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Evolutionary	 forces	 affecting	 Synonymous	 variations	
in	plant	genomes	–	Text	S2		

Estimation	of	gBGC	and	selection	intensities	–	extension	of	Glémin	et	al.	(2015)	
	 For	consistency	we	start	by	summarizing	the	method	of	Glémin	et	al.	[1]	then	we	
present	 two	 extensions.	 The	 first	 one	 allows	 estimating	 both	 ancestral	 and	 recent	
intensities	 using	 frequency	 spectra	 and	 divergence	 values.	 The	 second	 one	 aims	 at	
disentangling	and	estimating	separately	gBGC	and	SCU.	

Summary	of	Glémin	et	al.	(2015)	method	
The	rationale	of	the	approach	is	to	fit	a	population	genetic	models	to	the	derived	

allele	 frequency	 (DAF)	 spectra	 to	 estimate	B	 =	 4Neb	 or	 S	 =	 4Nes	 using	 the	maximum	
likelihood	framework	initially	described	in	Muyle	et	al.	[2].	Ne	is	the	effective	population	
size	and	b	and	s	the	gBGC	and	selection	coefficient,	respectively.	In	what	follows	only	the	
gBGC	notation	will	be	used	not	to	overload	the	presentation.	

The	 probability	 of	 observing	ki	 SNPs	 having	 i	 derived	 alleles	 out	 of	n	 follows	 a	
Poisson	distribution,	P(µ,ki),	with	mean:	

µneutral
obs (i) = (1− eneutral )µneutral (i)+ eneutralµneutral (n− i) 	 for	neutral	SNPs	 (S2.1a)	

µWS
obs (i) = (1− eWS )µWS (i)+ eSWµSW (n− i) 	 	 for	WS	SNPs	 	 (S2.1b)	

µSW
obs (i) = (1− eSW )µSW (i)+ eWSµWS (n− i) 	 	 for	WS	SNPs	 	 (S2.1c)	

where	eneutral,	eWS	and	eSW	are	polarization	error	probabilities	and	the	“true”	µ	are	given	
by	equations	below:	
𝜇!"#$%&' 𝑖 = !!!!"!!

!
	 	 	 	 	 	 	 (S2.2a)	

𝜇!" 𝑖 = 2𝑁!𝑢𝐿 1− 𝑝!" 𝑟! 𝐶!!𝑥! 1− 𝑥 !!!!
! 𝐻 𝐵, 𝑥 𝑑𝑥	 (S2.2b)	

𝜇!" 𝑖 = 2𝑁!𝜆𝑢𝐿𝑝!"𝑟! 𝐶!!𝑥! 1− 𝑥 !!!!
! 𝐻 −𝐵, 𝑥 𝑑𝑥	 	 (S2.2c)	

where	v	is	neutral	the	mutation	rate	(i.e.	W!W	and	S!S	mutations),	u	the	mutation	rate	
from	W	to	S,	λu	the	mutation	rate	from	S	to	W, λ  being	the	mutational	bias	towards	AT,	
L	 the	sequence	 length,	and	pGC	 the	GC-content	of	 the	sequence.	The	ri	coefficients	have	
been	introduced	by	Eyre-Walker	et	al.	[3]	to	account	for	distortions	in	DAF	spectra	due	
to	demography	(and/or	population	structure	and/or	sampling)	and	corresponds	to	the	
deviation	 from	the	standard	equilibrium	model	relative	 to	 the	singleton	class,	r1	being	
set	 to	 one.	H(B,x)	 is	 the	 expected	 time	 that	mutation	 experiencing	 gBGC	B	 spends	 at	
population	frequency	between	x	and	x	+	dx,	and	is	given	by:	

𝐻 𝐵, 𝑥 = 2 !!!!!(!!!)

!(!!!)(!!!!!)
	 (S2.3)	

When	n	 is	 not	 too	 small	 (>10),	 one	 can	use	 the	 continuous	 approximation	 that	
gives	very	similar	results	and	speeds	up	numerical	computations:	
𝐶!!𝑥! 1− 𝑥 !!!!

! 𝐻 𝐵, 𝑥 𝑑𝑥 ≈ !
!
𝐻(𝐵, !

