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Supplementary Materials A: Asymptotic Properties of I:n(T, @) and I:C\/(T, B)

Define pu(7,b) = E[Z'{I(T < Zb) — 7}] and let B3(7) be the solution to p(r,b) = 0. We require
the following mild regularity conditions, which are essentailly very similar to those required in Zhou

(2006) and Peng and Fine (2009).

C1 The covariates space Z is bounded.
C2 Pr(C > u) > 0, where C' is the log censoring time.

C3 (i) Define F(t|Z) = Pr(T < t|Z) and f(t|Z) = dF(t|Z)/dt. The density function f(t|Z) is
bounded from above uniformly for ¢ and Z € Z. (ii) For a large constant M, > 0, define
B ={b:|b|]| < M, and maxz Zb < u}. For 7 € [y, 7], B(r) € B and is uniformly bounded

and Lipschitz continuous in 7.

C4 Let J(7,b) = ou(7,b)/0b, inf ¢ cigmin{J(, 3)} > 0, where eigmin(-) denotes the minimum
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eigenvalue of a matrix.

Important notations used in the manuscript include:
o L(1,8) = Ep, {Y" — ZB(7)} is the expected prediction loss for a certain B(7).
o L(r) = L(r, B), where B(T) satisfies ;J,{T,B(T)} = 0.

e (. is the true unconditional 73, quantile of 79, and Lo(7) = Ep, (T — ().

L(7)
Lo(7)

o L,(r,8) = n! Dy Ai/G(Y ) p Y — Z;B(1)} is the empirical loss function evaluated at a

e Ri(r)=RY(7,B)=1-

certain B(7). Also write LG (7, 8) = n~ ' 37| Ai/G(Y) p Y — Z:B(7)}.

o Rl(r, B) = [Ln(7, ) — Lin(7, B)]/ﬁn(T, ¢.), where ¢, represents Zhou (2006)’s estimator in an
intercept-only model.

.« Sp(rb)=n 13", ZI

B {I(Y;* < Zb)—7}, then B(T) is obtained by solving S,,(7, 3) = 0.




e Let {w;}, beiid. unit Exponential random variables. The perturbed loss function is L (7, 3) =

1 A;
*Z G*(Y“) PT(

n

— Z;3), where G*(-) is a perturbed Kaplan-Meier estimator. B is the

minimizer of this perturbed loss function.

~ ~ 1 ~ ~ ~
e In the CV-type estimator Loy (1, 8) = 74 Zle LF{r, ,8( i) }s B(_) is the estimator based on all

1= ooV~ 287}

the observations that satisfy V; # k, and L¥{r, —
Yy Vi { 16} Zz 1 G(Yu)

A.1 Proof of Theorem 1

Write SG(7,b) =n=' 37, ZiN;)G(YM{I(Y" < Z;b) — 7}. We see that
ESY(r,b) = E[Z'{I(T* < Z;b) — 7}] = u(r,b), VbeB.

Let F = {Z;A;/GY"){I(Y* < Z;b) — 7} : Z; € Z,b € B,7 € [r,7v]}. Under C1-C2, Z; and
G~ 1(Y*) are both bounded from above. Thus, the functional class F can be shown to be Donsker.
This is because that the class of indicator functions is Donsker, and that Donsker’s property is preserved
under Lipschitz transformations (Van Der Vaart and Wellner, 2000). Since Donsker’s property implies

Glivenko-cantelli, we get

sup ||y (7, ) — (7, b)|| = 0,(1), (A.1)
T,beB

Write NY(¢) = I(Y; < t,6; = 0), YO () = I(Y; = t), y°(t) = EYG(t) and M-G(t) = NY(t) -
So Y% (s)dA%(s), where A%(-) denotes the cumulative hazard of C. Let g;(t) = S )~taME (s),
we have n'/2{G(t) — G(t)} = n V23", gi(t) + op tel0, u]( 1) for the Kaplan-Meier estimator G(-) (Pepe,
1991), where ofge[o’u](l) represents a term that converges to 0 in probability uniformly for ¢ € [0, u].

