Supplementary Information Preparation and in vivo characterization of ⁵¹MnCl₂ as PET tracer of Ca²⁺ channel-mediated transport

Stephen A. Graves¹, Reinier Hernandez¹, Hector F. Valdovinos¹, Paul A. Ellison¹, Jonathan W. Engle¹, Todd E. Barnhart¹, Weibo Cai^{1,2,3}, Robert J. Nickles¹*

¹Department of Medical Physics, University of Wisconsin – Madison
 ²Carbone Cancer Center, University of Wisconsin – Madison
 ³Department of Radiology, University of Wisconsin – Madison

*Corresponding author information: Robert J. Nickles *rnickles@wisc.edu* 1005 WIMR, 1111 Highland Ave., Madison, WI, 53705, USA Phone: +1 (608) 263-5805

Jonathan W. Engle *jwengle@wisc.edu* 1005 WIMR, 1111 Highland Ave., Madison, WI, 53705, USA Phone: +1 (608) 263-7932

Supplementary Note: Fe/Mn Redox Chemistry

To determine whether Mn^{2+} and Fe^{2+} are oxidized to Mn^{3+} and Fe^{3+} under acidic conditions by the addition of H_2O_2 prior to anion exchange chromatography, consider the following reactions and associated standard reduction potentials:

$$Mn^{3+}(aq) + e^{-} \longrightarrow Mn^{2+}(aq) \qquad E^{\circ} = +1.51 V$$

$$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq) \qquad E^{\circ} = +0.77 V$$

$$H_2O_2(aq) + 2H^{+} + 2e^{-} \longrightarrow 2H_2O \qquad E^{\circ} = +1.78 V$$

For the oxidation of Mn^{2+} by H_2O_2 , we obtain:

$$2Mn^{2+}(aq) + H_2O_2(aq) + 2H^+ + 2e^- \longrightarrow 2H_2O + 2Mn^{3+} + 2e^- \qquad E^{\circ} = 1.78 - 2(1.51) V$$

$$\boxed{2Mn^{2+} + H_2O_2(aq) + 2H^+ \longrightarrow 2H_2O + 2Mn^{3+} \qquad E^{\circ} = -1.24 V}$$

For the oxidation of Fe^{2+} by H_2O_2 , we obtain:

$$2Fe^{2+}(aq) + H_2O_2(aq) + 2H^+ + 2e^- \longrightarrow 2H_2O + 2Fe^{3+} + 2e^- \qquad E^{\circ} = 1.78 - 2(0.77) V$$

$$\boxed{2Mn^{2+} + H_2O_2(aq) + 2H^+ \longrightarrow 2H_2O + 2Mn^{3+} \qquad E^{\circ} = +0.24 V}$$

From these results, we can see that Mn^{2+} is not oxidized to Mn^{3+} , whereas the oxidation of Fe^{2+} to Fe^{3+} is spontaneous. The spontaneous oxidation of Fe^{2+} to Fe^{3+} is evidenced experimentally by a color change, from pale yellow to deep orange/brown.

Tissuo	Number of ⁵¹ Mn disintigrations	Number of ⁵¹ Cr disintigrations
TISSUE	(MBq-h/MBq)	(MBq-h/MBq)
Adrenals	0.00E+00	0.00E+00
Brain	4.43E-03	3.93E+00
Breasts	0.00E+00	0.00E+00
Gallbladder Contents	0.00E+00	0.00E+00
LLI	0.00E+00	0.00E+00
Small Intestine	0.00E+00	0.00E+00
Stomach	0.00E+00	1.23E+01
ULI	6.42E-03	5.70E+00
Heart Contents	0.00E+00	0.00E+00
Heart Wall	2.37E-02	2.10E+01
Kidneys	6.91E-02	6.12E+01
Liver	6.30E-02	5.58E+01
Lungs	1.68E-02	1.49E+01
Muscle	2.18E-03	1.93E+00
Ovaries	0.00E+00	0.00E+00
Pancreas	4.11E-02	3.64E+01
Red Marrow	0.00E+00	0.00E+00
Cortical Bone	8.40E-04	7.48E-01
Trabecular Bone	0.00E+00	0.00E+00
Spleen	9.16E-03	8.12E+00
Testes	0.00E+00	0.00E+00
Thymus	0.00E+00	0.00E+00
Thyroid	0.00E+00	0.00E+00
Urinary Bladder Contents	0.00E+00	0.00E+00
Uterus/Uterine Wall	0.00E+00	0.00E+00
Total Body	8.70E-01	7.20E+02

Table S1. Source organ integrated disintigrations for 51 Mn and 51 Cr used in OLINDA dose calculations.