!
)		 	 (S2.4)	

Otherwise,	the	exact	analytical	expression	can	be	useful	(not	given	in	[1]):	
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𝐶!!𝑥! 1− 𝑥 !!!!
! 𝐻 𝐵, 𝑥 𝑑𝑥 = 2 !

!(!!!)
!!!ℱ(!,!,!)

!!!!
	 (S2.5)	 	

where	ℱ	is	Kummer	confluent	hypergeometric	function	[4]		
Assuming	 independence	between	SNPs,	 the	 likelihood	of	 the	model	can	 thus	be	

written	as:	
Γ! = 𝑃 𝜇!"#$%&'!"# 𝑖 , 𝑘!!"#$%&' 𝑃 𝜇!"

!"# 𝑖 , 𝑘!!" 𝑃 𝜇!"!"# 𝑖 , 𝑘!!"!!!
!!! 	 (S2.6)	

Parameters	 estimates	 were	 obtained	 by	 maximization	 of	 the	 log-likelihood	 function	
using	the	FindMaximum	function	of	Mathematica	v8	[5].	

Estimation	of	ancestral	and	recent	intensities	
	 We	 extend	 this	 framework	 by	 also	 considering	 substitutions,	 d,	 on	 the	 branch	
leading	 to	 the	 focal	 species	 (from	 which	 polymorphism	 data	 are	 used),	 i.e.	 including	
fixed	derived	mutation	in	the	SFS.	In	the	general	case	we	assume	two	different	B	values	
for	 the	divergence	(B0)	and	the	polymorphism	(B1)	parts.	The	number	of	substitutions	
also	follows	a	Poisson	distribution	with	mean:	
𝛿!"#$%&'!"# = (1− 𝑒)𝐿𝑣(𝑡 + !!!

!
𝑟!)	 	 	 	 for	neutral	substitutions			(S2.7a)	

𝛿!"
!"# = (1− 𝑒!")𝐿𝑢 1− 𝑝!" (𝑡

!!
!!!!!!

+ !!!
!

!!!!!

!!!!!
𝑟!)	 for	WS	substitutions											(S2.7b)	

𝛿!"!"# = (1− 𝑒!")𝐿𝜆𝑢𝑝!"(𝑡
!!

!!!!!
+ !!!

!
!!!!!!

!!!!!!
𝑟!)	 	 for	SW	substitutions											(S2.7c)	

For	substitutions	there	is	no	second	term	with	errors	as	in	equations	(S2.1)	as	a	wrong	
polarization	corresponds	to	no	substitution.	Note	also	that	the	last	terms	in	parentheses	
correspond	to	mutations	polymorphic	in	the	population	but	fixed	in	the	sample.	The	full	
likelihood	 is	 thus	obtained	by	 combining	equation	 (S2.6)	with	B1	 instead	of	B	 and	 the	
product	of	these	three	new	probabilities:	
Γ = Γ! 𝑃 𝛿!"#$%&'!"# ,𝑑!"#$%&' 𝑃 𝛿!"

!"#,𝑑!" 𝑃 𝛿!"!!",𝑑!" 	 (S2.8)	 	
We	tested	five	different	models:	
- The	null	model:	B0	=	B1	=	0	
- B0	=	0	and	B1	free	
- B0	free	and	B1	=	0	
- B0	=	B1	=	B,	B	being	free	
- B0	and	B1	free	
Nested	models	were	compared	by	likelihood	ratio	tests	(LRT).	

Joined	estimation	of	gBGC	and	SCU	
	 The	models	presented	above	can	also	be	extended	to	the	joint	estimation	of	gBGC	
or	 to	 SCU.	 To	 do	 so	 we	 need	 to	 distinguish	 nine	 DAF	 spectra	 and	 nine	 categories	 of	
substitution	 and	 to	 fit	 a	 model	 with	 distinct	 gBGC	 and	 selection	 parameters,	 as	
summarized	in	the	following	Table	S2.1:	
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Table	S2.1:	Expected	effect	of	gBGC	(B)	and	selection	(S)	on	the	nine	categories	of	mutation	
Acronyms	for	each	category	are	five	between	parentheses.	

