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Supplementary Tables

Supplementary Table 1. Negative training data of the Mendelian dataset. Distribution of variant categories for single
nucleotide positions in Homo sapiens that differ from the inferred sequence of the last common primate ancestor. An asterisk
(∗) marks variant categories that were used as negatives. Variants were chosen from the Sequence Ontology1 categories
NON CODING TRANSCRIPT INTRON VARIANT, CODING TRANSCRIPT INTRON VARIANT,
FIVE PRIME UTR VARIANT, THREE PRIME UTR VARIANT, UPSTREAM GENE VARIANT,
DOWNSTREAM GENE VARIANT, INTERGENIC VARIANT, TF BINDING SITE VARIANT,
REGULATORY REGION VARIANT, CONSERVED INTRON VARIANT, INTRAGENIC VARIANT,
CONSERVED INTERGENIC VARIANT, INTRON VARIANT. Variants were defined at positions in which the human
genome differs from the inferred genome sequence of the last common primate ancestor and annotated using Jannovar2 version
0.14 using transcript definitions from the NCBI Reference Sequence Database3 (annotation release 105).

Category All High quality Fixed High-quality & Fixed

CDS 49,599 44,885 43,420 38,706
CDS (syn) 57,708 52,656 52,189 47,137
Unclassified sequence variant 11,408 10,675 11,408 10,675
Splice 12,520 12,553 12,430 11,218
5’ UTR 764,719 711,934 692,943 640,158∗

3’ UTR 121,014 112,740 109,034 100,760∗

Intron 5,954,014 5,600,983 5,383,124 5,030,093∗

Upstream/Downstream 224,128 198,554 203,737 178,163∗

Noncoding (exon) 67,704 58,236 62,038 52,570
Noncoding (intron) 858,848 782,486 782,720 706,358∗

Intergenic 9,908,106 8,989,024 9,018,749 8,099,667∗

Total 18,029,768 16,574,726 16,371,792 14,915,505
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Supplementary Table 2. Genomic attributes for the regulatory Mendelian dataset. Genomic attributes used for
training the regulatory Mendelian dataset. The source of the data is shown as a UCSC Genome Browser Table or as a URL.

Attribute Description

GCContent GC-content in a window of ±75 nt

CpGperGC
Percentage of CpG island that is C or G.
UCSC table cpgIslandExt

CpGperCpG
Percentage of CpG island that is CpG.
UCSC table cpgIslandExt

CpGobsExp
Ratio of observed to expected CpG in CpG island.
UCSC table cpgIslandExt

priPhyloP46way
Primate PhyloP score.
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/primates

verPhyloP46way
Vertebrate PhyloP.
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/vertebrate

mamPhyloP46way
Mammalian PhyloP score.
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/placentalMammals

priPhastCons46way
Primate PhastCons conservation score
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/primates

verPhastCons46way
Vertebrate PhastCons conservation score
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/vertebrate

mamPhastCons46way
Mammalian PhastCons conservation score
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/placentalMammals

GerpRS
GERP++ element score
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz

GerpRSpv
GERP++ element p-Value
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz

EncH3K27Ac
Maximum ENCODE H3K27 acetylation level
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac

EncH3K4Me1
Maximum ENCODE H3K4 methylation level
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me1

EncH3K4Me3
Maximum ENCODE H3K4 trimethylation level
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me3

DnaseClusteredHyp
DnaseClustered V3 hypersensitivity score
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered

DnaseClusteredScore
Number of DnaseClustered V3 hypersensitive cells
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered

fantom5Perm
FANTOM 5 permissive enhancers
http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed

fantom5Robust
FANTOM5 robust enhancers
http://enhancer.binf.ku.dk/presets/robust_enhancers.bed

numTFBSConserved
Number of overlapping transcription factor binding sites.
UCSC table tfbsConsSites

rareVar Number of rare 1000 Genome variants (≤ 0.5% AF) in a window of ±500 nt
commonVar Number of common 1000 Genome variants (> 0.5% AF) in a window of ±500 nt
fracRareCommon Ratio of rare to common variants

ISCApath

Overlapping ISCA CNVs
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd75

http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd46

http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd37

dbVARCount
Overlapping dbVAR CNVs
ftp://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/

by_assembly/GRCh37.p13/gvf/GRCh37.p13.remap.all.germline.ucsc.gvf.gz

DGVCount
Overlapping DGV CNVs
http://dgv.tcag.ca/dgv/app/downloads?ref=GRCh37/hg19
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Supplementary Table 3. Comparison of imbalance-unaware and imbalance-aware methods with progressively
imbalanced data. Imbalance-unaware (CADD) and imbalance-aware (hyperSMURF) area under the precision/recall curve
(AUPRC) and area under the ROC curve (AUROC) results using cytoband-aware 10-fold cross-validation with Mendelian data.
Imbalance ratio represents the ratio between positive examples (Mendelian mutations) and negatives (background
non-deleterious variants).

