw, sublb)
## S4 method for signature 'Arena'
diffuse(object, lrw, sublb)
```

Arguments

object	An object of class Arena.
lrw	A numeric value needed by solver to estimate array size (by default lwr is estimated in the simEnv() by the function estimate_lrw())
sublb	A matrix with the substrate concentration for every individual in the environment based on their x and y position.

diffusePDI

Function for diffusion of the Substance matrix

Description

The generic function diffusePDE implements the diffusion by the solving diffusion equation.

24 diffuseR

Usage

```
diffusePDE(object, init_mat, gridgeometry, lrw = NULL, tstep)
## S4 method for signature 'Substance'
diffusePDE(object, init_mat, gridgeometry, lrw = NULL,
    tstep)
```

Arguments

object An object of class Substance.

init_mat A matrix with values to be used by the diffusion. gridgeometry A list specifying the geometry of the Arena

1rw A numeric value needed by solver to estimate array size (by default lwr is esti-

mated in simEnv() by the function estimate_lrw())

tstep A numeric value giving the time step of integration

Details

Partial differential equation is solved to model 2d diffusion process in the arena.

See Also

Substance-class and diffuseR

Examples

diffuseR

Function for naive diffusion (neighbourhood) of the Substance matrix

Description

The generic function diffuseR implements the diffusion in the Moore neighbourhood in R.

Usage

```
diffuseR(object)
## S4 method for signature 'Substance'
diffuseR(object)
```

diffuse_par 25

Arguments

object An object of class Substance.

Details

The diffusion is implemented by iterating through each cell in the grid and taking the cell with the lowest concentration in the Moore neighbourhood to update the concentration of both by their mean.

See Also

Substance-class and diffusePDE

Examples

diffuse_par

Function for parallelzied diffusion

Description

The generic function diffuse_par computes the media distribution via diffusion in parallel

Usage

```
diffuse_par(object, lrw, cluster_size, sublb)
## S4 method for signature 'Arena'
diffuse_par(object, lrw, cluster_size, sublb)
```

Arguments

object An object of class Arena.

1rw A numeric value needed by solver to estimate array size (by default lwr is esti-

mated in the simEnv() by the function estimate_lrw())

cluster_size Amount of cores to be used

sublb A matrix with the substrate concentration for every individual in the environ-

ment based on their x and y position.

26 emptyHood

emptyHood	Function to check if the there is a free place in the Moore neighbourhood

Description

The generic function emptyHood gives a free space which is present in the Moore neighbourhood of an individual of interest.

Usage

```
emptyHood(object, pos, n, m, x, y)
## S4 method for signature 'Organism'
emptyHood(object, pos, n, m, x, y)
```

Arguments

object	An object of class Organisms.
pos	A dataframe with all occupied x and y positions
n	A number giving the horizontal size of the environment.
m	A number giving the vertical size of the environment.
X	A number giving the x position of the individual of interest in its environment.
У	A number giving the y position of the individual of interest in its environment.

Value

Returns the free position in the Moore neighbourhood, which is not occupied by other individuals. If there is no free space NULL is returned.

See Also

```
Organism-class
```

Examples

NULL

Eval-class 27

Eval-class

Structure of the S4 class "Eval"

Description

Structure of the S4 class Eval inheriting from class Arena-class for the analysis of simulations.

Slots

medlist A list of compressed medium concentrations (only changes of concentrations are stored) per time step.

simlist A list of the organism features per time step.

mfluxlist A list of containing highly used metabolic reactions per time step.

shadowlist A list of containing shadow prices per time step.

subchange A vector of all substrates with numbers indicating the degree of change in the overall simulation.

Eval-constructor

Constructor of the S4 class Eval-class

Description

Constructor of the S4 class Eval-class

Usage

Eval(arena)

Arguments

arena

An object of class Arena.

28 evalArena

Description

The generic function evalArena plots heatmaps from the simulation steps in an Eval object.

Usage

```
evalArena(object, plot_items = "Population", phencol = F, retdata = F,
   time = (seq_along(object@simlist) - 1), show_legend = TRUE,
   legend_pos = "left")

## S4 method for signature 'Eval'
evalArena(object, plot_items = "Population", phencol = F,
   retdata = F, time = (seq_along(object@simlist) - 1), show_legend = TRUE,
   legend_pos = "left")
```

Arguments

object	An object of class Eval.			
plot_items	A character vector giving the items, which should be plotted.			
phencol	A boolean variable indicating if the phenotypes of the organisms in the environment should be integrated as different colors in the population plot.			
retdata	A boolean variable indicating if the data used to generate the plots should be returned.			
time	A numeric vector giving the simulation steps which should be plotted.			
show_legend	A boolean variable indicating if a legend shuld be shown.			
legend_pos	Position of the legend.			

Details

If phencol is TRUE then different phenotypes of the same organism are visualized by varying colors, otherwise different organism types are represented by varying colors. The parameter retdata can be used to access the data used for the returned plots to create own custom plots.

Value

Returns several plots of the chosen plot items. Optional the data to generate the original plots can be returned.

See Also

```
Eval-class and Arena-class
```

extractMed 29

Examples

extractMed

Function for re-constructing a medium concentrations from simulations

Description

The generic function extractMed re-constructs a list of vectors of medium concentrations from a simulation step in an Eval object.

Usage

```
extractMed(object, time = length(object@medlist), mediac = object@mediac)
## S4 method for signature 'Eval'
extractMed(object, time = length(object@medlist),
    mediac = object@mediac)
```

Arguments

object An object of class Eval.

time A number giving the simulation step of interest.

mediac A character vector giving the names of substances, which should be added to the

environment (the default takes all possible substances).

Details

Medium concentrations in slot medlist of an object of class Eval store only the changes of concentrations in the simulation process. The function extractMed reconstructs the original and uncompressed version of medium concentrations.

30 findFeeding

Value

Returns a list containing concentration vectors of all medium substances.

See Also

```
Eval-class and Arena-class
```

Examples

findFeeding

Function for investigation of feeding between phenotypes

Description

The generic function findFeeding

Usage

```
findFeeding(object, dict = NULL, tcut = 5, scut = NULL, org_dict = NULL,
  legendpos = "topleft", lwd = 1)