Time	Heart	Liver	Kidneys	Muscle	Pancreas	Salivary gland
(min)	(SUV)	(SUV)	(SUV)	(SUV)	(SUV)	(SUV)
0.04	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.13	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.21	2.73 ± 0.58	1.32 ± 0.50	0.04 ± 0.05	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.29	14.48 ± 0.53	6.73 ± 2.32	3.62 ± 0.03	0.00 ± 0.00	1.56 ± 0.35	0.90 ± 0.35
0.38	13.12 ± 1.58	7.21 ± 1.90	6.91 ± 0.63	0.26 ± 0.36	3.13 ± 0.22	2.93 ± 1.57
0.46	9.48 ± 0.58	6.99 ± 1.17	8.41 ± 0.85	0.46 ± 0.63	3.63 ± 0.07	2.97 ± 0.70
0.54	7.47 ± 0.06	7.33 ± 0.67	9.69 ± 1.36	0.39 ± 0.53	4.43 ± 0.42	3.32 ± 0.87
0.63	6.16 ± 0.24	7.49 ± 0.51	10.53 ± 1.61	0.41 ± 0.52	4.71 ± 0.03	3.08 ± 0.89
0.71	5.27 ± 0.20	7.50 ± 0.30	10.75 ± 1.30	0.36 ± 0.46	5.08 ± 0.12	2.83 ± 0.45
0.79	4.59 ± 0.19	7.97 ± 0.38	11.02 ± 1.27	0.32 ± 0.40	5.28 ± 0.72	3.14 ± 0.65
0.88	4.63 ± 0.24	7.98 ± 0.34	11.18 ± 1.26	0.26 ± 0.31	5.06 ± 0.09	3.18 ± 0.83
0.96	4.46 ± 0.31	8.33 ± 0.11	11.65 ± 1.32	0.20 ± 0.25	5.31 ± 0.50	3.16 ± 0.14
1.08	3.88 ± 0.41	8.34 ± 0.16	11.94 ± 1.55	0.49 ± 0.35	5.14 ± 0.32	2.57 ± 0.24
1.25	3.72 ± 0.25	8.70 ± 0.13	12.21 ± 1.83	0.45 ± 0.31	5.53 ± 0.43	2.81 ± 0.14
1.42	3.79 ± 0.60	9.27 ± 0.24	12.72 ± 1.45	0.45 ± 0.35	5.72 ± 1.06	2.94 ± 0.41
1.58	3.71 ± 0.46	9.10 ± 0.17	12.57 ± 1.42	0.47 ± 0.41	5.78 ± 0.50	2.73 ± 0.18
1.75	3.73 ± 0.45	9.57 ± 0.07	12.67 ± 1.51	0.38 ± 0.34	6.02 ± 0.54	2.66 ± 0.20
1.92	3.92 ± 0.55	10.06 ± 0.32	13.06 ± 1.68	0.48 ± 0.26	6.14 ± 1.41	2.71 ± 0.39
2.25	3.81 ± 0.41	10.01 ± 0.29	12.89 ± 1.73	0.50 ± 0.17	6.19 ± 0.61	2.58 ± 0.20
2.75	3.78 ± 0.41	10.23 ± 0.46	13.16 ± 1.93	0.48 ± 0.11	6.20 ± 0.59	2.56 ± 0.24
3.25	3.79 ± 0.36	10.37 ± 0.49	13.01 ± 1.68	0.44 ± 0.11	6.38 ± 0.53	2.58 ± 0.03
3.75	3.65 ± 0.29	10.46 ± 0.58	13.20 ± 1.95	0.43 ± 0.08	5.98 ± 0.79	2.58 ± 0.06
4.25	3.80 ± 0.33	10.51 ± 0.61	13.15 ± 1.88	0.49 ± 0.11	6.30 ± 0.81	2.65 ± 0.04
4.75	3.83 ± 0.44	10.53 ± 0.66	13.02 ± 1.88	0.44 ± 0.10	6.40 ± 1.22	2.69 ± 0.15
5.50	3.96 ± 0.38	10.77 ± 0.84	12.97 ± 1.90	0.41 ± 0.12	6.38 ± 0.79	2.60 ± 0.31
6.50	4.10 ± 0.31	11.11 ± 1.14	13.13 ± 2.08	0.42 ± 0.15	6.48 ± 1.05	2.57 ± 0.21
7.50	4.20 ± 0.12	11.24 ± 1.30	12.95 ± 2.09	0.42 ± 0.11	6.49 ± 1.21	2.65 ± 0.02
8.50	4.37 ± 0.10	11.26 ± 1.41	12.85 ± 1.98	0.43 ± 0.15	6.43 ± 0.63	2.75 ± 0.01
9.50	4.43 ± 0.09	11.47 ± 1.40	13.09 ± 2.21	0.42 ± 0.14	6.56 ± 0.96	2.69 ± 0.03
10.50	4.51 ± 0.03	11.44 ± 1.32	12.97 ± 2.25	0.42 ± 0.14	6.65 ± 1.18	2.67 ± 0.20
11.50	4.49 ± 0.07	11.35 ± 1.44	12.92 ± 2.21	0.40 ± 0.14	6.75 ± 1.16	2.67 ± 0.08
12.50	4.53 ± 0.03	11.50 ± 1.55	13.00 ± 2.32	0.40 ± 0.11	6.58 ± 1.06	2.60 ± 0.02
13.50	4.50 ± 0.05	11.51 ± 1.43	13.13 ± 2.30	0.44 ± 0.11	6.52 ± 1.12	2.69 ± 0.03
14.50	4.56 ± 0.05	11.41 ± 1.38	13.02 ± 2.31	0.41 ± 0.12	6.59 ± 0.90	2.76 ± 0.14
16.25	4.59 ± 0.07	11.53 ± 1.46	13.17 ± 2.39	0.40 ± 0.14	6.62 ± 0.84	2.64 ± 0.17
18.75	4.59 ± 0.01	11.59 ± 1.45	13.20 ± 2.47	0.39 ± 0.14	6.52 ± 0.86	2.73 ± 0.20
21.25	4.61 ± 0.07	11.71 ± 1.51	13.38 ± 2.43	0.41 ± 0.12	6.58 ± 0.80	2.77 ± 0.18
23.75	4.68 ± 0.02	11.74 ± 1.57	13.42 ± 2.49	0.42 ± 0.13	6.46 ± 0.89	2.77 ± 0.19
26.25	4.73 ± 0.01	11.81 ± 1.65	13.40 ± 2.38	0.40 ± 0.15	6.49 ± 0.56	2.69 ± 0.10
28.75	4.72 ± 0.06	11.89 ± 1.64	13.55 ± 2.33	0.40 ± 0.16	6.60 ± 0.58	2.77 ± 0.05
31.25	4.72 ± 0.02	12.02 ± 1.75	13.65 ± 2.50	0.42 ± 0.14	6.62 ± 0.58	2.75 ± 0.16
33.75	4.72 ± 0.02	12.06 ± 1.73	13.74 ± 2.59	0.40 ± 0.13	6.67 ± 0.47	2.69 ± 0.13

