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Supplementary Materials and Methods: 

 

Patients 

Four tumor pairs from four patients, three foci from one, and one tumor focus from an 
additional patient (patient 6, of whom no sufficient tumor material was available from the 
second focus) were included in this study. None of the patients had a previous history of 
glioma. The patients were mostly male (5/6) and had an average age of onset of 67 years. The 
tumors appeared in the same cerebral hemisphere except in patients 1 and 6 (see 
Supplementary Table S1). Patient 5 was previously published by Krex et al1. In addition to 
fresh frozen tumor samples, primary cell cultures (between passages 6 to 10) were available 
from four foci of two patients (patients 4 and 5). Tumor foci were considered separated when 
there was no contrast enhancing tissue between both foci in contrast (Gadolinium™)-enriched 
T1-weigthed MRI (1.5 Tesla) and no alterations in T2 weighted images suspicious for low-
grade tumor. 

 

DNA and RNA extraction from fresh frozen tumor material and primary tumor cells 

Tumor content was evaluated on hematoxylin-eosin (H&E)-stained sections of fresh-frozen 
tumor material by an experienced neuropathologist as described previously and only samples 
with a tumor content of at least 80 % were included2. Also, pieces with extensive tumor 
necrosis were excluded. DNA was extracted from fresh frozen tumor material and primary 
cell cultures by phenol:chloroform extraction using standard protocols. RNA was extracted 
with the QIAGEN miRNeasy Mini Kit (Qiagen GmbH, Hilden, Germany) according to the 
manufacturer’s instructions. RNA quality was assessed using the Agilent RNA 6000 Nano 
chip on a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) and RNAs with an RNA 
Integrity Number (RIN) below 8 were excluded. 

 

Molecular karyotyping using array comparative genome hybridization (array CGH) 

Arrays were scanned using an Agilent microarray scanner. Agilent’s CytoGenomics Editions 
2.7 and 2.9 were used for extraction and processing of Raw data (using the integrated Featur 
Extraction software) and to determine deleted and amplified regions based on the draft of the 
reference human genome (GRCh37/hg19) using the Default Analysis Method - CGH v2. All 
results were additionally checked by eye to confirm results and were evaluated by a board-
certified medical geneticist (Barbara Klink). CNVs that were commonly found in the 
Database of Genomic Variants (http://dgv.tcag.ca/) and therefore can be considered as 
polymorphisms that are most likely germline were excluded from further analysis. 

 

Spectral Karyotyping (SKY) 

SKY analysis was performed as described previously3. SKY images of about 20 metaphase 
chromosomes per cell line stained with a mixture of five fluorochromes (green, orange, red, 
far-red, and near-infrared) were captured using a DMRXA epifluorescence microscope (Leica 
Mikrosysteme Vertrieb GmbH, Wetzlar, Germany) with an HCX PL SAPO 63x/1.30 oil 

http://dgv.tcag.ca/


objective (Leica) with the SpectraCube® system (Applied Spectral Imaging, Migdal HaEmek, 
Israel) and the SKYView® imaging software (Applied Spectral Imaging). 

 

RT-PCR for EGFRvIII detection 

Total RNA was extracted using Qiagen’s miRNeasy Mini Kit (Qiagen GmbH, Hilden, 
Germany) and reverse transcribed to cDNA using SuperScript VILO cDNA Synthesis Kit 
(Invitrogen, Carlsbad, USA). PCR was performed using the EGFR primers published by 
Yoshimoto et al.4 (Ex1-F/EGFRvIII-R) and those designed by us (Ex1-F/Ex8-R) using the 
following program: an initial incubation step of 95 degrees for 15 minutes followed by 34 
cycles of denaturation at 95 degrees for 30 seconds, annealing at 60 degrees for 30 seconds 
and elongation for 1.5 minutes at 72 degrees (primer sequences are in Supplementary Table 
S2). A final elongation step at 72 degrees for 10 minutes was added. The products were run 
on a 1.5% agarose gel stained with GelRed (Thermo Scientific, Fisher Scientific, Schwerte, 
Germany) at 110V for 1 hour in 1x Tris-Borate-EDTA (TBE) buffer. The gel was 
photographed under UV light.  