## S4 method for signature 'Eval'
findFeeding(object, dict = NULL, tcut = 5, scut = NULL,
  org_dict = NULL, legendpos = "topleft", lwd = 1)
```

object	An object of class Eval.			
dict	List defining new substance names. List entries are intepreted as old names and the list names as the new ones.			
tcut	Integer giving the minimal mutual occurence ot be considered (dismiss very seldom feedings)			
scut	substance names which should be ignored			
org_dict	A named list/vector with names that should replace (eg. unreadable) IDs			
legendpos	A character variable declaring the position of the legend			
lwd	Line thickness scale in graph			

findFeeding2 31

Value

Graph (igraph)

findFeeding2

Function for investigation of feeding between phenotypes

Description

The generic function findFeeding2

Usage

```
findFeeding2(object, time, mets, rm_own = T, ind_threshold = 0,
    collapse = F)

## S4 method for signature 'Eval'
findFeeding2(object, time, mets, rm_own = T,
    ind_threshold = 0, collapse = F)
```

Arguments

object An object of class Eval.

time A numeric vector giving the simulation steps which should be plotted.

mets Character vector of substance names which should be considered

rm_own A boolean flag indicating if interactions within same species should be plotted

ind_threshold A number indicating the threshold of individuals to be considered as produc-

ers/consumers

collapse A boolean flag indicating if all phenotypes for every species should be collapsed

to either producers or consumers

Value

Graph (igraph)

32 findInArena

c:	 Feed	

Function for investigation of feeding between phenotypes

Description

The generic function findFeeding3

Usage

```
findFeeding3(object, time, mets)
## S4 method for signature 'Eval'
findFeeding3(object, time, mets)
```

Arguments

object An object of class Eval.

time A numeric vector giving the simulation steps which should be plotted.

Mets Character vector of substance names which should be considered

Value

Graph (igraph)

findInArena

Function for searching a keyword in arena organisms and media

Description

The generic function findInArena tries to find information (e.g. full names) about a specific keyword

Usage

```
findInArena(object, pattern, search_rea = TRUE, search_sub = TRUE)
## S4 method for signature 'Arena'
findInArena(object, pattern, search_rea = TRUE,
    search_sub = TRUE)
```

Arguments

object An object of class Arena.

pattern A pattern for searching
search_rea Only search for reactions
search_sub Only search for substances

flushSubs 33

Examples

```
data(Ec_core)
bac <- Bac(Ec_core)
arena <- Arena(n=20,m=20)
arena <- addOrg(arena,bac,amount=10)
findInArena(arena, "acetate")</pre>
```

flushSubs

Remove all substances in the environment

Description

The generic function flushSubs removes specific substances in the environment.

Usage

```
flushSubs(object)
## S4 method for signature 'Arena'
flushSubs(object)
```

Arguments

object

An object of class Arena.

See Also

Arena-class and addSubs

34 getArena

getArena

Function for re-constructing an Arena object from a simulation step

Description

The generic function getArena re-constructs an Arena object from a simulation step within an Eval object.

Usage

```
getArena(object, time = (length(object@medlist) - 1))
## S4 method for signature 'Eval'
getArena(object, time = (length(object@medlist) - 1))
```

Arguments

object An object of class Eval.

time A number giving the simulation step of interest.

Details

The function addEval can be used to manipulate an Arena object from a simulation step to modify the subsequent simulation steps.

Value

Returns an object of class Arena containing the organisms and substance conditions in simulation step time.

See Also

```
Eval-class and Arena-class
```

getCorrM 35

getCorrM	Function to compute and return correlation matrix
	•

Description

The generic function getCorrM returns the correlation matrix of several objects.

Usage

```
getCorrM(object, reactions = TRUE, bacs = TRUE, substrates = TRUE)
## S4 method for signature 'Eval'
getCorrM(object, reactions = TRUE, bacs = TRUE,
    substrates = TRUE)
```

Arguments

object An object of class Eval.

reactions A boolean indicating whether reactions should be included in correlation matrix

A boolean indicating whether bacteria should be included in correlation matrix

substrates A boolean indicating whether substrates should be included in correlation matrix

Details

Returns correlation matrix which can be used for statistical analysis

Value

correlation matrix

See Also

```
Eval-class
```

36 getPhenoMat

getPhenoMat	Function for getting a matrix of phenotypes from the dataset	

Description

The generic function getPhenoMat reconstructs a matrix with the usage of exchange reactions of the different organisms in the environment.

Usage

```
getPhenoMat(object, time = "total", sparse = F)
## S4 method for signature 'Eval'
getPhenoMat(object, time = "total", sparse = F)
```

Arguments

object An object of class Eval.

time An integer indicating the time step to be used (default value is character "total")

sparse A boolean indicating whether zero entries should be removed from return matrix

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential substrate usages.

Value

Returns a matrix with different phenotypes of the organism as rows and all possible exchange reactions as columns. A value of 1 means secretion, 2 means uptake and 0 means no usage of the substance of interest.

See Also

```
Eval-class and getPhenotype
```

getPhenotype 37

getPhenotype	Function to extract the phenotype of an organism object	

Description

The generic function getPhenotype implements an identification of organism phenotypes.

Usage

```
getPhenotype(object, cutoff = 1e-06, fbasol, par = FALSE)
## S4 method for signature 'Organism'
getPhenotype(object, cutoff = 1e-06, fbasol,
    par = FALSE)
```

Arguments

object	An object of class Organisms.
cutoff	A number giving the cutoff value by which value of objective function is considered greater than 0 .
fbasol	$Problem\ object\ according\ to\ the\ constraints\ and\ then\ solved\ with\ {\tt optimizeProb}.$
par	A boolean indicating if running in parallel mode.

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential substrate usages. Uptake of substances is indicated by a negative and production of substances by a positive number.

Value

Returns the phenotype of the organisms where the uptake of substances is indicated by a negative and production of substances by a positive number

See Also

Organism-class, checkPhen and minePheno

38 getSublb

getSu	ıhH	lict

Function to get timeline of a substance

Description

The generic function getSubHist returns list with amount of substance for each timestep

Usage

```
getSubHist(object, sub)
## S4 method for signature 'Eval'
getSubHist(object, sub)
```

Arguments

object	An object of class Eval.
sub	Name of a substance.

getSub1b

Function for calculated the substrate concentration for every organ-

Description

The generic function getSub1b calculates the substrate concentration for every individual in the environment based on their x and y position.

Usage

```
getSublb(object)
## S4 method for signature 'Arena'
getSublb(object)
```

Arguments

object

An object of class Arena.

Value

Returns the substrate concentration for every individual in the environment with substrates as well as x and y positions as columns and rows for each organism.

getVarSubs 39

See Also