	 Neutral	 W	!	S	 S	!	W	
Neutral	 0	(NN)	 B	(WSN)	 -	B	(SWN)	
U	!	P	 S	(NUP)	 B	+	S	(WSUP)	 -	B	+	S	(SWUP)	
P	!	U	 -	S	(NPU)	 B	–	S	(WSPU)	 -	B	–	S	(SWPU)	

	
As	 above,	 input	of	mutations	 could	be	written	as	 a	 function	of	GC	 content,	mutational	
bias	and	proportion	of	preferred	and	unpreferred	codons	belonging	to	the	different	base	
combinations.	However,	here	we	are	not	directly	 interested	 in	estimating	the	different	
mutation	 parameters	 so	 we	 simply	 assume	 a	 different	 mutational	 input	 for	 each	
category.	 Then,	 the	 full	 likelihood	 can	be	written	 as	 in	 equation	 (S2.8)	 as	 the	product	
over	all	SNP	categories	of	the	nine	SFSs	and	of	the	nine	substitution	counts.	
	 Assuming	 an	 ancestral	 and	 a	 recent	 process,	 this	 leads	 to	 four	 parameters	 of	
interest,	B0,	B1,	S0,	and	S1	and	thus	to	a	potential	large	amount	of	models.	We	tested	all	
combinations	of	models	where	 each	parameter	 can	be	 either	null	 or	 free,	 so	 from	 the	
null	neutral	model,	B0	=	B1	=	S0	=	S1	=	0,	 to	 the	model	with	 the	 four	parameters	being	
free.	We	then	chose	the	best	model	using	the	Akaike	Information	Criterium	(AIC)	as	all	
models	are	not	nested.	When	AIC	were	very	close	we	chose	 the	model	with	 the	 lower	
number	of	free	parameters.	
	 In	some	species,	there	is	neither	SNPs	nor	substitutions	for	the	WSPU	and	SWUP	
categories.	 To	 avoid	 numerical	 problem,	 a	 value	 of	 10-4	was	 set	 to	 the	 corresponding	
SFSs.		

Test	of	the	extended	models	

Simulation	procedure	
	 We	 tested	 these	 two	 new	 models	 by	 applying	 them	 to	 simulated	 datasets.	 As	
gBGC	is	equivalent	to	genic	selection,	we	simulated	selection	in	a	haploid	population	(R	
script).	 Thus	 B	 equals	 2Neb.	 Every	 generation,	 mutations	 are	 drawn	 from	 a	 Poisson	
distribution	with	mean	Nu,	where	N	 is	 the	population	size	and	u	 the	mutation	rate.	As	
the	 model	 assumes	 independent	 new	 mutations,	 we	 consider	 that	 at	 max	 only	 one	
mutation	 can	 occur	 per	 generation.	 This	 corresponds	 to	 truncating	 the	 Poisson	
distribution	but	the	probability	of	having	more	than	one	mutation	is	negligible	for	Nu	<<	
1	 as	 used	 in	 simulations.	 Each	 mutation	 is	 then	 followed	 independently	 until	 lost	 or	
fixation:	 the	 expected	 allele	 frequency	 is	 changed	 deterministically	 depending	 on	
selection	coefficient	and	drift	is	simulated	by	sampling	in	a	binomial	distribution	of	size	
N	 and	 probability	 given	 by	 the	 expected	 frequency.	 Population	 size	 and/or	 selection	
coefficient	 and/or	 mutation	 bias	 can	 change	 across	 generations.	 At	 the	 end	 of	 a	
simulation	sampling	is	simulated	by	drawing	alleles	from	a	binomial	distribution	of	size	
n	and	probability	given	by	the	final	allele	frequency	in	the	population.	By	summing	over	
all	possible	mutations,	the	total	number	of	mutations	in	each	frequency,	including	fixed	
mutations,	is	recorded.	Neutral,	W!S	/	U!P	and	S!W	/	P!U	mutations	are	simulated	
separately.	Similarly,	for	the	full	gBGC/SCU	model,	the	nine	categories	of	mutations	are	
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simulated	separately.	We	then	applied	different	polarization	error	rates	to	the	simulated	
dataset.	For	simplicity	we	only	assumed	equal	rate	to	all	SFS:	3%,	5%	and	10%.	