 

Microarray data analysis and identification of differentially regulated genes 

Measured gene-specific probe hybridization intensities of all samples were transformed into 
log2-intensities and quantile normalized 5. Mapping of Agilent probe identifiers to genes was 
done using the Ensembl Biomart (GRCh37.p12). For genes with more than one corresponding 
probe, gene-specific log2-intensities were computed by averaging across all gene-specific 
probe intensities. This resulted in a normalized data set containing gene-specific log2-
intensities for 24,933 genes for each sample. Finally, log-ratio gene expression profiles of 
each tumor sample were generated with respect to each reference normal brain sample 
[Stratagene Human Brain Total RNA (Agilent, Santa Clara, CA, USA), Clonetech Human 
Brain Total RNA (Takara Bio Europe SAS, Saint-Germain-En-Laye, France), BioChain Total 
RNA Human Adult Normal Tissue: Brain: Frontal Lobe (BioCat GmbH, Heidelberg, 
Germany].  

Tumor samples were further associated with clinically relevant subtypes (Proneural, G-CIMP, 
Neural, Classical, Mesenchymal) described by Verhaak et al.6 and Brennan et al. 7. Therefore, 
the corresponding data of the Verhaak classifier (ClaNC 840 gene list) was downloaded from 
https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/ and for the G-CIMP phenotype 
taken from Tab. 2 in Noushmehr et al. 8. The relative expression level (log2-ratio) of each 
gene in the tumor compared to normal brain tissue was calculated. These were then used to 
calculate the correlations between the molecular subtypes, and to test whether the correlation 
of an individual sample from a specific subtype was significantly greater than zero (Pearson’s 
product moment correlation test) as described previously 9. Our subtype classification is 
limited to the set of genes that were overlapping between the Verhaak signatures and the 
microarray used in this study, while the Verhaak subtypes of GBMs were revealed by 
combining gene expression data from different platforms. They selected for each subtype a set 
of representative genes with characteristic subtype-specific expression behavior. As it is 
shown in Fig2 of the Verhaak paper, the vast majority of these subtype-specific genes have 
very similar expression patterns. In other words, they have highly correlated gene expression 

https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/


profiles. Thus, even if genes from this multi-platform approach are not present on our 
microarray, the other signature genes with very similar expression levels that are present on 
our microarray still provide sufficient information for correct subtype classifications, as 
shown previously 9.  

Further, a Hidden Markov Model (HMM) with second-order state-transitions and second-
order autoregressive emissions introduced in Seifert et al. was used to identify differentially 
expressed genes in the log-ratio profile of each tumor sample 10. Since the normal brain 
reference samples were very similar, we computed an average normal brain reference across 
all samples and determined the corresponding log-ratio gene expression profile for each tumor 
sample. Standard settings were used to adapt the HMM to the tumor log-ratio profiles. The 
resulting HMM was used to classify each gene in the tumor profile either as underexpressed, 
unchanged, or overexpressed in tumor compared to the normal reference. We further analyzed 
the identified underexpressed and overexpressed genes of each tumor sample in the context of 
known cancer signaling pathways. We therefore made use of the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways in cancer overview (path:hsa05200) for which we 
determined corresponding pathway genes based on ConsensusPathDB 11. We further extended 
this KEGG cancer pathway view by systematically adding other known cancer-relevant 
pathways for DNA repair, telomere maintenance, DNA replication and Hedgehog signaling. 
A detailed summary of included cancer signaling pathways with functional annotations is 
given in Table S4 of Text S1 in Seifert et al. 10 An additional pathway analysis was performed 
for highly differentially expressed genes compared to normal brain samples (strongly 
underexpressed: log2-fold-change < -3; strongly overexpressed: log2-fold-change > 3) using 
DAVID’s (ver. 6.7; http://david.abcc.ncifcrf.gov/) functional annotation tool on KEGG 
pathways and functional annotation clustering on Biological Biochemical Image Database 
(BBID), Biocarta, and KEGG pathways. 

Panel Next Generation Sequencing 

Fifty ng of DNA from all twelve tumors and from blood available from patients 1-4 was 
enriched for 1737 exons of 94 genes using Illumina’s TruSight Cancer Panel (Illumina Inc., 
San Diego, CA, USA) and was sequenced on an Illumina MiSeq Desktop sequencer (Illumina 
Inc., San Diego, CA, USA) using a 100-bp paired-end approach and Illumina’s V2 chemistry 
(for a list of genes please see http://www.illumina.com/products/trusight_cancer.html). The 
high quality reads in the FastQ files were mapped to the hg19 (GRCh37) draft of the human 
genome using the CLC Genomic Workbench’s proprietary mapping algorithm (ver. 7.4; 
Qiagen, Aarhus, Denmark). Variant calling was done using the Fixed Ploidy Variant Caller 
for variants appearing in more than 1% of the reads and all variants that were called in the 
blood were filtered out as being germline where the blood was available. The remaining 
variants were filtered for nonsynonymous exonic and splice site mutations.  