```
Arena-class
```

Examples

getVarSubs

Function to get varying substances

Description

The generic function getVarSubs returns ordered list of substances that showed variance during simulation

Usage

```
getVarSubs(object, show_products = TRUE, show_substrates = TRUE,
    cutoff = 1e-06, size = NULL)
## S4 method for signature 'Eval'
getVarSubs(object, show_products = FALSE,
    show_substrates = FALSE, cutoff = 1e-06, size = NULL)
```

Arguments

size

Maximal number of returned substances (default: show all)

40 growLin

_	
growExp	

Function for letting organisms grow exponentially

Description

The generic function growExp implements a growth model of organisms in their environment.

Usage

```
growExp(object, growth, fbasol)
## S4 method for signature 'Organism'
growExp(object, growth, fbasol)
```

Arguments

object An object of class Organisms.

growth A number indicating the current biomass, which has to be updated.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Exponential growth of organisms is implemented by adding the calculated growthrate multiplied with the current growth calculated by optimizeLP plus to the already present growth value

Value

Returns the updated biomass of the organisms of interest.

See Also

Organism-class and optimizeLP

growLin

Function for letting organisms grow linearly

Description

The generic function growLin implements a growth model of organisms in their environment.

Usage

```
growLin(object, growth, fbasol)
## S4 method for signature 'Organism'
growLin(object, growth, fbasol)
```

growth 41

Arguments

object An object of class Organisms.

growth A number indicating the current biomass, which has to be updated.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Linear growth of organisms is implemented by adding the calculated growthrate by optimizeLP to the already present growth value.

Value

Returns the updated biomass of the organisms of interest.

See Also

Organism-class and optimizeLP

growth

Function implementing a growth model of a bacterium

Description

The generic function growth implements different growth models for an object of class Bac.

Usage

```
growth(object, population, j, occupyM, fbasol)
## S4 method for signature 'Bac'
growth(object, population, j, occupyM, fbasol)
```

Arguments

object An object of class Bac. population An object of class Arena.

j The index of the organism of interest in orgdat. occupyM A matrix indicating grid cells that are obstacles

fbasol Problem object according to the constraints and then solved with optimizeProb.

Details

Linear growth of organisms is implemented by adding the calculated growthrate by optimizeLP to the already present growth value. Exponential growth of organisms is implemented by adding the calculated growthrate multiplied with the current growth calculated by optimizeLP plus to the already present growth value

42 Human-class

Value

Boolean variable of the jth individual indicating if individual died.

See Also

Bac-class, growLin and growExp

growth_par

Function implementing a growth model of a bacterium

Description

The generic function growth_par implements different growth models for an object of class Bac.

Usage

```
growth_par(object, population, j, fbasol)
## S4 method for signature 'Bac'
growth_par(object, population, j, fbasol)
```

Arguments

object An object of class Bac.
population An object of class Arena.

j The index of the organism of interest in orgdat.

fbasol Problem object according to the constraints and then solved with optimizeProb.

Value

A list

Human-class

Structure of the S4 class "Human"

Description

Structure of the S4 class Human inheriting from class Organism-class representing human cells.

Slots

objective A character vector representing the current reaction which should be used as an objective function for the flux balance analysis.

Human-constructor 43

Н	lum	an	-0	יחי	nc	t i	rı	ıc.	+	\sim	r

Constructor of the S4 class Human-class

Description

Constructor of the S4 class Human-class

Usage

```
Human(model, objective = model@react_id[which(model@obj_coef == 1)],
   speed = 0, ...)
```

Arguments

model model

objective A character vector representing the current reaction which should be used as an

objective function for the flux balance analysis.

speed A integer vector representing the speed by which bacterium is moving (given by

cell per iteration).

... Arguments of Organism-class

Value

Object of class Human-class

lsd

Computer standard deviation lower bound

Description

Helper function to get lower error bounds in plotting

Usage

lsd(y)

Arguments

y Vector with numbers

lysis

lysis Lysis function of organismal cells by adding biomass_comp the medium	ounds to
---	----------

Description

The generic function lysis implements cell lysis by the stochiometric concentration of the biomass compounds of organisms to the concentration of substances in the environment

Usage

```
lysis(object, sublb, factor = object@minweight)
## S4 method for signature 'Organism'
lysis(object, sublb, factor = object@minweight)
```

Arguments

object	An object of class Organisms.
sublb	A vector containing the substance concentrations in the current position of the individual of interest.
factor	A number given the factor with which the biomass compound concentrations are multiplied to achieve the final concentration which is added to the environment

Details

Lysis is implemented by taking the intersect between biomass compounds and the substances in the environment and adding the normalized stochiometric concentrations of the biomass compounds to the medium.

Value

Returns the updated vector containing the substance concentrations in the current position of the dead individual of interest.

See Also

```
Organism-class and optimizeLP
```

Examples

NULL

minePheno 45

			_				
m	7 1	ne	vP	h	ΔI	1	\sim

Function for mining/analyzing phenotypes which occured on the arena

Description

The generic function minePheno mines the similarity and differences of phenotypes reconstructed by getPhenoMat for each simulation step in an Eval object.

Usage

```
minePheno(object, plot_type = "pca", legend = F, time = "total")
## S4 method for signature 'Eval'
minePheno(object, plot_type = "pca", legend = F,
    time = "total")
```

Arguments

object An object of class Eval.

plot_type A character vector giving the plot which should be returned (either "pca" for a

principle coordinate analysis or "helust" for hierarchical clustering).

legend Boolean variable indicating if legend should be plotted

time An integer indicating the time step to be used (default value is character "total")

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential substrate usages.

Value

Returns a plot for each simulation step representing the similarity of phenotypes of organisms within the environment.

See Also

```
Eval-class and getPhenoMat
```

Examples

46 move

m	^	1/	

Function for random movement of organisms

Description

The generic function move implements a random movement in the Moore neighbourhood of an individual.

Usage

```
move(object, pos, n, m, j, occupyM)
## S4 method for signature 'Organism'
move(object, pos, n, m, j, occupyM)
```

Arguments

object	An object of class Organism.
pos	A dataframe with all occupied x and y positions
n	A number giving the horizontal size of the environment.
m	A number giving the vertical size of the environment.
j	The number of the iteration of interest.
оссируМ	A matrix indicating grid cells that are obstacles

Details

Organisms move in a random position the Moore neighbourhood, which is not occupied by other individuals. If there is no free space the individuals stays in the same position.

See Also