Imbalance ratio AUPRC AUROC

CADD HyperSMURF CADD HyperSMURF

1 0.8908 0.9897 0.8702 0.9908
0.1 0.7905 0.9565 0.8946 0.9891
0.01 0.5242 0.9044 0.8896 0.9904
0.001 0.2323 0.7814 0.8534 0.9912

Supplementary Table 4. HyperSMURF default parameters. Default values and sets of parameter values explored for the
automatic tuning of hyperSMURF. The item ”Random tree features” refers to the number of randomly selected features at each
step of the construction of the inductive trees that constitute the base learners of the random forests. As a general default on
larger datasets we propose d =

⌊√
| f eatures|

⌋
. More details about the parameters of hyperSMURF are available in the

Supplementary Note 1.

Parameter Description Default Parameter values used for optimization

n Number of partitions 100 10,25,50,75,100,150,200
f SMOTE oversampling factor 2 0.5,1,1.5,2,2.5,3
k SMOTE k-nearest neighbor 5 5
m Undersampling factor 3 1,2,3
t Forest size 10 5,10,20,30,50,75,100
d Random tree features 5 3,4,5,6,7,10

Supplementary Table 5. Impact of hyperSMURF components on its overall performance. Area under the ROC curve
(AUROC), area under the precision/recall curve (AUPRC) and AUROC of the top 100, 500 and 1000 variants (AUROC100,
AUROC500 and AUROC1000) with the Mendelian data. HyperSMURF std is the full HyperSMURF algorithm;
HyperSMURF no-over is HyperSMURF with no oversampling; HyperSMURF no-par is HyperSMURF with no partitions, i.e.
without the hyper-ensemble approach (no partitioning of the training data is performed); RF is the classical Random Forest
ensemble. In every setting a subsampling of the majority (negative) class to three times the cardinality of the minority class
(positives) has been performed. Other parameters were set to default (see Supplementary Table 4).

Algorithm AUPRC AUROC AUROC100 AUROC500 AUROC1000

HyperSMURF std 0.4266 0.9900 0.6962 0.8034 0.8519
HyperSMURF no-over 0.3925 0.9915 0.6457 0.7969 0.8475
HyperSMURF no-par 0.0287 0.9870 0.0000 0.5000 0.5000
RF 0.0149 0.9891 0.0000 0.5000 0.5000
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Supplementary Table 6. Most informative Mendelian genomic features according to a univariate regression model.
Results are computed by 10-fold cytoband-aware cross-validation using a logistic regression model with Mendelian data.
Experiment is repeated 100 times and AUPRC and AUROC means with the standard deviations are listed. Genomic features
are ranked according to the estimated AUPRC. The source of the data for the considered genomic features are listed in
Supplementary Table 2.

Genomic feature AUPRC AUROC

mamPhyloP46way 0.24018±0.01600 0.92077±0.00025
verPhyloP46way 0.11705±0.00635 0.92450±0.00028
priPhyloP46way 0.02750±0.00541 0.96333±0.00036
priPhastCons46way 0.00951±0.00965 0.89562±0.00316
mamPhastCons46way 0.00157±0.00020 0.85717±0.00171
verPhastCons46way 0.00121±0.00019 0.84922±0.00177
DnaseClusteredHyp 0.00101±0.00032 0.73808±0.00414
CpGperCpG 0.00096±0.00040 0.61934±0.00257
CpGobsExp 0.00093±0.00036 0.61912±0.00286
CpGperGC 0.00081±0.00019 0.61898±0.00235
numTFBSConserved 0.00062±0.00011 0.62967±0.01099
EncH3K4Me3 0.00058±0.00004 0.81133±0.01060
GerpRS 0.00039±0.00004 0.84027±0.00724
DnaseClusteredScore 0.00032±0.00005 0.73790±0.00222
GCContent 0.00032±0.00002 0.82201±0.00091
rareVar 0.00024±0.00010 0.50697±0.00233
EncH3K27Ac 0.00024±0.00001 0.79388±0.00877
EncH3K4Me1 0.00006±0.00000 0.73490±0.00819
fracRareCommon 0.00005±0.00000 0.67170±0.00201
commonVar 0.00004±0.00000 0.58627±0.00563
ISCApath 0.00004±0.00000 0.50986±0.01101
GerpRSpv 0.00004±0.00000 0.49735±0.02040
fantom5Perm 0.00003±0.00000 0.49468±0.02366
fantom5Robust 0.00003±0.00000 0.49362±0.02293
dbVARCount 0.00002±0.00000 0.44047±0.03022
DGVCount 0.00002±0.00000 0.44047±0.03022
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Supplementary Table 7. Informative GWAS genomic features according to a univariate regression model. Results
are computed by 10-fold cytoband-aware cross-validation using a logistic regression model with GWAS data. Experiment is
repeated 100 times and AUPRC and AUROC means with the standard deviations are listed. Genomic features are ranked
according to the estimated AUPRC and the ten best and ten less informative features are listed.