Evaluation of mutations identified using NGS and Sanger-Sequencing 

The potential impact of missense mutations was assessed using five mutation impact 
prediction tools: SIFT (http://sift.jcvi.org/)12, PolyPhen2 
(http://genetics.bwh.harvard.edu/pph2/)13, Mutation Taster (http://www.mutationtaster.org/)14, 
Mutation Assessor (http://mutationassessor.org/)15, and Combined Annotation Dependent 
Depletion (CADD; http://cadd.gs.washington.edu/)16. Furthermore, the frequency of all 
variants in large datasets of normal human genomes and exomes was cross-checked: The 
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1000 Genome Project (http://www.1000genomes.org), The HapMap Project 
(http://hapmap.ncbi.nlm.nih.gov), The Exome Variant Server (EVS; 
http://evs.gs.washington.edu/EVS/), and the Exome Aggregation Consortium 
(http://exac.broadinstitute.org/), and only variants with a frequency below 0.01 were 
considered. Finally, the variants were looked up in the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) and 
in the single nucleotide polymorphism database (dbSNP138; 
http://www.ncbi.nlm.nih.gov/snp/).   

Only variants that were rare (< 1% of the population as reported in the HapMap, EVS and 
Exome Aggregation Consortium) and either clearly protein disrupting (e.g. splice site 
mutations, stop mutation, frameshift mutation) or missense variants predicted to be protein 
damaging according to three of the five mutation impact tools are reported in our manuscript. 

All mutations identified that were different between foci in one patient were manually 
checked in the reads of the other foci to exclude false negative callings due to filtering. 

 

http://www.1000genomes.org/
http://hapmap.ncbi.nlm.nih.gov/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://www.ncbi.nlm.nih.gov/snp/


 

References 

1. Krex D, Mohr B, Appelt H, Schackert HK, Schackert G. Genetic analysis of a 
multifocal glioblastoma multiforme: a suitable tool to gain new aspects in glioma 
development. Neurosurgery. 2003; 53(6):1377-1384; discussion 1384. 

2. Eisenreich S, Abou-El-Ardat K, Szafranski K, et al. Novel CIC point mutations and an 
exon-spanning, homozygous deletion identified in oligodendroglial tumors by a 
comprehensive genomic approach including transcriptome sequencing. PLoS One. 
2013; 8(9):e76623. 

3. Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human 
chromosomes. Science. 1996; 273(5274):494-497. 

4. Yoshimoto K, Dang J, Zhu S, et al. Development of a real-time RT-PCR assay for 
detecting EGFRvIII in glioblastoma samples. Clin Cancer Res. 2008; 14(2):488-493. 

5. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization 
methods for high density oligonucleotide array data based on variance and bias. 
Bioinformatics. 2003; 19(2):185-193. 

6. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies 
clinically relevant subtypes of glioblastoma characterized by abnormalities in 
PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17(1):98-110. 

7. Brennan C, Verhaak R, McKenna A, et al. The somatic genomic landscape of 
glioblastoma. Cell. 2013; 155:462-477.  

8.  Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island 
methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010; 
17(5):510–522. 

9. Seifert M, Garbe M, Friedrich B, Mittelbronn M, Klink B. Comparative 
transcriptomics reveals similarities and differences between astrocytoma grades. BMC 
Cancer. 2015; 15(1):952. 

10. Seifert M, Abou-El-Ardat K, Friedrich B, Klink B, Deutsch A. Autoregressive higher-
order hidden markov models: exploiting local chromosomal dependencies in the 
analysis of tumor expression profiles. PLoS One. 2014; 9(6):e100295. 

11. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. 
ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 
2011; 39(Database issue):D712-717. 

12. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of 
amino acid substitutions and indels. PLoS One. 2012; 7(10):e46688. 

13. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting 
damaging missense mutations. Nature methods. 2010; 7(4):248-249. 

14. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation 
prediction for the deep-sequencing age. Nature methods. 2014; 11(4):361-362. 

15. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: 
application to cancer genomics. Nucleic acids research. 2011; 39(17):e118. 

16. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general 
framework for estimating the relative pathogenicity of human genetic variants. Nature 
genetics. 2014; 46(3):310-315. 