Moreover, Fo = {gi(t) : t € [0,u]} can be shown to be a Donsker’s class. It follows that

nl/z{é’l(t) o G* _ 71/2 te [0,u] (1) <A2)

)

where Fg1 = {—gi(t)/G?(t) : t € [0,u]} remains Donsker, due to the fact that G—2(¢) is bounded from
above uniformly for ¢ € [0,u]. When combined with an application of the Glivenko-cantelli theorem
on F¢1, this fact further implies that supepg |G=1(t) — G~ (1)|| = 0p(1) and that

Sup. 1S (7, b) = S5 (7,b)]| = 0p(1). (A.3)
7,be



Noting (7, B) = 0 and S, (7, B) = 0, (1), with 0} (1) denoting a term that converges to 0 in probability

uniformly in 7 € [, 7], we consider the following manipulation,

~ ~ ~

u(r, B) — (7. B) = p(r, B) — S (r, B) + S5 (7. B) — Sn(7.B) + o5 (1). (A4)

The combination of (A.1), (A.3) and (A.4) implies sup, ||p(7, 8)—p(r, B)|| = op(1). Since eigmin{J(r, B)}

is bounded from below uniformly in 7, as required in C4, we can use Taylor expansion and get

sup ||B(r) = B(7)]| = 0p(1). (A.5)
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~

To show the consistency of L (r, B), we decompose i/n(T, B) — L(7) as follows:
Ln(Tv B) - L(T) = {ZA-’TL(THB) - E’G(Ta B)} + {E’G(Ta B) - L(Ta B)} + {L(T7 B) - L(Ta B)}? (AG)

where L(r, 8) = L() by definition. From the uniform consistency of G(-) and the uniform boundedness

of p{Y" — Z;b} for b € B, we have

sup |Ln(7,b) — LE(7,b)| = 0p(1).
T7,beB

Write Fr, = {Aip-(Y* — Z;b)/G(Y") : Z € Z,b€e B, 7 € |11, 7v]}. Under C1-C4, we can follow the

arguments above and apply the Glivenko-cantelli to see

sup | L9 (7,b) — L(r,b)| = 0p(1).
7,b

Furthermore, a Taylor expansion on L(T, B)—L(T, B), coupled with (A.5) and that %L(T, b)‘b=,é(7') =0,

implies that L(, B) — L(1,B) = 0,(1). Finally, we can combine these facts with (A.6) to get
sup |Ln (1, B) — L(7)| = 0p(1). (A7)

Following the same argument, L, (7, () in R (7, ,@) is also uniformly consistent to Lo(7). When

combined with (A.7), this further ensures the uniform consistency of R!(r, B) for 7 € [Tz, U]



A.2 Proof of Theorem 2

Since Sy, (7, B) = op(nfl/Q) and p(T, B) = 0, we re-write —y/n{S, (7, B) - Sn(T,B)} as
—V/1{8nu(7, B) = Su(r, B)} = Vn{Su(r.B) = S(r.B)} + Vn{ST(r, B) — u(r, B)} + 0 (1). (A.8)

For the first term on the right-handside, we can utilize (A.2) to get

Va(Su(r.B) ~ SEr A = a7V Y ZAIY < 2B ] 2

J=1

- _nwzgx LY < 2,30} — ) o + 0)(A)
Define
n1s(rs B) = —E(Z'A[I{Y“ < Z8(r)} - T]gi<Y“>/G2<Y”>|Di),

with D; = (Y;,6;, Z;) denoting the data from the i, observation. It follows from an application of

the Glivenko-cantelli theorem that

V{Sn(r, B) — S (7.8)} = n~V2 > (7. B) + o(1). (A.10)

i=1

Note that ny;(r,8) accounts for the uncertainty in S,(r,8) due to the estimated inverse weights
G(Y"). Now write ny;(7, 8) = ZiA /G [H{Y < ZiB(r)} —7] = u(r, B) and 1;(7, B) = 13:(7, B) +
14;(7, 3), we can combine (A.8) and (A.10) to see