Genomic feature AUPRC AUROC

PhyloP 0.36978±0.01004 0.76382±0.00019
PhastCons 0.04262±0.00332 0.93689±0.00094
HepG2|Sin3Ak-20|None|PDIFF 0.00415±0.00006 0.51082±0.00137
HeLa-S3|TBP|None|PDIFF 0.00414±0.00010 0.50653±0.00381
PFSK-1|FOXP2|None|PDIFF 0.00392±0.00006 0.51070±0.00329
HeLa-S3|GTF2F1|None|PDIFF 0.00391±0.00009 0.50962±0.00636
HepG2|Mxi1|None|PDIFF 0.00382±0.00019 0.50738±0.00276
A549|ETS1|EtOH 0.02pct|PDIFF 0.00381±0.00012 0.51528±0.00577
HepG2|MYBL2|None|PDIFF 0.00373±0.00010 0.51412±0.00084
GM12878|MAZ|None|PDIFF 0.00373±0.00009 0.51408±0.00264

...
...

...
NHDF-Ad|H3K9me3|None|PDIFF 0.00137±0.00004 0.52076±0.01015
NT2-D1|ZNF274|None|PDIFF 0.00137±0.00003 0.50806±0.00856
H1-hESC|H3K9me3|None|PDIFF 0.00136±0.00003 0.51356±0.00811
GM12878|ZNF274|None|PDIFF 0.00134±0.00002 0.50384±0.00432
HeLa-S3|BRF2|None|PDIFF 0.00132±0.00004 0.49894±0.00515
GM08714|ZNF274|None|PDIFF 0.00131±0.00001 0.49587±0.00388
HeLa-S3|SPT20|None|PDIFF 0.00130±0.00003 0.50425±0.00888
K562|KAP1|None|PDIFF 0.00129±0.00001 0.50126±0.00326
U2OS|SETDB1|None|PDIFF 0.00129±0.00001 0.49855±0.00371
K562|SETDB1|MNaseD|PDIFF 0.00127±0.00001 0.48961±0.00455

Supplementary Table 8. HyperSMURF performance with respect to specific functional elements.
HyperSMURF performances with Mendelian data considering variants located in different functional elements of non-coding
regions. The number of variants in the specific element is shown under #variants. AUROC100 is the AUROC computed
considering only the top ranked 100 variants; AUROC500 and AUROC1000 are computed in a similar way.

Functional element #variants AUPRC AUROC AUROC100 AUROC500 AUROC1000

5’UTR 133 0.329 0.997 0.665 0.811 0.885
3’UTR 38 0.009 0.943 0.614 0.765 0.657
Enhancer 37 0.074 0.999 0.434 0.673 0.837
Promoter 130 0.185 0.991 0.589 0.785 0.815
microRNA 5 0.228 1.000 0.359 0.871 0.936
RNA component 60 0.407 1.000 0.832 0.833 0.874
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Supplementary Figures

a b

Supplementary Figure 1. Comparison across methods of ROC curves. a: ROC curves of the methods with Mendelian
data; b: ROC curves with the regulatory GWAS hits.
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a b

c d

Supplementary Figure 2. Precision, recall, and F-score comparison across methods with GWAS data. HyperSMURF,
CADD, Eigen, Eigen-PC, GWAVA, and DeepSEA performance, by varying the normalized score threshold. a: precision, b:
recall, c: F-score, and d: balanced accuracy.
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Supplementary Figure 3. GWAS data: precision, recall, and F-measure in the highest range of the normalized
score. Details of precision, recall and F-score as a function of [0.75,1] values of the normalized scores. a: HyperSMURF b:
CADD c: Eigen d: Eigen-PC e: GWAVA f: DeepSEA.
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a b

c d

Supplementary Figure 4. Performance comparison across methods with Mendelian data. HyperSMURF, CADD,
Eigen, Eigen-PC, GWAVA, and DeepSEA results by varying the normalized score threshold. a: precision, b: recall, c: F-score,
and d: balanced accuracy.
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Supplementary Figure 5. Mendelian data: precision, recall, and F-measure in the highest range of the normalized
score. Details of precision, recall and F-score as a function of [0.75,1] values of the normalized scores. a: HyperSMURF b:
CADD c: Eigen d: Eigen-PC e: GWAVA f: DeepSEA.