```
Organism-class, emptyHood
```

Examples

NemptyHood 47

	NemptyHood	Function to check if the there is a free place in the Moore neighbourhood
--	------------	---

Description

The generic function NemptyHood gives a free space which is present in the Moore neighbourhood of an individual of interest.

Usage

```
NemptyHood(object, pos, n, m, x, y)
## S4 method for signature 'Organism'
NemptyHood(object, pos, n, m, x, y)
```

Arguments

object	An object of class Organisms.
pos	A dataframe with all occupied x and y positions
n	A number giving the horizontal size of the environment.
m	A number giving the vertical size of the environment.
X	A number giving the x position of the individual of interest in its environment.
У	A number giving the y position of the individual of interest in its environment.

Value

Returns the free position in the Moore neighbourhood, which is not occupied by other individuals. If there is no free space NULL is returned.

See Also

```
Organism-class
```

Examples

NULL

48 optimizeLP

openArena

Start simulation

Description

The function openArena can be used to start a default simulation.

Usage

```
openArena()
```

Value

Returns an object of class Eval which can be used for subsequent analysis steps.

Examples

optimizeLP

Function for computing the linear programming according to the model structure

Description

The generic function optimizeLP implements a linear programming based on the problem structure and refined constraints.

Usage

```
optimizeLP(object, lpob = object@lpobj, lb = object@lbnd,
   ub = object@ubnd, cutoff = le-06, j, sec_obj = "none")
## S4 method for signature 'Organism'
optimizeLP(object, lpob = object@lpobj,
   lb = object@lbnd, ub = object@ubnd, cutoff = le-06, j,
   sec_obj = "none")
```

Organism-class 49

Arguments

object	An object of class Organisms.
lpob	A linear programing object encoding the problem to solve.
lb	A numeric vector giving the constraint values of lower bounds.
ub	A numeric vector giving the constraint values of upper bounds.
cutoff	value used to define numeric accuracy while interpreting optimization results
j	debuging index to track cell
sec_obj	character giving the secondary objective for a bi-level LP if wanted.

Value

Modified problem object according to the constraints and then solved with optimizeProb.

See Also

```
Organism-class, optimizeProb and sysBiolAlg
```

Examples

Organism-class	Structure of the S4 class "Organism"

Description

Structure of the S4 class Organism representing the organisms present in the environment.

Slots

1bnd A numeric vector containing the lower bounds of the model structure.

ubnd A numeric vector containing the upper bounds of the model structure.

type A character vector containing the description of the organism.

medium A character vector containing all exchange reactions of the organism.

lpobj A sybil optimization object containing the linear programing problem.

fbasol A list with the solutions of the flux balance analysis.

lyse A boolean variable indicating if the organism should lyse after death.

feat A list containing conditional features for the object (contains at the momement only biomass components for lysis).

50 Organism-constructor

deathrate A numeric value giving the factor by which the growth should be reduced in every iteration (unit: fg)

minweight A numeric value giving the growth limit at which the organism dies.

growtype A character vector giving the functional type for growth (linear or exponential).

kinetics A List containing Km and v_max values for each reactions.

speed A integer vector representing the speed by which bacterium is moving (given by cell per iteration).

cellarea A numeric value indicating the surface that one organism occupies (unit: $mu\ cm^2$)

maxweight A numeric value giving the maximal dry weight of single organism (unit: fg)

cellweight_mean A numeric giving the mean of starting biomass

cellweight_sd A numeric giving the standard derivation of starting biomass

model Object of class sybil::modelorg containing the genome sclae metabolic model

Organism-constructor Constructor of the S4 class Organism

Description

The constructor to get a new object of class Organism

Usage

```
Organism(model, algo = "fba", ex = "EX_", ex_comp = NA,
  csuffix = "\\[c\\]", esuffix = "\\[e\\]", lyse = F,
  feat = list(), typename = NA, setExInf = TRUE, ...)
```

Arguments

model algo	Object of class sybil::modelorg containing the genome sclae metabolic model A single character string giving the name of the algorithm to use. See SYBIL_SETTINGS
ex	Identifier for exchange reactions
ex_comp	ex_comp
csuffix	csuffix
esuffix	esuffix
lyse	A boolean variable indicating if the organism should lyse after death.
feat	A list containing conditional features for the object (contains at the momement only biomass components for lysis).
typename	A string defining the name (set to model name in default case)
setExInf	Enable if all lower bounds of exchange reaction which are set to zero (i.e. no uptake possible!) should be set to -infitity
	Arguments of Organism-class

Value

Object of class Organism

plotAbundance 51

plotAbundance	Plot abundances of species

Description

The function plotAbundance takes a list of simulations and return a boxplot with species abundances

Usage

```
plotAbundance(simlist, time = c(NULL, NULL), col = colpal3,
  return_dat = F, use_biomass = F)
```

Arguments

simlist A list of simulations (eval objects).

time A vector with start and end time to be considered (default: total time)

col Vector with color that should be used

return_dat Should plain text mean abundances be returned? (default false)

use_biomass If enabled then biomass is used instead of cell number

plotCurves Function for plotting the overall change as curves

Description

The generic function plotCurves plots the growth curves and concentration changes of substances from simulation steps in an Eval object.

Usage

```
plotCurves(object, medplot = object@mediac, retdata = F, remove = F,
  legend = F)

## S4 method for signature 'Eval'
plotCurves(object, medplot = object@mediac, retdata = F,
  remove = F, legend = F)
```

52 plotCurves2

Arguments

object	An object of class Eval.
medplot	A character vector giving the name of substances which should be plotted.
retdata	A boolean variable indicating if the data used to generate the plots should be returned.
remove	A boolean variable indicating if substances, which don't change in their concentration should be removed from the plot.
legend	Boolean variable indicating if legend should be plotted

Details

The parameter retdata can be used to access the data used for the returned plots to create own custom plots.

Value

Returns two graphs in one plot: the growth curves and the curves of concentration changes. Optional the data to generate the original plots can be returned.

See Also

```
Eval-class and Arena-class
```

Examples

plotCurves2	Function for plotting the overall change as curves with maximally dis-	
	tinct colors	

Description

The generic function plotCurves2 plots the growth curves and concentration changes of the most changing substances from simulation steps in an Eval object using maximally distinct colors.

plotCurves2 53

Usage