VaSu(r,B) = n 2 Y ny(r,B) + o (1). (A.11)

i=1

The influence functions, n; (7, B), can be consistently estimated by plugging in their estimated coun-

terpart. Furthermore, we can follow the lines of Peng and Fine (2009) to get

V{8, {7, B} — Su(r,B)} = vnlu(r, B) — (1, B)] + o5 (1), (A.12)



using (A.5) and condition C3. We can then use (A.11) to see v/n{u(r, B)—pu(r, B)} = —n =12 S (T, B)+

o;(l), and moreover use Taylor expansion and condition C4 to get

~

VI{B(r) = B(r)} = =2 Y T3, Bymi(r. B) + 0 (1) (A.13)
i=1

Therefore, we see that \/H{B(T) — B(7)} still converges weakly to a centered Gaussian process when
the working quantile regression model is misspecified, despite that ZiB(T) may no longer correspond
to the true conditional quantile.

Next, we utilize (A.6) again to study the distributional properties of ﬁn(T, ,@) Define

Agi(Y¥ W ” “
(1) = ~ B[t (V" = ZB) D], (1) = A (V= Zb)/GY) — L7 b), (A1)
and m;(7,b) = 71;(7,b) + mo;(7,b). With similar arguments as those used in (A.9), and noting that
B(7) is the minimizer of L(7,b), we can show that the third term in (A.6) is asymptotically neglegible

and that

n
Vi{Ly(7, B) = L(7)} = 02 Y mi(r, B) + 05 (1), (A.15)
i=1
where Emi(r,8) = 0 and {m;(7,b) : 7 € [r1,70],b € B} forms a Donsker’s class. Thus we see that
r{ L (T, B) — L(7)} converges weakly to a zero-mean Gaussian process.
To derive the asymptotic distribution of RL (7, ,@), we first write mo(7) as the influence functions
for /n{L,(7,¢;) — Lo(7)}. Using the continuous mapping theorem and the functional delta method,

it is easy to see that \/ﬁ{R}L(T, B) — RL(T, ,@)} also converge weakly to a zero-mean Gaussian process,

and the influence function equals

~

= 77@'(7_,15) T (T) X L(Tv B)
Ti(TvB) - = LQ(T) + : Lo(T)2 :

(A.16)

This completes the proof of Theorem 2.



A.3 Asymptotic Results for ﬁCV(T, B)

Recall that Loy (7, B) =K1 Zle L¥(r, [Ai’(,k,)), where

%Z — )pr{Yﬁ - Z;B(1)}, k=1,2,.. K,

and K is a small fixed integer such that K = O(1) and n/K = O(n). Following Sections A.1-A.2,
for k = 1,2,..., K, ,@(,k)(T) are all uniformly consistent estimators for B(T) for 7 € [rr,mv], and
that (LK””)I/ Q{B(_k)(r) - B(T)} converges weakly to a zero-mean Gaussian process. The following

arguments are similar to those in Appendix 3 of Tian et al. (2007). Specifically, define
kG ( K < )
LH(r, 8) = — Z — oY = ZiB(7)} (A.17)

Also write L&y (r, 8) = K=" Y1 L (7, B(_1), and Loy (7, B) = K~' S| L(7, B _1))- We write

~

Lov(r,B) = L(r,B) = Lev(r, B) — L&y (1, B) + LEy (1. B) — Lev (1, B) + Lev (1, 8) — L(r, B). (A.18)

We first provide a sketch proof for the uniform consistency of I:C\/(T,,B) to L(r). Because
OL(t,b) ‘b By = 0 the uniform consistency of,@(_k)(r) implies that sup [, -1 |1Lov (7, B)—L(r,B)| =

op(1). Next, we use the consistency of B(,k)(T) and the fact that Zle I(V; = k) =1 to derive

ﬁgV(Ta @) - LCV(Ta @) = igV(Ta B) - LCV(Ta B) + Op(l)