11/21



a b

Supplementary Figure 6. Comparison of ROC and PR curves using precomputed scores. a: ROC and b: PR curves
across methods using precomputed scores with the Mendelian dataset.
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Supplementary Figure 7. HyperSMURF parameter tuning with fixed undersampling factor. Area under the PR curve
(AUPRC) as a function of different HyperSMURF partition sizes generated by internal nine-fold cytoband-aware
cross-validation using Mendelian data. Curves represent different oversampling factors with a fixed undersampling factor m for
each figure: a: m = 1, b: m = 2 and c: m = 3. Error bars represent the standard deviation between ten repetitions of internal
nine-fold cross-validation using different folds. The undersampling factor is the ratio of negative examples with respect to
positives. Negative examples were randomly sampled without replacement from each partition of the data (see Supplementary
Note 2 for details).
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Supplementary Figure 8. HyperSMURF parameter tuning with fixed oversampling factor. AUPRC as a function of
different hyperSMURF partition sizes generated by internal nine-fold cytoband-aware cross-validation using Mendelian data.
Curves represent different undersampling factors with a fixed oversampling factor f for each figure: a:, f = 0.5, b: f = 1, c:
f = 1.5, d: f = 2, e: f = 2.5, and f: f = 3. Error bars represent the standard deviation between ten repetitions of internal
nine-fold cross-validation using different folds. The oversampling factor is the ratio of synthetic positive examples generated
through the SMOTE algorithm with respect to the available number of positive examples (see Supplementary Note 2 for
details).
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Supplementary Figure 9. Tuning of Random Forest parameters. Area under the PR curve (AUPRC) as a function of
different Random Forest sizes (number of decision trees) trained by internal nine-fold cytoband-aware cross-validation. The
curves represent the number of random features (3,4,5,6,7,10) used to construct each decision tree of the random forest. The
other hyperSMURF parameters were set to standard values (Supplementary Table 4). Error bars represent the standard
deviation between ten repetitions of internal nine-fold cross-validation using different folds.
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Supplementary Figure 10. Characteristics of the two sets of DeepSEA features. Plot of the functions log f old and
di f f used to generate the two differents sets of DeepSEA features. P(re f erence) values between 0 and 1 are represented in
abscissa.

15/21



Supplementary Note 1: Supplementary Experimental results
In this Supplementary Note we present a thorough analysis of the precision, recall, and F-score as a function of the score
predicted by hyperSMURF and several state-of-the-art scoring methods. In order to obtain a common basis for the comparison
between methods, we rescaled all the scores in the range [0,1] (indicated as ”threshold” or “normalized score” in Supplementary
Fig. 2-5) through a simple linear transformation.

Precision, Recall and F-score results with GWAS data. HyperSMURF and GWAVA achieve the best F-score results
(Supplementary Fig. 2c), due to their better precision performance (Supplementary Fig. 2a), while maintaining good recall
performance across most of the range of normalized score thresholds (Supplementary Fig. 2b). DeepSEA achieves good results
too, even if worse than hyperSMURF; this is not surprising since to train all the methods with these data we used features
extracted directly from DNA sequence through deep convolutional networks, developed as part of the overall DeepSEA method
itself4 (Supplementary Fig. 2a–c).

The other imbalance-unaware ML-based methods achieve relatively low F-score results: CADD obtains a very low F-score
peak at a normalized score of about 0.20, due to the low but not negligible precision in the normalized score range of [0.20.0.50],
while the sensitivity, high only for low values of the normalized scores, dramatically decreases at a score value of about 0.20
(Supplementary Fig. 2a–c). Eigen and Eigen-PC maintain a high recall only for score thresholds below 0.50, but the precision
is very low for the full range of the normalized scores, thus resulting in poor F-scores (Supplementary Fig. 2a–c). It is likely
that in this case, having a large set of input features (about 1800, see GWAS data Section in the main manuscript), it is difficult
for fully unsupervised learning methods such as Eigen and Eigen-PC to achieve competitive results.

