NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway

Yi Wei Hu, Xiao Man Wu, Shi Si Ren, Lu Cao, Pin Nie, Ming Xian ${\rm Chang}^*$

Fig. S1. Heatmap and phylogenetic analysis for differentially expressed genes involved in immune system. (a) Heatmap and phylogenetic analysis for tripartite motif proteins (TRIMs). Accession numbers of other TRIMs from NCBI database are as follows: human TRIM25, NP_005073; mouse TRIM25, NP_033572; zebrafish TRIM25, NP_956469; zebrafish TRIM62, NP_001074143; zebrafish TRIM47, XP_002660960; human TRIM29, NP_036233; mouse TRIM29, NP_076144; human TRIM21, NP_003132; mouse TRIM21, NP_001076021; zebrafish TRIM21, XP_691507; human TRIM39, NP_067076; mouse_TRIM39, NP_840065; zebrafish TRIM39, XP_009292249; human TRIM16, NP_006461; mouse TRIM16, NP_444399; zebrafish TRIM16, XP_009297237; medaka TRIM4-like, XP_011472583. (b) Heatmap and phylogenetic analysis for immunity-associated proteins (IMAPs). Accession numbers of other IMAPs from NCBI database are as follows: zebrafish IMAP family member 8 like, XP_002664923; zebrafish IMAP family member 8, XP_009294065; human IMAP family member 8, NP_783161; zebrafish IMAP family member 7, XP_009305485; zebrafish IMAP family member 7 like, XP_009301153; human IMAP family member 7, NP_694968; human IMAP family member 5, NP_060854; zebrafish IMAP family member 4 like, XP_001920359; zebrafish IMAP family member 4, XP_009297228; human IMAP family member 4, NP_060796; human IMAP family member 2, NP_056475.

Fig. S2. The effect of NOD1 deficiency on the expression of those genes involved in NF- κ B and MAPK pathways. 30~50 larvae from WT and *NOD1-11S*^{-/-} zebrafish were collected at 10 dpf, and used for qRT-PCR. Data represent the mean \pm the SEM, and were tested for statistical significance using two-tailed Student's t-test. **p < 0.01.

Fig. S3. PI3K-Akt pathway is impaired in NOD1-deficient zebrafish. (a) Heatmap analysis for differentially expressed genes involved in PI3K/Akt signaling pathway from transcriptomic data. (b) Immunoblot analysis of phospho-Akt, Akt, phospho-GSK3 β , GSK3 β , phospho-S6 and S6 in larvae homogenate from WT and *NOD1-11S^{-/-}* zebrafish at 5 and 7 dpf. Western blotting results were quantified using Quantity One software. Data represent the average of two independent experiments. *p < 0.05, **p < 0.01.

7 001

5 001

0.0

2001

300

Adol

CD44a overexpression

Table S1. Enrichment analysis of the KEGG pathways for differentially expressed genes in WT vs *NOD1-11S^{-/-}* zebrafish larvae

#Term	Id	Sample	Background	P-Value	typeII	
		number	number			
Selenocompound metabolism	ko00450	4	22	0.000649471	Metabolism of other amino	
					acids	
Antigen processing and presentation	ko04612	10	97	0.001201018	Immune system	
Drug metabolism - cytochrome P450	ko00982	4	47	0.008010135	Xenobiotics biodegradation	
					and metabolis m	
Steroid hormone biosynthesis	ko00140	4	47	0.008010135	Lipid metabolism	
Metabolism of xenobiotics by	ko00980	4	51	0.010417054	Xenobiotics biodegradation	
cytochrome P450					and metabolis m	
Primary bile acid biosynthesis	ko00120	3	29	0.013136656	Lipid metabolism	
Retinol metabolis m	ko00830	4	55	0.013247944	Metabolism of cofactors and	
					vitamins	
NOD-like receptor signaling pathway	ko04621	4	73	0.031766049	Immune system	
Carbon fixation pathways in prokaryotes	ko00720	2	21	0.04889759	Energy metabolis m	