```
plotCurves2(object, legendpos = "topleft", ignore = c("EX_h(e)", "EX_pi(e)",
    "EX_h2o(e)"), num = 10, phencol = FALSE, biomcol = FALSE, dict = NULL,
    subs = list(), growthCurve = TRUE, subCurve = TRUE)

## S4 method for signature 'Eval'
plotCurves2(object, legendpos = "topright",
    ignore = c("EX_h(e)", "EX_pi(e)", "EX_h2o(e)"), num = 10,
    phencol = FALSE, biomcol = FALSE, dict = NULL, subs = list(),
    growthCurve = TRUE, subCurve = TRUE)
```

Arguments

object An object of class Eval.

legendpos A character variable declaring the position of the legend

ignore A list of character variables with substance names that sould be omitted in the

plot

num An integer defining the number of substrates to be plot

phencol Boolean variable indicating whether phenotypes should be higlighted biomcol A boolean indicating if biomass should be included in gowth curve

dict List defining new substance names. List entries are intepreted as old names and

the list names as the new ones.

subs List of substance names. If empty, substances with highest variance will be used.

growthCurve True if growth curve should be shown (default TRUE) subCurve True if substance curve should be shown (default TRUE)

Details

The parameter retdata can be used to access the data used for the returned plots to create own custom plots.

Value

Returns two graphs in one plot: the growth curves and the curves of concentration changes

See Also

```
Eval-class and Arena-class
```

Examples

54 plotGrowthCurve

```
eval <- simEnv(arena,5)
plotCurves2(eval)</pre>
```

plotFluxVar

Plot population flux variations

Description

The function plotFluxVar takes a list of simulations and metabolites, returning a plot with metabolite fluxes for each species

Usage

```
plotFluxVar(simlist, metsel)
```

Arguments

simlist A list of simulations (eval objects).

metsel A vector with the name of exchange reactions of interest

plotGrowthCurve

Plot growth curve for several simulations

Description

The function plotGrowthCurve takes a list of simulations and plots the time course of species with standard deviation.

Usage

```
plotGrowthCurve(simlist, bcol = colpal3, time = c(NULL, NULL))
```

Arguments

simlist A list of simulations (eval objects).

bcol Vector with color that should be used

time Vector with two entries defining start and end time

plotInterNum 55

plotInterNum Plot number of variation in number of interactions for several simula- tions	plotInterNum	Plot number of variation in number of interactions for several simula- tions
--	--------------	---

Description

The function plotInterNum takes a list of simulations and plots the time course of the number of metabolic interactions with standard deviation.

Usage

```
plotInterNum(simlist, title = "Variation in number of interactions",
  size = 1)
```

Arguments

simlist	A list of simulations (eval objects).
title	Title of the plot

size A scaling factor for plot text and line size

plotPhenCurve	Plot growth curve for several simulations	

Description

The function plotPhenCurve takes a list of simulations and plots the time course of species with standard deviation.

Usage

```
plotPhenCurve(simlist, subs, phens = NULL, time = c(NULL, NULL),
  ret_phengroups = FALSE, cluster = TRUE, col = colpal3)
```

Arguments

simlist	A list of simulations	(eval objects).

subs A vector of substance names that are used for phenotype clustering.

If phencurve is given then phens specifies the phenotypes which sould be plotted phens

again.

time Vector with two entries defining start and end time ret_phengroups True if clustered phenotype groups should be returned. True phenotypes should be clustered/condensed. cluster

col Vector with color that should be used 56 plotShadowCost

Description

The function plotPhenNum takes a list of simulations and plots the time course of the number of phenotypes with standard deviation.

Usage

```
plotPhenNum(simlist, title = "Phenotype number variation", size = 1)
```

Arguments

 $\begin{array}{ll} \text{simlist} & \text{A list of simulations (eval objects)}. \\ \\ \text{title} & \text{Title of the plot} \end{array}$

size A scaling factor for plot text and line size

plotShadowCost	Function to plot substance shadow costs for a specie

Description

The generic function plotShadowCost plots substances have the highest impact on further growth (shadow $\cos t < 0$)

Usage

```
plotShadowCost(object, spec_nr = 1, sub_nr = 10, cutoff = -1)
## S4 method for signature 'Eval'
plotShadowCost(object, spec_nr = 1, sub_nr = 10,
    cutoff = -1)
```

Arguments

object	An object of class Eval.
spec_nr	Number of the specie
sub_nr	Maximal number of substances to be show
cutoff	Shadow costs should be smaller than cutoff

Details

Returns ggplot objects

plotSpecActivity 57

plotSpecActivity	Function to plot substance usage for every species

Description

The generic function plotSpecActivity displays the input/output substances with the highest variance (could also be defined manually) for all species

Usage

```
plotSpecActivity(simlist, subs = list(), var_nr = 10, spec_list = NULL,
  ret_data = FALSE)
```

Arguments

simlist	An object of class Eval or a list with objects of class Eval.
subs	List of substance names
var_nr	Number of most varying substances to be used (if subs is not specified)
spec_list	List of species names to be considered (default all)
ret_data	Set true if data should be returned

Details

Returns ggplot objects

plotSubCurve	Plot substance curve for several simulations	

Description

The function plotSubCurve takes a list of simulations and plots the time course of substances with standard deviation.

Usage

```
plotSubCurve(simlist, mediac = NULL, time = c(NULL, NULL), scol = NULL,
  unit = "mmol", ret_data = FALSE, num_var = 10)
```

58 plotSubUsage

Arguments

simlist	A list of simulations (eval objects).
mediac	A vector of substances (if not specified most varying substances will be taken.)
time	Vector with two entries defining start and end time.
scol	Vector with colors that should be used.
unit	Unit for the substances which should be used for plotting (default: mmol)
ret_data	Set true if data should be returned
num_var	Number of varying substances to be shown (if mediac is not specified)

Value

list of three ggplot object for further formating

Tunenon to providing of substances species wise	plotSubUsage	Function to plot usage of substances species wise
---	--------------	---

Description

The generic function plotSubUsage displays for given substances the quantities of absorption and production for each species

Usage

```
plotSubUsage(simlist, subs = list(), cutoff = 0.01, ret_data = FALSE)
```

Arguments

simlist	An object of close Eve	l or a list with objects of class Eval.	
21111121	All object of class Eva	i of a fist with objects of class Eval.	

subs List of substance names

cutoff Total values below cutoff will be dismissed

ret_data Set true if data should be returned

Details

Returns ggplot objects

plotSubVar 59

plotSubVar	Plot substance variations

Description

The function plotSubVar takes a list of simulations and return a barplot with most varying substances

Usage