= 77 Y Gy~ 2B} L B) o),

where the right-hand-side is 0,(1) according to the Glivenko-cantelli theorem. Moreover, we have
Ley(r,B) — Ley(r.B) =n"" 3] 2 TYIYALV: = R)pe (Y = ZiByy (7))
k=1i=1

which is also 0,(1) according to the uniform consistency of G—'(-) to G~'(-). These arguments, when
combined with (A.18), gives the uniform consistency of Leov(r, ,E‘}) to L(T, B)

To derive the asymptotic distribution of ﬁCV(T, B), we use the consistency @(,1)(7), e By (T)



and Z,I::l I(V; = k) =1 again to derive

~

Vn {ﬁcm B) — LGy (1,B)} + Vn{LEy (1, B) — Lev(r, B)}
= ' Z 2 AI(V; = k)pAY" = ZB(NHG (") - GTHYM))

k=11i=1

12 Z Z = k)mai{7, By} + 05(1)

n

= 72 m(r, B) + op(1). (A.19)

i=1

Further, it follows from the fact that %L(T b = 0 and the weak convergence of (”KT”‘)I/ 2{[‘3(_ k) (7)—

) ‘b=B(r)
B(r)} that v/n{Lev (1, B) — L(1,B)} = v/n/K S {L(7, B(_1)) — L(r, B)} is asymptotically of smaller

order. The combination of these arguments gives

Vi{Lov(r,B) = L(r, B)} = n 2 Y mi(7, B) + o5 (1),

i=1
suggesting that \/ﬁ{f}cv(ﬂ [Ai) — L(r, B)} is asymptotically equivalent to \/ﬁ{ﬁn(T, B) — L(r, B)}

A.4 Justification for the Proposed Perturbation Method

Noticing that E(w;) = Var(w;) = 1, we first show that

sup [[87 (1) — B(n)|| = 0,(1).
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To see this, one can use the following algebraic manipulation and get
A~ ~ ot A~k ik A
p(r,B) = p(r,B) = u(r,B) = S7*(1.8°) + S7*(7.8) = Si(,B') + 0,(1), (A.20)

where p(r, B) =0, S}i(r, ,3*) = 0p(1), and S:G(T, b) =n! >y sz;AZ/G(Ylu){I(Yz" < Zb) — T}.
Following the proof in Section A.1, it is not hard to verify that sup [, 1 [lp(7, ,é*) —u(r,B)|| = op(1),
which further entails the consistency of 3 (1) to B(7).

The following Lemma states the distributional properties.



Lemma 1. For i.i.d. random variables {w;}}—,, where w; > 0 and E(w;) = Var (w;) = 1, we have

n

V{8 (1) = B(r)} = —n 172 D wi = DI, B)ny(r, B) + op(1). (A.21)
i=1
and
V{LE(T, B7) = Lu(r, B)} = n~ 12 D wi = Dmi(r, B) + 0,(1). (A.22)
i=1

Proof. Write N*(t) = n™' Y w;iN;(t) and Y*(t) = n~' 37 w;Y;(t), and let G*(t) = Pyepoq{l —
dN*(t)/Y*(t)}, where P is the product-integral operator. An application of the Duhamel’s equation

(Andersen, 1993) and empirical process techniques gives
Vn{G*(t) — G()} = —n "G (1) 2 wZJ s)AME(s) = n~1/? 2 wigi(t) + olf0 (1), (A.23)

where g;(t) is the influence function of G(t). Next, we obtain the following decomposition using

Si(r.B) = op(n~'?) and p(r, B) = 0:

—Vn{S:(1,B") = SE(1,B)} = Vn{Si(r,B) — u(r,B)} + o(1).
V{SE(r, B) — SEE (7, B)} + /n{S: (7, B) — p(1,B)} + ol (1),

where S*(7,b) =n"1 X" | w; Z; G*?;;u) {I(Y* < Z;b) — }. First, we see that
V{83 (. B) — u(r, B)} = n M2 Y wimay (7 B). (A.24)

=1



Moreover, writing ®;(7,b) = I{I(Y;* < Z;b) — 7} and using (A.23), we get

~

V{SE(r, B) — Si%(r, B)}
n 2N Wi ZEA P (r BGTTH Y - G YM)

j*l
. —1/2 wlgl
= / JZ:lw]ZAq) T,@ Z G2 Y“ (1)
no1 & —wi Z5A0(r, B)gi(Y)
— L2 -+ J=37J J T
ZZlmn ; v + 05 (1)
= n—l/QEwmu(T,B) +o7(1). (A.25)
i=1

where n,,;(7,b) and n4;(7,b) were defined in Section A.2. Hence, we have

—/{Si(r.B7) = Si(r,B)} = 2. wimy (7, B) + of(1).

