The shape and size of hydroxyapatite particles dictate

inflammatory responses following implantation

Supplementary data

Filipa Lebre *‡*1,4,5; Rukmani Sridharan *‡*2,3,5; Michael J. Sawkins 2,3,5; Daniel J. Kelly 2,3,5;

Fergal J. O'Brien2,3,5; Ed C. Lavelle*1,4,5

1 Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland

2 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland

3 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland

4 Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Trinity College Dublin, Dublin 2, D02 PN40, Ireland

5 Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland

Supplementary Figure 1. Hydroxyapatite particle did not contain detectable endotoxin. (a) BMDCs ($0.625 \times 10^6 \text{ cells} \cdot \text{ml}^{-1}$) from C57BL/6 mice were stimulated with concentrations ranging from $0.2 \ \mu\text{g} \cdot \text{ml}^{-1}$ to $1 \ \mu\text{g} \cdot \text{ml}^{-1}$ alone or after priming with LPS ($1 \ \text{ng} \cdot \text{ml}^{-1}$) for 3 h. Supernatants were collected 24 h later and tested for IL-6 by ELISA. Results are mean cytokine concentrations (\pm SD) for triplicate samples. Data is representative of three independent experiments. (b) HA particles were tested for gram-negative bacterial endotoxins using LAL Chromogenic Endotoxin Quantitation Kit as per manufacturer's instructions.

Supplementary Figure 2. Hydroxyapatite particles characterization after sieving. Size of HA particles was measured by dynamic light scattering (a); Scanning electron microscopy photomicrographs of S_{20} and R_{20} particles after sieving (PluriSelect) (b).

3

Supplementary Figure 3. Hydroxyapatite particle size and shape dictates cytokine production by murine BMDCs. BMDCs (0.625 x 10^6 cells·ml⁻¹) from C57BL/6 mice were stimulated with unsieved (total) and sieved N₅ particles (1-6 µm; 15-20 µm; > 30 µm), with concentrations ranging from 0.2 mg.ml⁻¹ to 1 mg.ml⁻¹ alone or after priming with LPS (1 ng·ml⁻¹) for 3 h. Supernatants were collected 24 hours later and tested for IL-1 β by ELISA. Results are mean cytokine concentrations (± SD) for triplicate samples (vs N₅ * p < 0.05, ** p < 0.01, *** p < 0.001). Data is representative of three independent experiments.

Supplementary Figure 4. Hydroxyapatite particle shape dictates cytokine production by murine BMDMs. BMDMs (1.0 x 10^6 cells·ml⁻¹) from C57BL/6 mice were stimulated with sieved particle (1-6 µm fraction) at concentrations ranging from 0.4 mg.ml⁻¹ to 1 mg.ml⁻¹ alone or after priming with LPS (1 ng·ml⁻¹) for 3 h. Supernatants were collected 24 hours later and tested for (A) IL-1 β secretion by ELISA or (B) LDH release to assess cell viability. (A) Results are mean cytokine concentrations (± SD) for triplicate samples. Data are representative of three independent experiments. (B) Error bars show means ± SD for triplicate samples (vs medium *** p < 0.001). Results are representative of two independent experiments.

Supplementary Figure 5. Gating strategy for innate cell recruitment.