1 Supplemental Data

2			
3	Short Title:	Virus-induced Flowering (VIF) Assay	
4			
5	Correspond	ling Author: Yiguo Hong	
6	Research Ce	entre for Plant RNA Signaling, College of Life and Environmental Sciences,	
7	Hangzhou Normal University, Hangzhou 310036, China and Warwick-Hangzhou RNA		
8	Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Coventry		
9	CV4 7AL, UK.		
10			
11	Telephone:	+86-571-28866065	
12	Fax:	+86-571-28866065	
13	E-mails:	yiguo.hong@hznu.edu.cn; yiguo.hong@warwick.ac.uk	
14			
15	Primary Re	search Area: Flowering and Reproduction/Breakthrough Technologies	

16 **2nd Research Area:** Genes and Development

Article Title: A Virus-induced Flowering Assay for Functional Dissection and Analysis of Monocot and Dicot FT genes¹

19

Cheng Qin², Weiwei Chen², Jiajia Shen, Linming Cheng, Femi Akande, Ke Zhang,
Chen Yuan, Chunyang Li, Pengcheng Zhang, Nongnong Shi, Qi Cheng, Yule Liu,
Stephen Jackson, Yiguo Hong^{*}

23

Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, 24 Hangzhou Normal University, Hangzhou 310036, China (C.Q., W.C., J-J.S., L.C., K.Z., 25 C.Y., P.Z., N.S., Y.H.); Biotechnology Research Institute, Chinese Academy of 26 Agricultural Sciences, Beijing 100081, China (Q.C.); Centre for Plant Biology and 27 28 MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 29 Beijing 100084, China (Y.L.); Warwick-Hangzhou RNA Signaling Joint Laboratory, 30 School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.A, C.L., 31 S.J., Y.H.)

32

¹Funding: This work was supported by grants from the Ministry of Agriculture of 33 34 China (National Transgenic Program 2016ZX08009-001-004 to Y.H.); the National Natural Science Foundation of China (NSFC 31370180 to Y.H., 31500251 to C.Q., 35 36 31601765 to W.C.); Hangzhou Normal University (Pandeng Program 201108 to Y.H.); the Hangzhou City Education Bureau (Innovative Program for Science Excellence 37 20131028 to Y.H.); the UK Biotechnology & Biological Sciences Research Council 38 39 (UK BBSRC-China Partnering Award BB/K021079/1 to S.J. and Y.H.); and the Zhejiang Provincial Natural Science Foundation (LY14C010005 to N.S.). 40

41

42 2 These authors contributed equally to this work.

43

44 Author Contributions: C.Q. and W.C. designed and performed experiments; J-J.S.,
45 L.C., F.A., K.Z., C.Y., C.L. and P.Z. performed research; C.Q., N.S., Q.C., Y.L. and S.J.

were involved in the analysis of data and helped writing the paper. S.J. was also
involved in designing experiments. Y.H. conceived and initiated the project, designed
experiments, analysed data and wrote the paper.

49

50 **One-sentence Summary:** A PVX-based VIF assay was designed in order to identify 51 amino acids in the FT protein that are essential for flowering, and to examine floral 52 induction by mono- and dicotyledonous *FT* genes.

53

^{*}Address correspondence to <u>yiguo.hong@hznu.edu.cn</u>; <u>yiguo.hong@warwick.ac.uk</u>

55 The author responsible for distribution of materials integral to the findings presented in

56 this article in accordance with the policy described in the instructions for Authors

57 (www.plantphysioll.org) is: Yiguo Hong (<u>yiguo.hong@hznu.edu.cn</u>,
58 <u>yiguo.hong@warwick.ac.uk</u>).

59 Supplemental Figure

Supplemental Figure S1. Constructs used in this study. A, Diagrammatic of Potato virus X (PVX)-based ViFA vectors. Wild-type, mutated non-translatable (m) and single amino acid substituted Arabidopsis *AtFT* coding sequences were cloned into the PVX vector to produce each of the ViFA vector as indicated. B, Plant transformation vector for wild-type and mutant AtFT alleles as indicated. The genome organization of PVX (A) and the outline of the binary vector pBI101.3 (B) are indicated. Restriction enzyme sites used to clone relevant genes into the two vectors are also indicated.

67 Supplemental Tables

Supplemental Table S1. Oligonucleotide primers used in this study.