=1

Next, it can be shown that /n{S%(r,8") — S%(r, B)} = vn{p(r, B") — (7, B)} + 0} (n~1/2), following
similar arguments to those in Peng and Huang (2008), lemma B.1 and Huang (2010), Lemma 2. We

then use Taylor expansion to get

Va8 (r) - = 12 Ew J7Hr, Bymi(r, B) + o} (1), (A.26)
and furthermore
V(B (1) = B(r)} = =7V Y (wi = DIV (7, B (7, B) + 0 (1) (A.27)
=1

when combined with (A.13).

We now examine the distribution of v/n{L* (, ,@*) — L(r, B)}, by decomposing it as

VL, B7) = LS (1, 87)) + vn{LiC(r,B) — L(r, )} + V{L(r.B") — L(r,B)},  (A.28)

where L*C(r,8) = n! D wi (Y* — Z;8). The third term is asymptotically negligible,

_Bi
G
because B3(7) is the minimizer of L(r,b) and that ,@* (7) is uniformly consistent to B(7). The second

term, by using the uniform consistency of B (1) to B(7), equals n /2 Do wimai(T, B) +0,,(1). Finally,



the first term equals n="2 37" | w;my (7, B) + 0,(1) by (A.23) and algebraic manipulations similar to

those in (A.25). The mathematical forms of 71;(-) and mo;(+) are in (A.14). Thus we see that

)= L, B)} = n72 Y wimi(r, B) + o (1),

i=1

V{Ly(r. B

which further implies that

n

VA{LE(T,B7) = Ln(7,B)} = n Y2 > (w; — )milr, B) + 0f(1).

i=1

Since E(w;) = Var(w;) = 1, this result justifies the use of the perturbed /n{L* (r, ,@*) — L (T, B)} for

approximating the asymptotic distribution of v/n{Ly(r, B) — L(7)}.

Supplementary Materials B: Justifications for the Resampling-based Hypothesis

Testing Procedures

B.1 Proof of Theorem 3

Write J, (1) = n~! Z?=1[Z?2f{zi,§(7)|zi}], with E{J,(7)} = J(7). Similar to Chen et al. (2008)
and Rao and Zhao (1992), we define Wy, (1) = n~/2J,,(r)"/2Z.. Under condition C1, we see that
sup; Win(7) = O;(n_l/Q). Define 1, (u) = 7 — I(u < 0). Temporarily suppressing the 7-index in 8(7),
P, (u) and W (7), we follow Lemma 2.2 in Rao and Zhao (1992) and define

S A, 2 / U 2 ’ U 2
fal(T,7) )y %W{M(Yéu —ZiB—-W.y) — (Y = ZiB) + Wiy (Y" — ZiB)};
i=1 L
[ = Ywigam or(V = ZiB = Wiy) = 0:(V" = Zi) + Wiy (V" - ZiB)}.

Gy

)

@
Il
—_

Lemma 2. f,(7,7) = f&(7,7) + 0,(1) when ||v|| < ¢, where ¢ is any given positive constant. Also,

SUp|iq(<c |5 (T 7) — 377 = 0p(1).

10



Proof. Since pr(x +t) — pr(x) = () x t for any = and ¢, we have

/N

|fn(7_77) - erG(Ta7)|

| D wA{GHH YY) — GTH Y Hp (Y = ZiB - Why) — pr (Y — ZiB) + Wi,y (Y, —
=1
Git)-G*(t), <« A w ) u
?25'61*7(15)' X ileZG(Yiu){pT — ZiB— W) = p (Y = ZiB) + W yip(YE —
G(t) — G*
sup S S 1) = 0,1 ¢ £ ).