Table S2. Primer information

Name	Sequence	Applicati	on	
CD44a-FLAGF	GTC <u>AAGCTT</u> ACCATGTGGACTTTGTTATTTGTAG	Ligated	to	p3xFLAG-CMV [™] -14
CD44a-FLAGR	GAA <u>GGTACC</u> ATTAAATATTCTTTTCGTGTTCATC	vector		-
NOD1-FLAGF	GTG <u>GAATTC</u> TGAAATGAAATTAAATATGG			
NOD1-FLAGR	GAA <u>GGATCC</u> GCTGACTCCCTCTCGTTG			
NOD2-FLAGF	CCG <u>GAATTC</u> AACTATGAACGCTCAACAGT			
NOD2-FLAGR	CGC <u>GGATCC</u> GAAGGTCAATCTGCATTC			
NOD1F	AGCAACTGCGACCCTCTTTCA	Quantitat	ive rea	l-time PCR
NOD1R	TGGCGAGATATTTCCCACCTACA			
CD44aF	GAAAGTAATGCGAAGGAG			
CD44aR	TCATCAGTGCCACAATCT			
lckF	TACGTAAACATGGGGAACTG			
lckR	TCTTCTCCCCTTTCTCAAAC			
NALPL1F:	TCGTTCTCCACGGTGACTC			
NALPL1R	AGCAGGGCACAAACAATGAC			
mhc1umaF	ACGGTGCAAAGGACATACAACAAC			
mhc1uma R	ATCAGCCAGTAAATACATCCAAGT			
mhc1ulaF	AAGAGTCACATGGGTTTG			
mhc1ulaR	CTCATTTGGCTTTAGTTC			
similar to mhc1uba-F	GGATGGAAGATAAACTTGGGACA			
similar to mhc1uba-R	CAGCCACTCAATGCACTCAGACC			
mhc1ubaF	AAAACGCTCACCTGGACTG			
mhc1ubaR	ATACTTCTGCACCCACTCA			
MHC-IIBF	TGAGGAGATGGCTGATGGAGAC			
MHC-IIβR	CATAGATGATGGGCTTAGTTGA			
mhc2dabF	CTCTGTGGGGAAGTTTGTG			
mhc2dabR	CCAGATCCGAGCATTATGTC			
gene26712F	GTGGCATTGATGTGGCAGAAGC			
gene26712R	CGACTGACAAACCCAGAAGAAA			
gene38616F	AAAACTACITCGCTCTTCCCTAA			
gene38616R	TACAGACTCCTGGATTTCTTGAT			
gene26713F	AGGTTGTGCCGCTTTGACTT			
gene26713R	CATTCCTTTAGATTGTGGGT			
gene2604F	TTTCTTGAGCGGGAATACAGT			
gene2604R	ATGAGGGATGGAAGTTTGGAC			
gene39147F	GCTCTATTGGCACGATGTTA			
gene39147R	CAGACGATTGTTGCGTAGGT			
gene4944F	GCATTCAGTGATGGGTCT			
gene4944R	ATCCAGGTGTCCAGTTTT			
gene12406F	CCTGACACAAGTCGACAAAAGAGAA			
gene12406R	ATCCAGATGAGGGAAGAACGAAGC			
gene12839F	ACCTCTTTCTGCGTTTCCTGCTT			
gene12839R	GCTTCTCCTCCGAGTGTTTGTCT			
gen e4933F	GAGGACAAAAAAAAAACAACATCAGTC]		
gene4933R	CTCACAGCGGGCACCAGTCT]		
gene8198F	TCTTTAGAAGTGGAGGAC			
gene8198R	ATGTGGCTGATGATGTTT]		
gene39994F	TGACTTTGTGGAGGAACT]		
gene39994R	GCTGAGCGGTGACATTAC			

		r
gen e3642F	GATTCCTGATGTCTGGGTC	
gene3642R	AGGGTGTAAACATTTCGGT	
gene12370F	TCCTGGGCTTTAATCTGCTACG	
gene12370R	GCGGCTCAGTGAATGTGGTTTG	
gene1131F	CCACGGACCCTCCACAGAACTAT	
gene1131R	CAGCGACTCCCTTCGTCAGCACA	
gene1132F	AAATCCATCAACCTGTTCCACT	
gene1132R	ACAAAGACCACCGCTGACCACT	
gene1133F	AGATGAAAACCTGCCCAAA	
gene1133R	GCTAGAGCCGTGACAAGTG	
gene12961F	TGCTAGAGTTTCTGCTGGAC	
gene12961R	AAAGTTTATTGGTGGACGC	
gen e26693F	CAATGAGAAGTTTGCGGAGTT	
gen e26693R	ATGACAGCAGATGCGGTTATG	
gene33648F	GACCAATCTCATCAGAGGGAA	
gene33648R	CGGCGAGTAGCACATAATAAA	
gen e26589F	AAGTTGGTGGGTTGTGGT	
gene26589R	CTCGCAGATTTGAGAAGT	
gene6751F	GAGAATACACAGAAGCAAGGTGCAG	
gene6751R	GAACGGCAGTGGAAATATGAAGAC	
gene23645F	AGAAGCTCGTGCCCGTAGT	
gene23645R	ATGCCAAATCAGCAGAACC	
nfkb1F	TGTGGTTCGGCTGATGTTC	
nfkb1R	GGTTCGCTCGTCTCGTTGT	
nfkb2F	AAGATGAGAACGGAGACACGC	
nfkb2R	TCTACCAGCAATCGCAAACAA	
nfkbiaaF	CATTCACGAGGCAGAGGATTAT	
nfkbiaaR	TCCGCTGTAGTTAGGGAAGGTA	
nfkbiabF	TGTCATTGTTGGAAAGCCTCAT	
nfkbiabR	TAATCCTCGTCGCTATCCTCAC	
MAPK1F	ATTACCTGCTGTCCCTTCC	
MAPK1R	CTTCCTCCACCTCAATCCTC	
MAPK3F	GACCTGAAGCCCTCAAACC	
MAPK3R	GCATCCCACAGACCAAATA	
MAPK7F	CCTCAGGGAAAGTCACAATG	
MAPK7R	TCAGGTATCAGGAAGCGTAG	
MAPK8F	TGACCCGTTACTACAGAGCC	
MAPK8R	CATCCACCGAGATTCGTTTT	
MAPK10F	GGGGCTCAGGGAATAGTGT	
MAPK10R	AATCTTCAGCGTGCAGTCG	
MAPK14F	CGTGACGGTGGACATTTGGT	
MAPK14R	TGGGCATCTGAGGAAGTGAG	
GAPDHF	GTAACTCCGCAGAAAAGCCAGAC	
GAPDHR	CAAAAGAAACTAACACACACACA	