```
plotSubVar(simlist, metsel)
```

Arguments

simlist A list of simulations (eval objects).

metsel A vector with the name of exchange reactions of interest

plotTotFlux Function for plotting the overall change in reaction activity

Description

The generic function plotTotFlux plots the time course of reactions with high variation in activity for an Eval object.

Usage

```
plotTotFlux(object, legendpos = "topright", num = 20)
## S4 method for signature 'Eval'
plotTotFlux(object, legendpos = "topright", num = 20)
```

Arguments

object An object of class Eval.

legendpos A character variable declaring the position of the legend num An integer defining the number of substrates to be plot

Examples

60 redEval

redEval	Function for reducing the size of an Eval object by collapsing the
	medium concentrations

Description

The generic function redEval reduces the object size of an Eval object.

Usage

```
redEval(object, time = "all")
## S4 method for signature 'Eval'
redEval(object, time = 1:length(object@medlist))
```

Arguments

object An object of class Eval.

time A number giving the simulation step of interest.

Details

The function redEval can be used to reduce the size of an Eval object from a simulation step.

Value

Returns an object of class Arena containing the organisms and substance conditions in simulation step time.

See Also

```
Eval-class and Arena-class
```

Examples

reset_screen 61

Description

The function reset_screen set plotting window to default

Usage

```
reset_screen()
```

rmSubs

Remove substances

Description

The generic function rmSubs removes all amounts of substances available in the arena for given compounds.

Usage

```
rmSubs(object, mediac)
## S4 method for signature 'Arena'
rmSubs(object, mediac)
```

Arguments

object	An object of class Arena.
--------	---------------------------

mediac A character vector giving the names of substances, which should be added to the

environment (the default takes all possible substances).

selPheno Function for selecting phenotypes which occured on the arena from specific iterations and species

Description

The generic function selPheno selects phenotypes from specific simulation step in an Eval object.

62 setKinetics

Usage

```
selPheno(object, time, type, reduce = F)
## S4 method for signature 'Eval'
selPheno(object, time, type, reduce = F)
```

Arguments

object An object of class Eval.

time A numeric vector giving the simulation steps which should be plotted.

type A names indicating the species of interest in the arena.

reduce A boolean variable indicating if the resulting matrix should be reduced.

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential substrate usages.

Value

Returns a matrix with the substrate usage and the number of individuals using the phenotype.

See Also

```
Eval-class and getPhenoMat
```

Examples

setKinetics

Function to set Michaelis-Menten kinetics for uptake of a substance

Description

The generic function setKinetics provides kinetics for exchange reactions.

simBac 63

Usage

```
setKinetics(object, exchangeR, Km, vmax)
## S4 method for signature 'Organism'
setKinetics(object, exchangeR, Km, vmax)
```

Arguments

object An object of class Organisms.
exchangeR Name of an exchange reaction

Km Parameter Michaelis-Menten-Kinetics (in mM)

vmax Parameter Michaelis-Menten-Kinetics (in mmol/(g*h))

simBac Function for one simulation iteration for objects of Bac class

Description

The generic function simBac implements all neccessary functions for the individuals to update the complete environment.

Usage

```
simBac(object, arena, j, sublb, bacnum, sec_obj = "none", cutoff = 1e-06,
    pcut = 1e-06)

## S4 method for signature 'Bac'
simBac(object, arena, j, sublb, bacnum, sec_obj = "none",
    cutoff = 1e-06, pcut = 1e-06)
```

Arguments

object	An object of class Bac.
arena	An object of class Arena defining the environment.
j	The index of the organism of interest in orgdat.
sublb	A vector containing the substance concentrations in the current position of the individual of interest.
bacnum	integer indicating the number of bacteria individuals per gridcell
sec_obj	character giving the secondary objective for a bi-level LP if wanted.
cutoff	value used to define numeric accuracy.
pcut	A number giving the cutoff value by which value of objective function is considered greater than 0.

simBac_par

Details

Bacterial individuals undergo step by step the following procedures: First the individuals are constrained with constrain to the substrate environment, then flux balance analysis is computed with optimizeLP, after this the substrate concentrations are updated with consume, then the bacterial growth is implemented with growth, the potential new phenotypes are added with checkPhen, finally the additional and conditional functions lysis, move or chemotaxis are performed. Can be used as a wrapper for all important bacterial functions in a function similar to simEnv.

Value

Returns the updated enivironment of the population parameter with all new positions of individuals on the grid and all new substrate concentrations.

See Also

Bac-class, Arena-class, simEnv, constrain, optimizeLP, consume, growth, checkPhen, lysis, move and chemotaxis

Examples

NULL

simBac_par

Function for one simulation iteration for objects of Bac class

Description

The generic function simBac_par implements all neccessary functions for the individuals to update the complete environment.

Usage

```
simBac_par(object, arena, j, sublb, bacnum, lpobject, sec_obj = "none",
   cutoff = 1e-06)

## S4 method for signature 'Bac'
simBac_par(object, arena, j, sublb, bacnum, lpobject,
   sec_obj = "none", cutoff = 1e-06)
```

Arguments

object	An object of class Bac.
arena	An object of class Arena defining the environment.
j	The index of the organism of interest in orgdat.
sublb	A vector containing the substance concentrations in the current position of the individual of interest.

simEnv 65

bacnum	integer indicating the number of bacteria individuals per gridcell
lpobject	linar programming object (copy of organism@lpobj) that have to be a deep copy in parallel due to pointer use in sybil.
sec_obj	character giving the secondary objective for a bi-level LP if wanted.
cutoff	value used to define numeric accuracy

Value

Returns the updated enivironment of the population parameter with all new positions of individuals on the grid and all new substrate concentrations.

simEnv	Main function for simulating all processes in the environment	

Description

The generic function simEnv for a simple simulation of the environment.

Usage

```
simEnv(object, time, lrw = NULL, continue = FALSE, reduce = FALSE,
  diffusion = TRUE, diff_par = FALSE, cl_size = 2, sec_obj = "none",
  cutoff = 1e-06, pcut = 1e-06)