Also note that

pr(Y = ZiB = Wi~) — pr (Y — ZiB) + Wiy (Y — Z,3)

Wiy ~ N
_ jo (WY — Z3f — 5) — (Y — Z:B)}ds.

Under condition C3, we follow Equation (2.5) in Rao and Zhao (1992) and get

ElfS(r.v[{Z:}i]

= Z E[p (T = Zi3 — W) — po(T{ = ZiB) + Wy (T — ZiB)|[{Z:)11]

3

-
Il
—

Il
=

-
Il
—_

E[ J " — ZiB +u) — (T — Z:B)ydu[{Z: )]
—W/

" F(Z:B|Z:)u{l + o(1)}du

Il
1P
N %

(Wi H(ZBIZ:) + o) = 5+,

|

-
I
—

ZiB)}'

(B.1)

where the last step follows from the definition of W, (-) and J,(-). This result further implies

1
that E{fS(r,~v)} — 57”7. Similarly, we can show that Var{f$(r,v)} — 0.

It then follows that

S(r,y) & %'y"y for any given v and 7. An application of Lemma 2.1 in Rao and Zhao (1992)

completes the proof of Lemma 2.

An immediate implication of Lemma 2 is that

O]

n AZ N I
Z WiW{PT( - Z; ,3 W, ~)—p- (V' = Z;8) + W, (Y — Z; ,3)} LY ~ +0,(1). (B.2)
i=1 i

11



Using very similar techniques, we can also derive that

S P! u P! u a 1
Z o {pr = ZiB = Wiiy) = pr (V" = ZiB) + Wiy (Vi = ZiB)} = 57"y +0p(1).  (B:3)
=1

We consider v = \/ﬁJ}/Z(B — B) Note that W' v = n=Y2Z,J,, 1/2 (ﬁ ﬁ) we plug this

into (B.3) and get

“—ZB)YB-B) + - (B—B)Tn(B—B)+o0,(1), (B.4)

n
2

n{ﬁn(Tv B) - Z

A, ~ ~
where —{>}"" , ngw(yﬂ —Z;8)} =nSy(7,B). From the proof of Theorem 2, we know that

1

VnSu(r,B) =072 Y (7, B) + 0p(1) = —J(1)v/n{B(r) — B(T)} + 0p(1).

i=1

Plugging this result into (B.4) yields

M{Lu(r,B) = Lu(r, B)} = —n(B—=B)J(B=B)+ 5B ~B)Tu(B~B)+0,(1)

where J,, converges in probability to J.

Similarly, we plug v, = \/ﬁJ (,@ B) and v, = fJ ([3 ,@) respectively into (B.2) and get

n

n{Lx(r, 8% - LA B)} = B f WV = ZBNB" ~ BY + 58"~ B Tu(B" ~ B) + 0p(1);

A

n{Ly(r.B) - Li(r.B)} = {2 G*fu WY = ZiB)HB — BY + 5(B—BYTu(B ~ B) + 0,(1).

l (B.6)

)

where

RO G*ﬁiﬂ)zmmu = 2iB)} = VnS(7.B) + 0(1) = —Vnd ({8 (7) = B(1)} + 0,(1).

12



Combine this with (B.6), we can further derive

n{L*(r,8") — L*(r, B)}
= n{L*(r,B8") - L*(r,B)} — n{L*(r,B) — L*(. B)}

~ ~ ~ ~ ~ ~

= ("= BYI(B D)+ 5B —BYI(E —B) +n(B" ~BYI(B~B)~ 5(B~BYT(B~B)+o0,(1)

n,ax oA N
= B BIE B+ o).
utilizing the uniform consistency of J,(7) to J(7). This completes the proof of Theorem 3.