Table S2. Tabulated time activity curves (TACs) measured by dynamic PET for isoflurane anaesthetized ICR mice (n=2) injected with a rapid intravenous bolus of ⁵¹MnCl₂.ROIs were hand-drawn on composite images and applied to all frames. Values represent mean \pm SD. A heart blood clearance half-life of 7.7 \pm 0.7 s was measured by weighted exponential least-squares regression.

Tissue	Uptake (SUV)
Heart	3.53 ± 0.25
Liver	4.63 ± 0.91
Kidney	7.70 ± 1.06
Muscle	0.47 ± 0.07
Pancreas	5.93 ± 0.93
Salivary Gland	3.90 ± 0.75

Table S3. ⁵¹Mn uptake in non-anaesthetized ICR mice (n=3) 1 hour following a rapid intravenous bolus of ⁵¹MnCl₂, quantified by hand-drawn static PET ROIs.

Tissue	Uptake (SUV)
Blood	0.09 ± 0.02
Skin	0.28 ± 0.06
Muscle	0.45 ± 0.16
Bone	0.52 ± 0.11
Heart	5.64 ± 1.75
Lung	2.57 ± 1.28
Liver	3.66 ± 0.78
Kidney	9.23 ± 0.70
Spleen	1.62 ± 0.18
Pancreas	7.03 ± 1.28
Stomach	2.47 ± 1.43
Intestine	3.37 ± 2.84
Tail	0.12 ± 0.10
Brain	0.38 ± 0.03
Salivary Gland	3.18 ± 1.30

Table S4. ⁵¹Mn uptake in ICR mice immediately following PET imaging (~90 min post-injection), quantified by *ex vivo* gamma counting.