Balanced accuracy results confirm the behavior of the different methods observed with precision, recall and F-score
(Supplementary Fig. 2d). Supplementary Figure 3 shows the details of the precision, recall and F-score for the highest values of
the normalized score, and suggests possible ”good” thresholds to detect GWAS regulatory hits at least for hyperSMURF(a
threshold at about 0.85), and for GWAVA and DeepSEA methods (a threshold slightly larger than 0.85 – Supplementary Fig. 3).

Precision, Recall and F-score results with Mendelian data. With non-coding Mendelian the overall behavior of the
algorithms is similar to that observed with GWAS data, even if the higher imbalance between positive and negative examples
with respect to GWAS data leads to overall worse results.

With Mendelian data, hyperSMURF and GWAVA show the highest precision (Supplementary Fig. 4a), especially in the
highest range of the normalized score (Supplementary Fig. 5a and -e), while CADD shows the highest sensitivity across almost
all the considered thresholds (Supplementary Fig. 4b). Nevertheless CADD precision is always close to 0 and increases only for
normalized scores very close to 1, i.e. when the recall dramatically declines, thus resulting in a F-score very close to 0 for the
full range of the normalized scores, except for a small peak (F-score∼ 0.1) for normalized scores very close to 1 (Supplementary
Fig. 5b). The highest F-score is achieved by HyperSMURF, but also GWAVA and to some extent DeepSEA obtain good results
(Supplementary Fig. 4c), especially in the highest range of the normalized scores (Supplementary Fig. 5a, e and f). The best
F-scores of hyperSMURF and GWAVA are due to their higher precision in the highest range of the normalized score, while
maintaining a good recall across all the thresholds: the behavior of the two methods is similar, even if hyperSMURF precision
is larger than GWAVA, thus resulting in a better F-score (Supplementary Fig. 5a and e). This analysis also shows that a good
threshold for a classifier (i.e. a classifier with a high F-score) is about 0.97 for hyperSMURF (Supplementary Fig. 5a, about 0.99
for GWAVA (Supplementary Fig. 4e) and about 0.95 for DeepSEA (Supplementary Fig. 5f). Eigen and Eigen-PC performance
depends on the peaks of precision respectively at the highest and lowest score thresholds (Supplementary Fig. 4a), and on the
opposite trends of the corresponding recall curves (Supplementary Fig. 4b). However, both recall curves of Eigen and Eigen-PC
drop in correspondence with the peaks of precision, thus resulting in relatively low peaks of the F-score (Supplementary
Fig. 4c).

The results in terms of the balanced accuracy confirm the better results obtained with imbalance-aware methods (hyper-
SMURF and GWAVA) as compared to imbalance-unaware methods (Supplementary Fig. 4d).
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Supplementary Note 2: Experimental analysis and automatic tuning of the parameters of
HyperSMURF
HyperSMURF learning depends on several parameters including oversampling and undersampling ratios, the size of the
hyper-ensemble (number of partitions), as well as on the learning parameters of the Random Forest (RF), that constitute the
base learners of the HyperSMURF method. We provide default parameters that work well in the imbalanced settings analyzed
in this work (Supplementary Table 4). Nevertheless, we also designed an adaptive hyperSMURF model able to automatically
learn the ”best” learning parameters for a specific learning task. To this end we developed an adaptive learning strategy to
automatically learn from the data the best parameters, but avoiding overfitting through an internal cytoband-aware validation
and selection of the learning parameters.

More precisely, for each round of the 10-fold cytoband-aware cross-validation (CV), we used the nine partitions of the
training set to repeatedly run an internal nine-fold cytoband-aware CV using at each iteration different sets of parameters
(Supplementary Table 4). Because of computational complexity issues, we split the parameter search into a first step in which
we optimize the hyperSMURF learning parameters, and into a second step to optimize the RF learning parameters. In the first
step, we optimized the number of partitions n, together with the oversampling factor f and the undersampling factor m, while
the parameters of the RF were kept fixed using t = 10 decision trees and d = 5 randomly selected features. In the second
step, we optimized the RF learning parameters (i.e. the number of trees of each RF and the number of randomly selected
features), while maintaining fixed the optimized hyperSMURF learning parameters. The “split” of the optimization procedure
is motivated by the need of reducing the combinatorial complexity that rises by the joint optimization of all the parameters.
Finally, we trained an “optimal” hyperSMURF model using for every 10-fold CV step the best parameter setting in terms of the
highest AUPRC obtained with the internal nine-fold CV. We repeated the cytoband-aware CV on Mendelian data 100 times
with standard settings (Supplementary Table 4) and with the selected optimal learning parameters using different seeds to get
an average performance that is not dependent on randomization issues. The standard hyperSMURF achieved an AUPRC of
0.4195±0.0175, while the optimized algorithm an AUPRC of 0.4431±0.0124, and this difference is significant according to
the Wilcoxon rank sum test (p-value < 10−6).