B.2 Justifications for the Hypothesis Testing Procedures in the Nested Case

By (A.11) and (A.13), we sce that v/nSy(r, 8) = n=1/2 Do my(T, B) + op(1), where n;(r, B) are i.id.

with mean 0. Furthermore,

n{B(r) = BY I({B(r) = B(T)} = nSy(7, B I (r) ' Su(7, B) + 0,(1). (B.8)

Now, suppose that Zp = (Z 4, zZ ) without loss of generality, where Z is of length 75— 4. Temporarily

suppressing the 7 index, an application of Theorem 3 under Hy gives

nTas(r) = —5[(Ba—BaVTaBa—Ba)— By —Bs)ToBp — Byl +o,(1) (B.9)
TR = —Z[Ba—BaYTa(By—Ba) = By —Bp)In(Br — Byl +op(1): (B.10)

Let K be a rp x r4 matrix that equals the first r%‘ column of an rp % rp identity matrix. Under
Hy, we have Z4 = ZpK, Spa(B4) = K'S,p(Bp) and J4 = K'JpK. Combining these with (B.8)
and (B.9), we obtain

nTap = —gsnA(ﬂBA)/JElSnA(T, Ba) + %SnB(Tv By)J5' Sun(r,By) + 0p(1)

= Y (B T — KK TK) T K 0 Y 0,535} + o).

i=1

Similarly, we can derive that
n n

n(B" ~B)J(B" ~B) = (n Y (wi — V(@Y T2 Y (wi — DB} + 0p(1),

i=1 i=1
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and 1;4(8,) = K'n;5(Bp) under Hy, which further gives

WTRE = S Y~ DB 15— KK T5K)™ K ™7 3 (w0 = D, (Ba)} + 0p(1).

i=1 i=1

Following the arguments of Chen et al. (2008), proof of theorem 3, we see that the conditional
distribution of nT}% given the observed data is equivalent to the unconditional distribution of n'74p,

which then justifies the validity of the perturbation scheme under the nested case.

Supplementary Materials C: Additional Numerical Results

The numerical performance of Ley (7, ,@) and RICV (7, ,E'}) under Models A and B were summarized in
Table C.1. To obtain these results, we implemented the random split multiple times for the same
dataset and then calculate the average of the resulting Loy (7, ,@) and Rlcv (1, B) This improves the
numerical performance slightly, with no change to the asymptotic behavior. We observe that the
estimators are also asymptotically unbiased. The empirical standard errors agrees with the estimated
standard errors based on influence functions. It is clear that the performance of the CV-type estimators
also improves with the sample size. Overall, the performances of CV-type estimators are quite similar

to those of the plug-in estimators.
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Table C.1: Simulations: summary statistics for IAJCV(T, B) at 7 = 0.1, 0.3, 0.5, 0.6 under model A and
model B.

n Model A Model B
r TRUE EB ESE ASE C95 TRUE EB ESE ASE C95
x10% =10 x10® (%) x103 %10 x10% (%)

Lev (T, B)
200 0.1 0.117 0 12 11 914 0.129 0 12 11 915
0.3 0.231 0 22 20 922 0.255 0 23 21 91.7
0.5 0.263 0 27 24 90.9 0.291 1 28 24 91.2
0.6 0.253 1 26 23 90.8 0.281 0 27 24 90.4
400 0.1 0.117 0 10 8 927 0.129 0 9 8 926
0.3 0.231 0 16 15 93.1 0.255 0 16 15 929
0.5 0.263 0 18 17 923 0.291 1 19 17 927
0.6 0.253 1 18 17 924 0.281 0 19 17 923
600 0.1 0.117 0 7 6 938 0.129 0 7 7 940
0.3 0.231 0 12 12 94.3 0.255 1 12 12 945
0.5 0.263 0 15 14 939 0.291 1 15 14 936
0.6 0.253 1 14 14 935 0.281 1 15 14 933
RlC’V(THB)

200 0.1 0478 -3 54 51 935 0425 -3 55 52 93.8
03 0473 -3 50 47 93.0 0417 -2 52 48 93.0
0.5 0472 -3 53 49 92.8 0415 -3 55 50 924
0.6 0473 -3 56 51 924 0416 -4 58 52 92.1
400 0.1 0.478 0 37 36 94.1 0425 -1 39 37 939
0.3 0473 0 34 33 94.0 0.417 0 35 34 939
0.5 0472 0 37 35 935 0.415 0 37 35 938
0.6 0.473 0 38 36 934 0416 -1 39 37 936
600 0.1 0.478 0 29 29 94.1 0425 -1 30 30 94.3
0.3 0473 0 27 27 945 0.417 0 28 28 944
0.5 0472 0 29 28 94.3 0.415 0 30 20 938
0.6 0.473 0 30 30 94.2 0416 -1 31 30 938
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Table C.2 represents sensitivity analysis results for R}L(T, B), where the distribution of C is mis-
specified and n = 400. The performance of the proposed method deteriorates slightly but is still

acceptable.

