PreImplantation factor (PIF) protects cultured embryos against oxidative stress: relevance for recurrent pregnancy loss (RPL) therapy

Supplementary Material

Supplementary Figure 1: ELISA based PIF antibody detection: data shows that the antibody detected is likely against egg component and not against PIF

Supplementary Figure 2: ELISA based PIF antibody detection: data shows that the antibody detected is likely against egg component and not against PIF

Supplementary Figure 3: ELISA based PIF antibody detection: confirmation that only the ovalbumin presence and not PIF leads to the antibody detection.

Oncotarget

Supplementary Table 1: PIF PREVENTS EMBRYO DEMISE CAUSED BY RPL SERA <3kDa Fraction Causes Embryo Delay & >3kDa Fraction Causes Embryo Demise

PIF+	34 Total	PIF-	
P29 Blast	85.3%	15 Blast	44.1%
2 Eblast	5.9%	4 Eblast	11.8%
1 Morula	2.9%	8 Morula	23.5%
0 6-8 Cell	0.0%	3 6-8 Cell	8.8%
2 2-4 Cell	5.9%	3 2-4 Cell	8.8%
0 Atretic	0.0%	1 Atretic	2.9%

< 3 kDa sera fraction

PIF+	33 Total	PIF-	
16 Blast	48.5%	12 Blast	36.4%
5 Eblast	15.2%	2 Eblast	6.1%
6 Morula	18.2%	4 Morula	12.1%
0 6-8 Cell	0.0%	0 6-8 Cell	0.0%
1 2-4 Cell	3.0%	0 2-4 Cell	0.0%
5 Atretic	15.2%	15 Atretic	45.5%

> 3 kDa sera fraction

Supplementary Table 2: PIF PREVENTS EMBRYO DEMISE CAUSED BY OXIDATIVE STRESS Blocks PDI / Thioredoxin Inhibitor Effect

Group			Cleaved	Blastocyst		
		N	%	N	% (of total)	% (of cleaved)
Control	248	176	70.0 ^a	71	28.6 ^ª	40.3 ^ª
PIF	155	104	67.1 ^{ab}	46	29 .7 ^ª	44.2 ^a
PDI-inhibitor	247	145	58.7 ^b	15	6.1 ^b	10.3 ^b
PDI inh+PIF	236	148	60.1 ^{ab}	33	14.0 [°]	22.3 [°]

PIF effect on cultured bovine zygotes cleavage and reaching the blastocyst stage. (P < 0.05). N = No. of Embryos Total zygote cleavage and embryo development to blastocyst stage for each treatment group. (Replicates are combined.) Values in the same column with different superscripts are significantly different (p < 0.05).

Supplementary Table 3. Ligand-receptor interaction analysis in docking models of PIF and 16F16 to either oxidized PDI or reduced PDI form ¹.

	oxi PDI - PIF	oxi PDI - 16F16	red PDI - PIF	red PDI - 16F16
APBS Binding energy [kJ/mol]	-4.07	5.95	-6.95	0.40
Electrostatic Interaction energies [kcal/mol]	9.43	-13.42	-18.47	3.00
Electrostatic Interaction energies (distance dependent) [kcal/mol]	-5.46	-2.77	-5.46	-0.45
Electrostatic energy [kcal/mol]	-23249.38	-22311.24	-23798.96	-22779.24
Total charge	-19	-20	-20	-21
APBS Solvation energy [kcal/mol]	-9866.09	-9690.88	-10326.38	-10230.40
MEP interaction energy (electrostatic interaction)	9.4380	-13.4179	-18.4713	3.0079

¹ Ligand-receptor interaction was evaluated by modeling biomolecular solvation through solving the Poisson-Boltzmann equation and related equations, to calculate solvation energies and electrostatic properties of the complex. The APBS (Adaptive Poisson-Boltzmann Solver) software, developed by Nathan Baker in collaboration with J. Andrew McCammon and Michael Holst, was used as plug-in implementation to Vega ZZ package. APBS calculates binding free energies (*APBS Binding energy*) by dividing the binding process up into solvation (*APBS Solvation energy*) and Coulombic components. Intermolecular Coulombic contributions to the solvation energy are assessed using either *APBS Electrostatic Interaction energies* or *Molecular electrostatic potential (MEP) interaction energy*.

Oncotarget