To provide an idea about the impact of the different learning parameters on the overall hyperSMURF performance,
Supplementary Figure 7 shows that increasing the number n of partitions, the performance in terms of AUPRC increases,
as expected, because a larger space of the negative variants is explored and the larger size of the hyper-ensemble provides
more accurate and reliable results. Nevertheless, we have a steep boost until n = 100 and for larger number of partitions the
improvement is marginal. In terms of runtime this means that we can safely use n = 100 to obtain reasonably good performance.
Supplementary Figure 8 shows that the best selection of the undersampling factor m within a partition is also important. Indeed
the curves corresponding to m = 3 lie steadily over the other curves with lower undersampling ratio, showing on the average an
AUPRC increment of about 0.05, independently of the oversampling factor used. The oversampling factor f contributes to
the overall performance too (Supplementary Fig. 7), even if the introduced improvement is less significant with respect to the
undersampling ratio.

Also the learning parameters of the RF, the base learners of hyperSMURF, plays a role in the performance of the hyper-
ensemble. Indeed Supplementary Figure 9, as expected, shows that an increasing forest size leads to better performances,
even if the AUPRC curve reaches a really fast saturation for forest sizes larger than t = 20. Therefore there is no need to
increase runtime by increasing the forest size. Moreover also the random number d of selected features is an important learning
parameter: Supplementary Figure 9 shows that the best curves are those corresponding to d = 5 and d = 6, and a relatively
large decrement in performance can be registered when suboptimal number of features d are selected. These results reveal that
with the standard settings (Supplementary Table 4) we obtain good performances on Mendelian data, while keeping the runtime
to a minimum.

Finally, considering that hyperSMURF is a hyper-ensemble approach with partitioning of the data, oversampling of positive
examples, and undersampling of negatives, we performed experiments to study the impact of each of these “components” on
the overall performance of the algorithm. Supplementary Table 5 shows the performance of the full hyperSMURF algorithm
compared with the results obtained without oversampling, and without partitioning (i.e. by removing the hyper-ensemble
approach). Results show that each component of the algorithm (and in particular the hyper-ensemble approach) plays a key role
to improve the performance of the method. Comparison with a standard RF (that constitutes the base learner of hyperSMURF)
shows the very large improvements obtained by hyperSMURF with respect to standard state-of-art machine learning algorithms.
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Supplementary Note 3. The hyperSMURF software R package
The R version of hyperSMURF is available from the CRAN repository:
https://cran.r-project.org/package=hyperSMURF.

R package installation. Here, we explain the installation on Linux systems, but the procedure is similar for Mac OS and
Windows.

You can install the package by downloading the tarball from the CRAN repository, and then by calling R from the shell
command line:

$ R CMD INSTALL hyperSMURF_1.1.2.tar.gz

Alternatively, you can both download and install the package directly from the R command line:

> install.packages("hyperSMURF")

Main functionalities implemented in the R package. The package implements both the training (function hyperSMURF.train)
and the testing (function hyperSMURF.test), as well as the fully automated CV of the hyperSMURF model (hyperSMURF.cv).

The parallel version of the training, testing and CV functions are provided as well through the functions hyperSMURF.train.parallel,
hyperSMURF.test.parallel and hyperSMURF.cv.parallel. These functions can be used with multi-core archi-
tectures and can achieve a quasi linear speed-up with respect the number of available cores.

Other functions include a feature selection step to reduce the dimensionality of the data and to select the most informative
features for training and testing (hyperSMURF.corr.cv.parallel), a modified version of the hyperSMURF algorithm
that computes the scores by using a tunable cutoff for the decision of each base RF instead of the estimated probability provided
by each base RF (hyperSMURF.test.thresh). Other ancillary functions provide functionalities for the implementation of
the CV (do.stratified.cv.data, do.stratified.cv.data.from.fold), and to generate synthetic imbalanced
data sets (imbalanced.data.generator).

A full description of the available R functions is available in the Reference manual included in the package as PDF and
HTML.