Table C.2: Simulations: summary statistics for R}L(T,B) at 7 = 0.1, 0.3, 0.5, 0.6 under model A and
model B, where the censoring distribution depends on covariates but is estimated using the Kaplan-
Meier method.

n Model A Model B
r TRUE EB ESE ASE C95 TRUE EB ESE ASE C95
x10®  x10% x10% (%) x10®  x10® x10® (%)
400 0.1 0478 -6 38 37 944 0425 -5 39 38 94.0
0.3 0473 -7 36 35  93.5 0.417 -5 37 35 92.7
0.5 0472 -5 39 37 927 0.415 -3 41 37 924
0.6 0473 -5 42 39 924 0.416 -3 44 40 920

For two non-nested models, we can build a Wald-type confidence interval for the difference between
their corresponding R'(7)’s, using the estimated R (r, B)’s and the influence functions in (A.16). We
examined the performance of the confidence intervals using simulations. In Table C.3 below, the
rows labeled “Diff” present the difference in R'(7) between models A vs. B and models B vs. C,
respectively. The rows labeled “C95” display the corresponding empirical coverage rates using 95%
Wald-type confidence intervals. We observe that the empirical coverage rates are all very close to the
nominal level.

Table C.3: Simulation results: empirical coverage rates of 95% confidence intervals (C95) for the
difference in R'(7) between two non-nested working models, where n = 400 and E(} | §;) = 288.

-
0.1 0.3 0.5 0.6

Avs. B Diff 0.052 0.057 0.057 0.056
C95 0.955 0.951 0.951 0.950

Bvs. C Diff 0.062 —-0.036 —0.057 —0.052
C95 0.945 0.948 0.952 0.952
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Table C.4: Simulation results: empirical rejection rates (ERR) based on Rap, where [rr,7y] =
[0.1,0.6].

n=200 n=400 n=600
a=005 a=0.1 a=005 a=0.1 a=005 a=0.1

(i) Avs. B 0.823 0.890 0.979 0.992 0.998 0.999
(ii) A vs. C 0.976 0.994 1.000 1.000 1.000 1.000
(iii) E vs. A 0.061 0.119 0.062 0.120 0.060 0.113
(iv) Bvs. C 0.206 0.302 0.345 0.462 0.493 0.610
(v) Bvs. D 0.855 0.923 0.999 1.000 1.000 1.000

Table C.4 summarizes the performance of the overall hypothesis testing procedure, where the
censoring distribution is correctly specified. Table C.5 presents sensitivity results for hypothesis testing
when the censoring distribution is mis-specified by the Kaplan-Meier method, where n = 400. The
results in Table C.5 are quite comparable to those in Table 2 in the manuscript, suggesting that the

proposed hypothesis testing procedure is insensitive to moderate mis-specification of the censoring

distribution.

Table C.5: Simulation results when the distribution of C' is mis-specified: empirical rejection rates
(ERR) based on T4p(7) and perturbations, where the bolded cells are empirical sizes, and the remain-
ing cells correspond to empirical power. The significance level o = 0.05 and E(3." ; ;) = 288.

T 7€ [0.1,0.6)
0.1 0.3 0.5 0.6
Avs. B 0850 0.936 0.915 0.877 0.958
Avs. C 1.000 0.821 0.058 0.315 1.000

Finally, Figure C.1 below presents the estimated regression coefficients for the dialysis dataset.
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Figure C.1: Analysis of the dialysis data: estimated regression coefficients and pointwise 95% confi-
dence intervals under Model A.
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