Results	

Ancestral	and	recent	gBGC/SCU	
Change	in	gBGC/SCU	intensity	
	 We	 first	 tested	 the	 rate	 of	 false	 positive	 in	 detection	 of	 different	 ancestral	 and	
recent	gBGC/SCU	by	applying	the	model	to	simulated	datasets	under	constant	B/S.	The	
model	with	error	correctly	retrieved	both	B0	and	B1	values	and	the	type	I	error	is	close	to	
the	5%	(Figure	S2.1).	However,	when	polarization	errors	are	not	taken	into	account	this	
leads	 to	 overestimating	B1,	 as	 already	 shown	 by	 [1],	 and	 also	B0	 but	 at	 a	 lower	 level.	
Overall	 this	 leads	 to	high	rate	of	 false	positives	when	polarization	errors	are	high	and	
not	taken	into	account.	The	problem	is	less	pronounced	for	high	B	values	(compare	left	B	
=	0.5)	and	right	(B	=	1)	panels.	
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Figure	S2.1:	Estimations	under	constant	gBGC	(or	SCU).	
A	 population	 of	 size	N	 =	 50	 is	 simulated	 for	 1000	 generations	with	B	 =	 0.5	 (left)	 or	B	 =	 1	 (right).	We	
assumed	a	GC	content	of	0.5	and	mutation	 rates	were	 set	 to	2.10-3,	10-3	 and	5.10-4	 for	S!W,	W!S	and	
neutral	 mutations	 respectively.	 5000	 independent	 sites	 were	 simulated,	 corresponding	 to	 datasets	 of	
around	 5,000	 SNPs	 and	 15,000	 substitutions.	 Different	 error	 rates	 (from	 0	 to	 10%)	 were	 applied	 as	
indicated.	One	hundred	datasets	of	20	chromosomes	were	simulated	for	each	combination.	We	applied	the	
estimation	model	with	two	gBGC	episodes	allowing	for	polarization	errors	(green	boxes)	or	not	(orange	
boxes).	Dashed	lines	represent	either	the	simulated	B	values	or	the	5%	threshold	for	the	p-values.	On	the	
last	two	panels,	number	above	boxes	corresponds	to	the	percentage	of	significant	tests	(at	the	5%	level).	
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Figure	 S2.2:	 Estimations	 under	 increasing	 (left	 panels)	 or	 decreasing	 (right	
panels)	gBGC	(or	SCU).	
Same	 legend	 as	 in	 Figure	 S2.1	 except	 that	we	 first	 simulated	 1600	 generations	with	B	 =	 0.5	 (left)	 or	 1	
(right)	 then	400	generations	with	B	=	1	 (left)	or	0.5	 (right).	 It	 corresponds	 to	datasets	of	around	5,000	
SNPs	 and	 30,000	 substitutions.	 Dotted	 lines	 correspond	 to	 the	 weighted	 average	 of	 B	 over	 the	 two	
periods.	
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When	 B	 either	 decreases	 or	 increases,	 B1	 is	 well	 estimated	 when	 polarization	
errors	 are	 taken	 into	 account	 (Figure	 S2.2).	However,	B0	 is	 less	well	 estimated	 and	 is	
slightly	over	or	underestimated,	being	closer	to	the	B1	value	than	expected.	However,	it	
is	 worth	 noting	 that	 fixations	 also	 occur	 during	 the	 second	 period	 so	 that	 the	model	
actually	estimate	the	weighted	mean	of	B0	and	B1,	which	is	accurately	done	(dotted	lines	
on	Figure	S2.2).	Overall,	the	power	to	detect	different	B	values	is	rather	high,	although	it	
decreases	 as	 polarization	 error	 rates	 increases.	 The	 model	 that	 does	 not	 take	
polarization	errors	into	account	could	appear	better	to	detect	variation	in	heterogeneity	
of	gBGC	or	SCU	under	certain	conditions	but	it	would	be	for	bad	reasons	and	the	power	
varies	with	scenarios	and	error	rates.	

	
Figure	 S2.3:	 Estimations	 under	 increasing	 (upper	 panels)	 or	 decreasing	 (lower	
panels)	gBGC	(or	SCU)	for	different	time	period	
Same	 legend	 as	 in	 Figure	 S2.1	 except	 that	we	 first	 simulated	T0	 generations	with	B	 =	 0.5	 (upper)	 or	 1	
(lower)	 then	 400	 generations	with	B	 =	 1	 (upper)	 or	 0.5	 (lower).	 It	 corresponds	 to	 datasets	 of	 around	
5,000	SNPs	and	8,000,	12,000,	18,000	and	30,000	substitutions	from	T0	=	200	to	1600.	White	dotted	lines	
correspond	to	the	weighted	average	of	B	over	the	two	periods.	
	