Simple usage examples using synthetic data. Here we introduce some simple usage examples using the generator of
synthetic imbalanced data included in the R package. At first we load the library:

> library(hyperSMURF)

Then we construct two imbalanced data sets (training and test set) having both 20 “positive” and 2000 “negative” examples
with 10 features (dimension of input data equal to 10 – see the Reference manual for details about the synthetic data generator):

> train <- imbalanced.data.generator(n.pos=20, n.neg=2000, n.features=10,
n.inf.features=3, sd=0.1, seed=1);

> test <- imbalanced.data.generator(n.pos=20, n.neg=2000, n.features=10,
n.inf.features=3, sd=0.1, seed=2);

Then we can train and test the model with the following code:

> HSmodel <- hyperSMURF.train(train$data, train$label, n.part = 10, fp = 2, ratio = 3);
> res <- hyperSMURF.test(test$data, HSmodel);

Note that we used 10 partitions of the training data (parameter n.part that corresponds to the parameter n in the pseudo-code of
the algorithm in Supplementary Note 1), a SMOTE oversampling equal to 2 (parameter fp corresponding to the f parameter
in the pseudo-code), and undersampling ratio equal to 3 (parameter ratio corresponding to the parameter m of the modified
second line of the hyperSMURF algorithm in Supplementary Note 1). In other words the negative examples were partitioned
in 10 sets of equal size (200 examples). Then a different RF was trained using: a) the available 20 positive examples, plus
the ”augmented” 40 synthetic positive examples obtained by SMOTE convex combination of close positive examples, and
b) a set of 3×60 = 180 negative examples randomly extracted from the partition (see Supplementary Note 1). The obtained
hyperSMURF model (HSModel), that includes 10 different RF (one for each partition), is finally tested on the test set. We can
easily obtain the confusion matrix:

> y <- ifelse(test$labels==1,1,0);
> pred <- ifelse(res>0.5,1,0);
> table(pred,y);
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y
pred 0 1

0 1979 1
1 21 19

The accuracy is 0.9891 and the F-score (more informative in this unbalanced context) is 0.6333. Note that with a RF that does
not adopt unbalance-aware learning strategies on the same data we obtain significantly worse results in terms of the F-score:

> library(randomForest);
> RF <- randomForest(train$data, train$label);
> res <- predict(RF, test$data);
> y <- ifelse(test$labels==1,1,0);
> pred <- ifelse(res==1,1,0);
> table(pred,y);

y
pred 0 1

0 2000 16
1 0 4

The accuracy of the RF is high (0.9930), but the F-score is 0.3333, only about half that of hyperSMURF. 1

To perform a 5 fold CV on a given data set we need only 1 line of R code:

> res <- hyperSMURF.cv(train$data, train$labels, kk = 5, n.part = 10, fp = 1, ratio = 1);

To compute the AUROC and the AUPRC (respectively the area under the ROC curve and the area under the precision/recall
curve) we can use the precrec package:

> library(precrec);
> labels <- ifelse(train$labels==1,1,0);
> digits=4;
> sscurves <- evalmod(scores = res, labels = labels);
> m<-attr(sscurves,"auc",exact=FALSE);
> AUROC <- round(m[1,"aucs"],digits);
> AUPRC <- round(m[2,"aucs"],digits);
> cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9972
AUPRC = 0.8540

We can also apply the version of hyperSMURF that embeds a feature selection step on the training data to select the features
most correlated with the labels:

> res <-hyperSMURF.corr.cv.parallel(train$data, train$labels, kk = 5,
n.part = 10, fp = 1, ratio = 1, mtry=3, n.feature = 6);

> sscurves <- evalmod(scores = res, labels = labels);
> m<-attr(sscurves,"auc",exact=FALSE);
> AUROC <- round(m[1,"aucs"],digits);
> AUPRC <- round(m[2,"aucs"],digits);
> cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9982
AUPRC = 0.9190

Usage examples with genetic data. HyperSMURF was designed to predict rare genomic variants, when the available
examples of such variants are substantially less than “background” examples. This is a typical situation with genetic variants.
For instance, we have only a small set of available variants known to be associated with Mendelian diseases in non-coding
regions (positive examples) against the sea of background variants, i.e. a ratio of about 1 : 36,000 between positive and negative
examples5.

Here we show how to use hyperSMURF to detect these rare features using data sets obtained from the original large set
of Mendelian data5. To provide usage examples that do not require more than 1 minute of computation time on a modern

1Note that the results may vary slightly due to the randomization in the algorithm.
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desktop computer, we considered data sets downsampled from the original Mendelian data set described in the “mendelian data”
section of the main manuscript (this data set includes more than 14 millions of genetic variants). In particular we constructed
Mendelian data sets with a progressive larger imbalance between Mendelian associated mutations and background genetic
variants. We start with an artificially balanced data set, and then we consider progressively imbalanced data sets with ratio
”positive:negative” varying from 1 : 10, to 1 : 100 and 1 : 1000. These data sets are downloadable as compressed .rda R objects
from http://homes.di.unimi.it/valentini/DATA/Mendelian.

