SUPPLEMENTAL MATERIAL

Jinnohara et al., https://doi.org/10.1084/jem.20160770

JEM S13

Figure S1. **Analysis of IL-22BP expression in intestine and lymphoid tissues.** (A) Gating strategy for DCs of the MLN and spleen. CD11c-enriched cells were stained with antibodies, and CD3⁻B220⁻CD45⁺ cells were gated by the expression of CD11c and MHCII. Then, indicated populations were sorted. (B) Gating strategy for DCs and macrophages of the LP is shown. CD11c-enriched cells were stained with antibodies, and CD3⁻B220⁻CD45⁺ cells were gated by the expression of CD11c and CD11b. Then, indicated populations were sorted. Data were pooled from three independent experiments. (C) Immunostaining of IL-22BP protein in small intestinal (SI) tissue sections. Green colors indicate IL-22BP. Signals in the lumen and apex of epithelial cells represent nonspecific binding of anti-IL-22BP antibodies. Arrows indicate IL-22BP-positive cells in the SED region of the PP, isolated lymphoid follicle (ILF), or colonic patch. Data are pooled from at least three mice. Bars, 50 µm.

Figure S2. **Generation of IL-22BP-deficient mice.** (A) The targeting strategy for the ll22ra2 gene is shown. Exon 3 was flanked by loxP and deleted by crossing with CAG-Cre transgenic mice. (B) Successful targeting of ll22ra2 was confirmed by Southern blotting analysis. (C) EdU-incorporating cells in the FAE. EdU was intraperitoneally injected to $ll22ra2^{+/-}$ and $ll22ra2^{-/-}$ mice, and 48 h after injection, EdU-positive cells of the FAE were examined. Data are pooled from three mice of each genotype. Bars, 100 μ m.

JEM S15

JEM

Table S1. Primer sequences used for this study

Primer name	Sequence (5'-3')
Il22ra2 in situ Fw	ATAGGATCCATGATGCCTAAGCATTGCCTTCTA
<i>Il22ra2</i> in situ Rv	TGACTCGAGTGGAATGTGCACACATCTCTCCT
Gapdh qPCR Fw	TGTGTCCGTCGTGGATCTGA
Gapdh qPCR Rv	TTGCTGTTGAAGTCGCAGGAG
Actb qPCR Fw	GATCTGGCACCACACCTTCT
Actb qPCR Rv	GGGGTGTTGAAGGTCTCAAA
II22 qPCR FW	TGACGACCAGAACATCCAGA
II22 qPCR Rv	AGCTTCTCCGCTCAGACG
II22ra1 qPCR Fw	TGCTCTTTTCCATGGGTTTC
II22ra1 qPCR Rv	AAGCGTAGGGGTTGAAAGGT
II22ra2 qPCR Fw	TATTTTGCACTGGCAAGCAG
II22ra2 qPCR Rv	CCCATTGGCTCTGTCCATAC
Gp2 qPCR Fw	GATACTGCACAGACCCCTCCA
Gp2 qPCR Rv	GCAGTTCCGGTCATTGAGGTA
Spib qPCR Fw	AGCGCATGACGTATCAGAAGC
Spib qPCR Rv	GGAATCCTATACACGGCACAGG
Ccl20 qPCR Fw	AAAAGGGCTGTGAACCTCCT
Ccl20 qPCR Rv	ACCCCAGCTGTGATCATTTC
Cxcl16 qPCR Fw	GTGGGTCCGTGAACTAGTGG
Cxcl16 qPCR Rv	ACTGGCTTGAGGCAAATGTT
Psg18 qPCR Fw	AGCAACGAAGTCCATCATCAGAG
Psg18 qPCR Rv	AAGAGCCAACGGATGGAGATC
Reg3g qPCR Fw	CCTGCTGCTCCTTTCTCAGG
Reg3g qPCR Rv	ATGTCCTGAGGGCCTCTTT
Muc3 qPCR Fw	TTCTATGGGCCACGGTGT
Muc3 qPCR Rv	TGGTTACTGTCACACTCACTTCC
Fut2 qPCR Fw	GCGGTTCGTCCATTCCTA
Fut2 qPCR Rv	AAAGGTACCTGGGCACTCG

Fw, forward; qPCR, quantitative PCR; Rv, reverse.