We	 tested	 further	 the	 robustness	 of	 the	 model	 by	 letting	 time,	 T0,	 vary	 when	
population	evolves	under	the	B0	regime	(Figure	S2.3).	When	T0	is	rather	low,	B0	is	much	
closer	 to	B1	 than	 expected	 and	 the	 power	 to	 detect	 changes	 in	 gBGC/SCU	 intensity	 is	
rather	 low.	This	 is	expected	as	 the	B0	value	estimated	 in	 the	model	corresponds	 to	an	
average	 over	 what	 currently	 fixed	 mutations	 have	 experienced	 during	 their	 lifetime.	
Here,	B1	is	less	affected	because	T1	is	rather	large	(=	4N)	so	most	polymorphic	mutations	
experienced	the	same	conditions	(see	below	for	various	demographic	scenarios).	
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Complex	demographic	scenarios	
	 We	also	tested	several	demographic	scenarios,	keeping	b	or	s	constant	but	letting	
N	vary.	When	N	varies,	the	relevant	Ne	for	polymorphism-based	measure	(estimate	of	B1	
here)	can	be	obtained	by	computing	half	the	average	coalescent	time	between	two	gene	
copies	 under	 the	 given	 demographic	 scenario	 [6].	 This	 is	 strictly	 true	 for	 neutral	
mutations	 but	 should	 be	 an	 accurate	 approximation	 here	 because	 gBGC/selection	 is	
weak	(4Neb	of	the	order	of	1).	The	coalescent	Ne	is	given	by:	

𝑁! =
1
2 𝑡𝑃!"#$ 𝑡 𝑑𝑡

!

!
      (2.9)	

where	𝑃!"#$ 𝑡 	is	 the	 probability	 of	 coalescing	 at	 time	 t.	 For	 demographic	 scenarios	
involving	discrete	changes	in	N	described	by	a	vector	of	population	sizes	N	=	(N1,N2,…)	
and	a	vector	of	durations	T	=	(T1,T2,…),	𝑃!"#$ 𝑡 	can	be	computed	as	follows:	

𝑃!"#$ 𝑡 =
1
𝑁!
exp −

𝑡 − 𝑇!!!!
!!!

𝑁!
exp −

𝑇!
𝑁!

!!!

!!!
 for 𝑡 in the 𝑘th time period   (2.10)	

For	fixation-based	measures	(estimate	of	B0	here),	the	harmonic	mean	of	N	can	give	an	
accurate	approximation	[7].	
	 We	explored	the	following	scenarios	(without	polarization	errors	for	simplicity):	
1:	rapid	oscillations	between	N	=	25	and	100	every	5	generations,	ending	with	N	=	100	
2:	rapid	oscillations	between	N	=	25	and	100	every	5	generations,	ending	with	25	
3:	slow	oscillations	between	N	=	25	and	100	every	100	generations,	ending	with	N	=	100	
4:	slow	oscillations	between	N	=	25	and	100	every	100	generations,	ending	with	N	=	25	
5:	 constant	population	 size	N	 =	100	during	700	generations,	 followed	by	 a	bottleneck	
with	 N	 =	 25	 during	 100	 generations	 and	 an	 expansion	 to	 N	 =	 200	 during	 200	
generations.		
6:	constant	population	size	N	=	100	during	700	generations,	followed	by	an	expansion	to	
N	 =	 200	 during	 200	 generations	 followed	 by	 a	 bottleneck	 with	 N	 =	 25	 during	 100	
generations.	
The	intensity	of	gBGC	was	set	to	0.005.	