The Mendelian balanced.rda file include 3 objects: m.subset, that includes the input features of the balanced
examples (406 positives and 400 negatives), labels.subset, i.e. the corresponding labels, and folds.subset a vector
with the number of the fold in which each example will be included according to the 10-fold cytoband-aware CV procedure
(see Supplementary Note 2). The following lines of code load the data and perform a 10-fold cytoband-aware CV and compute
the AUROC and AUPRC:

> load("Mendelian_balanced.rda");
> res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part = 2,
fp = 0, ratio = 1, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition = folds.subset);

> sscurves <- evalmod(scores = res, labels = labels.subset);
> m<-attr(sscurves,"auc",exact=FALSE);
> AUROC <- round(m[1,"aucs"],digits);
> AUPRC <- round(m[2,"aucs"],digits);
> cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9903
AUPRC = 0.9893

Then we can perform the same computation using the progressively imbalanced data sets:

# Imbalance 1:10. about 400 positives and 4000 negative variants
> load("Mendelian_1:10.rda");

> res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part = 5,
fp = 1, ratio = 1, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition = folds.subset);

> sscurves <- evalmod(scores = res, labels = labels.subset);
> m<-attr(sscurves,"auc",exact=FALSE);
> AUROC <- round(m[1,"aucs"],digits);
> AUPRC <- round(m[2,"aucs"],digits);
> cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9915
AUPRC = 0.9583

# Imbalance 1:100. about 400 positives and 40000 negative variants
> load("Mendelian_1:100.rda");
> res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part = 10,
fp = 2, ratio = 3, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition = folds.subset);

> sscurves <- evalmod(scores = res, labels = labels.subset);
> m<-attr(sscurves,"auc",exact=FALSE);
> AUROC <- round(m[1,"aucs"],digits);
> AUPRC <- round(m[2,"aucs"],digits);
> cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9922
AUPRC = 0.9

# Imbalance 1:1000. about 400 positives and 400000 negative variants
load("Mendelian_1:1000.rda");

> res <- hyperSMURF.cv(m.subset, factor(labels.subset, levels=c(1,0)), kk = 10, n.part = 10,
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fp = 2, ratio = 3, k = 5, ntree = 10, mtry = 6, seed = 1, fold.partition = folds.subset);

> sscurves <- evalmod(scores = res, labels = labels.subset);
> m<-attr(sscurves,"auc",exact=FALSE);
> AUROC <- round(m[1,"aucs"],digits);
> AUPRC <- round(m[2,"aucs"],digits);
> cat ("AUROC = ", AUROC, "\n", "AUPRC = ", AUPRC, "\n");
AUROC = 0.9901
AUPRC = 0.7737

As we can see, we have a certain decrement of the performances when the imbalance increases. Indeed when we have
perfectly balanced data the AUPRC is very close to 1, while by increasing the imbalance we have a progressive decrement of
the AUPRC to 0.9583, 0.9000, till to 0.7737 when we have a 1 : 1000 imbalance ratio. Nevertheless this decline in performance
is relatively small compared to that of state-of-the-art imbalance-unaware learning methods (see Fig. 5 in the main manuscript).

We can perform the same task using parallel computation. For instance, by using 4 cores with an Intel i7-2670QM CPU,
2.20GHz, less than 1 minute is necessary to perform a full 10-fold cytoband-aware CV using 406 genetic variants known to be
associated with Mendelian diseases and 400,000 background variants:

res <- hyperSMURF.cv.parallel(m.subset, factor(labels.subset, levels=c(1,0)),
kk = 10, n.part = 10, fp = 2, ratio = 3, k = 5, ntree = 10,
mtry = 6, seed = 1, fold.partition = folds.subset, ncores=4);

Of course the training and CV functions allow to set also the parameters of the RF ensembles, that constitute the base
learners of the hyperSMURF hyper-ensemble, such as the number of decision trees to be used for each RF (parameter ntree)
or the number of features to be randomly selected from the set of available input features at each step of the inductive learning
of the decision tree (parameter mtry). The full description of all the parameters and the output of each function is available in
the PDF and HTML documentation included in the hyperSMURF R package.
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