## S4 method for signature 'Arena'
simEnv(object, time, lrw = NULL, continue = FALSE,
  reduce = FALSE, diffusion = TRUE, diff_par = FALSE, cl_size = 2,
  sec_obj = "none", cutoff = 1e-06, pcut = 1e-06)
```

Arguments

An object of class Arena or Eval.
A number giving the number of iterations to perform for the simulation
A numeric value needed by solver to estimate array size (by default lwr is estimated in the simEnv() by the function estimate_lrw())
A boolean indicating whether the simulation should be continued or restarted.
A boolean indicating if the resulting Eval object should be reduced
True if diffusion should be done (default on).
True if diffusion should be run in parallel (default off).
If diff_par is true then cl_size defines the number of cores to be used in parallelized diffusion.
character giving the secondary objective for a bi-level LP if wanted.
value used to define numeric accuracy
A number giving the cutoff value by which value of objective function is considered greater than 0.

simEnv_par

Details

The returned object itself can be used for a subsequent simulation, due to the inheritance between Eval and Arena.

Value

Returns an object of class Eval which can be used for subsequent analysis steps.

See Also

```
Arena-class and Eval-class
```

Examples

simEnv_par

Main function for simulating in parallel all processes in the environment

Description

The generic function simEnv_par for a simple in parallel all simulation of the environment.

Usage

```
simEnv_par(object, time, lrw = NULL, continue = FALSE, reduce = FALSE,
   cluster_size = NULL, diffusion = TRUE, sec_obj = "none",
   cutoff = 1e-06)

## S4 method for signature 'Arena'
simEnv_par(object, time, lrw = NULL, continue = FALSE,
   reduce = FALSE, cluster_size = NULL, diffusion = TRUE,
   sec_obj = "none", cutoff = 1e-06)
```

Arguments

object An object of class Arena or Eval.

time A number giving the number of iterations to perform for the simulation

lrw A numeric value needed by solver to estimate array size (by default lwr is estimated in the simEnv() by the function estimate_lrw())

simHum 67

continue A boolean indicating whether the simulation should be continued or restarted.

reduce A boolean indicating if the resulting Eval object should be reduced

cluster_size Number of cpu cores to be used.

diffusion True if diffusion should be done (default on).

sec_obj character giving the secondary objective for a bi-level LP if wanted.

cutoff value used to define numeric accuracy

Details

The returned object itself can be used for a subsequent simulation, due to the inheritance between Eval and Arena.

Value

Returns an object of class Eval which can be used for subsequent analysis steps.

See Also

```
Arena-class and Eval-class
```

Examples

simHum

Function for one simulation iteration for objects of Human class

Description

The generic function simHum implements all neccessary functions for the individuals to update the complete environment.

Usage

```
simHum(object, arena, j, sublb, bacnum)
## S4 method for signature 'Human'
simHum(object, arena, j, sublb, bacnum)
```

68 statPheno

Arguments

object	An object of class Human.
arena	An object of class Arena defining the environment.
j	The number of the iteration of interest.
sublb	A vector containing the substance concentrations in the current position of the individual of interest.
bacnum	integer indicating the number of bacteria individuals per gridcell

Details

Human cell individuals undergo the step by step the following procedures: First the individuals are constrained with constrain to the substrate environment, then flux balance analysis is computed with optimizeLP, after this the substrate concentrations are updated with consume, then the cell growth is implemented with cellgrowth, the potential new phenotypes are added with checkPhen, finally the conditional function lysis is performed. Can be used as a wrapper for all important cell functions in a function similar to simEnv.

Value

Returns the updated enivironment of the arena parameter with all new positions of individuals on the grid and all new substrate concentrations.

See Also

Human-class, Arena-class, simEnv, constrain, optimizeLP, consume, cellgrowth, checkPhen and lysis

Examples

NULL

statPheno	Function for investigating a specific phenotype of an organism

Description

The generic function statPheno provides statistical and visual information about a certain phenotype.

Usage

```
statPheno(object, type_nr = 1, phenotype_nr, dict = NULL)
## S4 method for signature 'Eval'
statPheno(object, type_nr = 1, phenotype_nr, dict = NULL)
```

stirEnv 69

Arguments

object An object of class Eval.

type_nr A number indicating the Organism type of the phenotype to be investigated

(from orgdat)

phenotype_nr A number indicating the phenotype to be investigated (from orgdat)

dict A character vector of all substance IDs with names that should be used instead

of possibly cryptic IDs

Details

The phenotypes are defined by flux through exchange reactions, which indicate potential differential substrate usages.

See Also

```
Eval-class
```

Examples

stirEnv

Function for stirring/mixing the complete evironment

Description

The generic function stirEnv simulates the event of mixing all substrates and organisms in the environment.

Usage

```
stirEnv(object, sublb)
## S4 method for signature 'Arena'
stirEnv(object, sublb)
```

Arguments

object An object of class Arena.

sublb A matrix with the substrate concentration for every individual in the environ-

ment based on their x and y position.

70 Substance-class

Details

The stirring is implemented as a random permutation of organism positions and the equalization of of all substrate concentrations.

Value

Returns the substrate concentration for every individual in the environment with substrates as well as x and y positions as columns and rows for each organism.

See Also

Arena-class and getSublb

Examples

Substance-class

Structure of the S4 class "Substance"

Description

Structure of the S4 class Substance representing substances in the environment which can be produced or consumed.

Slots

smax A number representing the start concentration of the substance for each grid cell in the environment.

diffmat A sparse matrix containing all concentrations of the substance in the environment.

name A character vector representing the name of the substance.

id A character vector representing the identifier of the substance.

difunc A character vector ("pde", "cpp" or "r") describing the function for diffusion.

difspeed A number indicating the diffusion speed (given by cm^2/s).

diffgeometry Diffusion coefficient defined on all grid cells (initially set by constructor).

pde R-function that computes the values of the derivatives in the diffusion system

boundS A number defining the attached amount of substance at the boundary (Warning: boundary-function must be set in pde!)

Substance-constructor 71

Substance-constructor Constructor of the S4 class Substance

Description

The constructor to get a new object of class Substance

Usage