Primer	Sequences (5' – 3')	Genes and origin [*]
RC0061	TCAAGA TCCGGA ATGTCTATAAATATAAGAGAC	AtFT, BspEI
RC0062	GAAGAAGTCGACCTAAAGTCTTCTTCCTCCGCA	AtFT, SalI
RC0066	TCAAGA TCCGGA<u>TAG</u>TCT<u>TAA</u>AATATAAGAGAC	AtFT, BspEI
RC0536	TCAAGACGGCCGATGGCCGGAAGTGGCAGGGACAG	Rice Hd3a, EagI
RC0537	GAAGAAGTCGACCTAGGGGTAGACCCTCCTGCCGCC	Rice Hd3a, SalI
RC0538	TCAAGACGGCCGTAGGCCGGAAGTGGCAGGGACAG	Rice Hd3a, EagI
RC0541	TCAAGACGGCCGATGCCTAGAGAACGTGATCCTCTT	Tomato SFT, EagI
RC0542	GAAGAAGTCGACTCAATCAGCAGATCTTCTACGTCC	Tomato SFT, SalI
RC0543	TCAAGACGGCCGTAGCCTAGAGAACGTGATCCTCTT	Tomato SFT, EagI
RC0779	TCAAGACGGCCGATGCCAAGAATAGATCCTTTGATA	MM NtFT4, Eagl
RC0780	GAAGAAGTCGACTTAATATGCGCGGCGGC	MM NtFT4, Sall
RC1639	TCAAGACGGCCGTAGCCAAGAATAGATCCTTTGATA	MM NtFT4, EagI
RC0693	ATAAGTAACCTTTAG <u>AGC</u> GATTGATCTATTAAA	AtFTT27A
RC0694	TTTAATAGATCAATC <u>GCT</u> CTAAAGGTTACTTAT	AtFTT27A
RC0695	CACCAACCAATGGAG <u>AGC</u> TTCTCGGAGGTGAGG	AtFTy85A
RC0696	CCTCACCTCCGAGAAGCTCTCCATTGGTTGGTG	AtFTy85A
RC0699	CAATATAAACACGACAGCATGAATTCCTGCAGT	AtFTr119A
RC0700	ACTGCAGGAATTCATGCTGTCGTGTTTATATTG	AtFTr119A
RC0701	GAAGAAGTCGACCTAAAGTCTTGCTCCTCCGCA	AtFTR173A, Sall
RC0783	TCAAGAGTCGACATGTCTATAAATATAAGAGACCCT	SalI
RC0784	GAAGAA GAGCTC CTAAAGTCTTCTTCCTCCGCAGCC	SacI
RC0798	TCAAGAGTCGACTAGTCTATAAATATAAGAGACCCT	SalI
RC0799	GAAGAAGAGCTCCTAAAGTCTTGCTCCTCCGCAGCC	SacI
RC1305	AAGCAACCCAAACCTGAGGGAGTATCTG	qRT-PCR NtFT1
RC1306	GCAGCAACAGGCGAATTGAGATTATGAAATCTC	qRT-PCR NtFT1

RC1307	AGATATCCCTGCAACCACAGAAGCAAC	qRT-PCR NtFT2
RC1308	AAACAGCGGCAACAGGCAAATTGAGAC	qRT-PCR NtFT2
RC1309	AATTGTCCACCAACCTAGGGTTGACGTG	qRT-PCR NtFT3
RC1310	CATTCACAACATCTCGAGTCAATTGTCGAAACAG	qRT-PCR NtFT3
RC1311	GATATCCCAGCAACTACAGATACAAG	qRT-PCR NtFT4
RC1312	GAAACGGGCAAACCAAGATTGTAAAC	qRT-PCR NtFT4
RC1313	TGAGATGCACCACGAAGCTC	qRT-PCR <i>NtEF1α</i>
RC1314	CCAACATTGTCACCAGGAAGTG	qRT-PCR NtEF1α
RC1317	AGGCCTTCTCAGGTTCAAAACAAGC	qRT-PCR AtFT
RC1318	TGCCAAAGGTTGTTCCAGTTGTAGC	qRT-PCR AtFT
PP82	CAGTGTTGGCTTGCAAACTAG	PVX
PP356	AGGAAGAAGTCGACTAAAGTCTTCTTCCTCCGCAG	AtFT, Sall
His-FTF	GGC CGGCCG ATGCATCATCACCATCACCACTCTATAAATATA AGA	AtFT, EagI
His-FTR	GGCGTCGACCTAAAGTCTTCTTCCTCCGCAG	AtFT, SalI
FT-HisR	GCG GTCGAC CTAGTGGTGATGGTGATGATGAAGTCTTCTTC CTCCGC	AtFT, SalI
FT-HisF	GGCCGGCCGATGTCTAT AAATATAAGA	AtFT, EagI
FT-FLAGR	GCG GTCGAC CTACTTGTCATCGTCATCCTTGTAGTCAAGTCT TCTTCCTCCGCAG	AtFT, SalI
EFNBF	CTCCAAGGCTAGGTATGATG	RT-PCR <i>NtEF1α</i>
EFNBR	CTTCGTGGTTGCATCTCAAC	RT-PCR <i>NtEF1α</i>

⁶⁹ ^{*}Each introduced restriction endonuclease site is highlighted in bold. Sense or non-sense

70 mutated codons are underlined.

	Average number of	Average number of	
Genotype	rosette leaves when	cauline leaves when	Phenotype
	flowering (n: plants)	flowering (n: plants	
Col (wild-type)	11.1 ± 1.4 (n = 20)	2.9±1.2 (n = 20)	Normal flowering
ft-10 (FT mutant)	42.3±9.8 (n = 20)	7.8±1.9 (n = 20)	Late flowering
ft-10/SUC2:AtFT	5.3±0.8 (n = 19)	1.7±0.8 (n = 19)	Early flowering
ft-10/SUC2:mAtFT	40.2±5.5 (n = 20)	7.4±2.1 (n = 20)	Late flowering
ft-10/SUC2:FT _{Y85A}	30.0±9.3 (n = 18)	9.4±3.1 (n = 18)	Late flowering
ft-10/SUC2:FT _{R119A}	43.6±1.5 (n = 16)	6.6±0.6 (n = 16)	Late flowering
ft-10/SUC2:FT _{R173A}	35.0±2.5 (n = 20)	7.8±2.5 (n = 20)	Late flowering
ft-10/SUC2:FT _{T27A}	5.4±2.0 (n = 19)	3.7±2.5 (n = 19)	Early flowering

Supplemental Table S2. Flowering time in *Arabidopsis*.