For	 each	 scenario	 we	 compared	 estimates	 of	 B0	 with	 2Nhb,	 where	 Nh	 is	 the	
harmonic	mean	 of	N	 in	 the	 scenario,	 and	B1	with	 2Ncb,	 where	Nc	is	 the	 coalescent	Ne	
computed	using	(2.9)	and	(2.10).	Results	are	presented	on	Figure	S2.4	and	show	that	the	
method	is	accurately	accommodates	demography	for	most	scenarios.	
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Figure	S2.4:	Estimations	under	various	demographic	scenarios	
Parameters	 of	 the	 different	 scenarios	 are	 given	 in	 the	 text	 above.	 Other	 parameters	 as	 in	 Figure	 S2.1	
Dotted	lines	correspond	to	expectations	based	on	harmonic	and	coalescent	Ne.	
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Change	in	mutation	bias	
If	we	relax	the	assumption	of	constant	mutational	bias,	changes	in	both	bias	and	

selection/gBGC	 are	 no	 more	 identifiable.	 Recent	 S/B	 estimates	 are	 not	 affected	 but	
ancestral	 estimates	 are	 underestimated	 (resp.	 overestimated)	 when	 mutation	 bias	
decreases	 (resp.	 increases).	However,	 the	method	 is	 still	powerful	 to	detect	departure	
from	 a	 constant	 regime	 of	 selection/mutation/drift	 equilibrium,	 although	 here	 the	
model	detects	a	difference	in	B/S	instead	of	a	difference	in	mutation	bias	(Figure	S2.5).	

	
Figure	 S2.5	 (above):	 Estimations	 under	 decreasing	 (Left	 panels)	 or	 increasing	
(right	panels)	mutation	bias	
Same	legend	as	in	Figure	S2.1	with	B	=	0.5	and	a	change	in	mutation	bias	after	500	generations.	Mutation	
rates	were	set	to	10-3	and	5.10-4	 for	W!S	and	neutral	mutations	respectively	for	the	1,000	generations.	
S!W	mutation	rate	was	set	to	2.10-3	(resp.	1.5.10-3)	during	the	500	first	generations	and	to	1.5.10-3	(resp.	
2.10-3)	during	the	500	last	ones	for	decreasing	(resp.	increasing	bias).	
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Joint	estimation	of	gBGC	and	SCU.	
We	 also	 tested	 the	 power	 of	 the	 full	 model	 to	 distinguish	 between	 gBGC	 and	

selection.	As	we	were	 interested	 in	 this	specific	question	we	only	perform	simulations	
without	error	(but	applied	the	estimation	model	with	error	as	in	the	main	text).	As	we	
focus	on	the	distinction	between	gBGC	and	selection	we	also	only	considered	scenarios	
where	B0	=	B1	and	S0	=	S1.	We	considered	two	cases,	either	B	=	S	=	0.5	or	B	=	0.75	and	S	=	
0.25.	 The	 second	 case	 mimics	 the	 case	 similar	 to	 our	 observation	 where	 gBGC	 is	
stronger	 than	 SCU.	We	 then	 assumed	 than	 SNPs	 and	 substitutions	 are	 fully	 balanced	
among	 the	 nine	 categories,	 unbalanced	 with	 an	 excess	 of	 NN,	 WSUP	 and	 SWPU	
categories,	or	highly	unbalanced	with	no	WSUP	and	SWPU,	as	observed	in	some	species	
such	 as	 banana	 (see	 Table	 S2.1	 above	 for	 categories	 definition).	We	 then	 applied	 the	
same	procedure	as	in	the	main	text,	testing	for	all	16	possible	models.	