```
Substance(n, m, smax, gridgeometry, difspeed = 6.7e-06, ...)
```

Arguments

n A number giving the horizontal size of the environment.m A number giving the vertical size of the environment.

smax A number representing the start concentration of the substance for each grid cell

in the environment.

gridgeometry A list containing grid geometry parameter

difspeed A number indicating the diffusion speed (given by cm^2/s).

... Arguments of Substance-class

Value

Object of class Substance

usd

Computer standard deviation upper bound

Description

Helper function to get upper error bounds in plotting

Usage

usd(y)

Arguments

У

Vector with numbers

Index

addDefaultMed, 4	chemotaxis, Bac-method (chemotaxis), 18
addDefaultMed,Arena-method	constrain, 19
(addDefaultMed), 4	<pre>constrain,Organism-method(constrain),</pre>
addEssentialMed, 4	19
addEssentialMed,Arena-method	consume, 20
(addEssentialMed), 4	consume, Organism-method (consume), 20
addEval, 5	createGradient, 21
addEval, Eval-method (addEval), 5	createGradient,Arena-method
add0rg, 6, <i>14</i>	(createGradient), 21
addOrg, Arena-method (addOrg), 6	
addSubs, 7, 15, 33	dat2mat, 22
addSubs, Arena-method (addSubs), 7	dat2mat, Arena-method (dat2mat), 22
Arena (Arena-constructor), 9	diffuse, 23
Arena-class, 8, 9	diffuse, Arena-method (diffuse), 23
Arena-constructor, 9	diffuse_par, 25
	<pre>diffuse_par,Arena-method(diffuse_par),</pre>
Bac (Bac-Constructor), 10	25
Bac-class, 9, <i>10</i>	diffusePDE, 23, 25
Bac-Constructor, 10	diffusePDE, Substance-method
BacArena, 10	(diffusePDE), 23
BacArena-package (BacArena), 10	diffuseR, 24, 24
	diffuseR, Substance-method (diffuseR), 24
cellgrowth, 11	,
cellgrowth, Human-method (cellgrowth), 11	emptyHood, 19, 26, 46
changeDiff, 12	<pre>emptyHood,Organism-method(emptyHood),</pre>
changeDiff, Arena-method (changeDiff), 12	26
changeFobj, 13	Eval (Eval-constructor), 27
changeFobj, Human-method (changeFobj), 13	Eval-class, 27, 27
changeOrg, 14	Eval-constructor, 27
changeOrg, Arena-method (changeOrg), 14	evalArena, 28
changeSub, 7, 12, 15, 15, 22	evalArena, Eval-method (evalArena), 28
changeSub, Arena-method (changeSub), 15	extractMed, 29
checkCorr, 16	extractMed, Eval-method (extractMed), 29
<pre>checkCorr,Eval-method(checkCorr), 16</pre>	,
checkPhen, 17, 37	findFeeding, 30
checkPhen, Arena-method (checkPhen), 17	<pre>findFeeding,Eval-method(findFeeding),</pre>
checkPhen_par, 18	30
checkPhen_par,Arena-method	findFeeding2, 31
(checkPhen_par), 18	findFeeding2,Eval-method
chemotaxis, 18	(findFeeding2), 31

INDEX 73

findFeeding3,32	openArena, 48
findFeeding3,Eval-method	optimizeLP, <i>13</i> , <i>40</i> , <i>41</i> , <i>44</i> , 48
(findFeeding3), 32	optimizeLP,Organism-method
findInArena, 32	(optimizeLP), 48
findInArena, Arena-method (findInArena),	optimizeProb, 49
32	Organism (Organism-constructor), 50
flushSubs, 33	Organism-class, 49
flushSubs, Arena-method (flushSubs), 33	Organism-constructor, 50
getArena, 34	plotAbundance, 51
getArena, Eval-method (getArena), 34	plotCurves, 51
getCorrM, <i>16</i> , 35	plotCurves, Eval-method (plotCurves), 51
getCorrM,Eval-method(getCorrM),35	plotCurves2, 52
getPhenoMat, 36, 45, 62	plotCurves2, Eval-method (plotCurves2),
getPhenoMat,Eval-method(getPhenoMat),	52
36	plotFluxVar, 54
getPhenotype, <i>17</i> , <i>36</i> , 37	plotGrowthCurve, 54
getPhenotype,Organism-method	plotInterNum, 55
(getPhenotype), 37	plotPhenCurve, 55
getSubHist, 38	plotPhenNum, 56
getSubHist,Eval-method(getSubHist),38	plotShadowCost, 56
getSublb, 23, 38, 70	plotShadowCost,Eval-method
getSublb,Arena-method(getSublb),38	<pre>(plotShadowCost), 56</pre>
getVarSubs, 39	plotSpecActivity, 57
getVarSubs, Eval-method(getVarSubs), 39	plotSubCurve, 57
growExp, <i>11</i> , 40, <i>42</i>	plotSubUsage, 58
growExp,Organism-method(growExp),40	plotSubVar, 59
growLin, <i>11</i> , 40, <i>42</i>	plotTotFlux, 59
growLin,Organism-method(growLin),40	<pre>plotTotFlux, Eval-method (plotTotFlux),</pre>
growth, 41	59
growth,Bac-method(growth),41	
growth_par,42	redEval, 60
<pre>growth_par,Bac-method(growth_par),42</pre>	redEval, Eval-method (redEval), 60
	reset_screen, 61
Human (Human-constructor), 43	rmSubs, 61
Human-class, 42, <i>43</i>	rmSubs, Arena-method (rmSubs), 61
Human-constructor, 43	
lsd, 43	selPheno, 61
lysis, 44	selPheno, Eval-method (selPheno), 61
lysis, Organism-method (lysis), 44	setKinetics, 62
19515,01 gan15111-111et1100 (19515), 44	setKinetics,Organism-method
minePheno, <i>37</i> , 45	(setKinetics), 62
minePheno, Eval-method (minePheno), 45	simBac, 63
move, 46	simBac,Bac-method(simBac),63
move, Organism-method (move), 46	simBac_par,64
	<pre>simBac_par,Bac-method(simBac_par),64</pre>
NemptyHood, 47	simEnv, 64, 65, 68
NemptyHood,Organism-method	simEnv, Arena-method (simEnv), 65
(NemptyHood), 47	simEnv_par, 66

74 INDEX

```
simEnv_par,Arena-method (simEnv_par), 66 simHum, 67 simHum, Human-method (simHum), 67 statPheno, 68 statPheno,Eval-method (statPheno), 68 stirEnv, 69 stirEnv,Arena-method (stirEnv), 69 Substance (Substance-constructor), 71 Substance-class, 70 Substance-constructor, 71 SYBIL_SETTINGS, 50 sysBiolAlg, 49 usd, 71
```