On	average,	the	method	retrieves	well	the	simulated	values,	especially	for	B0	and	
S0,	but	B1	tends	to	be	slightly	underestimated	and	S1	slightly	overestimated.	This	could	
be	 due	 to	 the	 fact	 that	 the	 model	 assumes	 that	 polarisation	 errors	 affect	 mutations	
depending	on	 their	GC	status	not	on	 their	preference	 (Figure	S2.6).	As	a	consequence,	
when	S	=	B,	the	best	model	(according	to	AIC)	more	often	assumes	that	B1	=	0	than	S1	=	
0.	For	unbalanced	datasets,	the	best	model	often	assumes	than	at	least	B	or	one	S	is	null	
(Figure	S2.7).	However,	SCU	tends	to	be	preferred	to	gBGC	when	the	two	forces	are	of	
similar	intensities	and	even	when	B	>	S,	SCU	is	preferred	to	gBGC	in	some	simulations.	
Overall,	these	simulations	suggest	that	our	result	of	higher	gBGC	than	SCU	is	robust	and	
conservative.	
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Figure	S2.6:	Joint	estimations	of	ancestral	and	recent	gBGC	and	SCU.	
A	population	of	size	N	=	50	 is	simulated	 for	1000	generations	with	constant	B	and	S	as	 indicated	above	
each	 panel.	We	 assumed	 a	 GC	 content	 of	 0.5	 and	mutation	 rates	were	 set	 to	 2.10-3,	 10-3	 and	 5.10-4	 for	
S!W,	W!S	and	neutral	mutations	respectively.	6000	independent	sites	were	simulated,	corresponding	
to	 datasets	 of	 around	 6,500	 SNPs	 and	 18,000	 substitutions.	 For	 the	 three	 categories	 of	 mutations	 we	
assumed	(i)	an	equal	proportion	of	neutral,	U!P	and	P	!	U	 (=balanced)	 (ii)	83.33%	of	NN,	WSUP	and	
SWPU	and	8.33%	of	 the	others	 (=	unbalanced)	or	 (iii)	83.33%	of	NN	and	8.33%	 for	NUP	and	NPU,	and	
91%	of	WSUP	and	SWPU,	9%	of	WSN	and	SWN	and	0%	of	WSPU	and	SWUP	(=	highly	unbalanced).	One	
hundred	datasets	of	20	 chromosomes	were	 simulated	 for	 each	 combination.	We	applied	 the	 estimation	
model	with	two	gBGC	and	SCU	episodes	with	polarization	errors.	Dashed	lines	represent	the	simulated	B	
and	S	values.	
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Figure	 S2.7:	 Distribution	 of	 the	 best	 models	 chosen	 among	 16	 for	 different	
simulation	conditions.	
Simulation	conditions	as	 in	Figure	S2.6.	Sixteen	models	where	 tested	corresponding	to	all	combinations	
where	each	of	 the	 four	parameters	 (B0,	B1,	S0,	S1)	 can	be	 freely	estimated	or	 set	 to	0.	Model	 choice	was	
performed	according	to	AIC.	
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We	reused	previous	simulations	with	B0	=	B1	=	S0	=	S1	=	0.5	and	introduced	10%,	20%	
and	50%	errors	according	to	the	matrix	scheme:	half	of	N	mutations	are	assigned	to	UP	
and	the	other	half	to	PU,	half	UP	mutations	are	assigned	to	N,	one	quarter	to	PU	and	the	
last	quarter	stays	UP,	and	half	PU	mutations	are	assigned	to	N,	one	quarter	to	UP	and	the	
last	quarter	stays	PU.	Misidentification	of	codon	preferences	induces	underestimation	of	
S	 but	 does	 not	 affect	 B	 for	 balanced	 datasets	 (Figure	 S2.8),	 but	 also	 tends	 to	
overestimate	B	 for	 highly	 unbalanced	 datasets	 (Figure	 S2.10)	 and	 unbalanced	 dataset	
with	very	high	error	rates	(50%)	(Figure	S2.9).	For	balanced	and	unbalanced	datasets,	
SCU	 is	 still	 detected,	 except	 for	 very	 high	 error	 rates	 (50%)	 (Figures	 S2.8,	 S2.9	 and	
S2.11).	Moderate	error	rate	 is	problematic	only	for	highly	unbalanced	dataset	(Figures	
S2.10	and	S2.11)	for	which	it	is	difficult	to	distinguish	gBGC	and	SCU	event	without	error	
rates	(Figure	S2.7).	

	
Figure	 S2.8:	 Joint	 estimations	 of	 gBGC	 and	 SCU	 with	 misidentification	 of	 codon	
preference.	Balanced	dataset.	Legend	as	in	Figure	S2.6	
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Figure	 S2.9:	 Joint	 estimations	 of	 gBGC	 and	 SCU	 with	 misidentification	 of	 codon	
preference.	Unbalanced	dataset.	Legend	as	in	Figure	S2.6	

	
Figure	 S2.10:	 Joint	 estimations	of	 gBGC	and	 SCU	with	misidentification	of	 codon	
preference.	Unbalanced	dataset.	Legend	as	in	Figure	S2.6	
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Figure	 S2.11:	 Distribution	 of	 the	 best	 models	 chosen	 among	 16	 with	 different	
percentages	of	codon	preference	misidentification.	Legend	as	in	Figure	S2.	
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