Genome-wide survey of switchgrass NACs family provides new insights into motif and structure arrangements and reveals stress-related and tissue-specific NACs

Haidong Yan¹, Ailing Zhang¹, Yuntian Ye², Bin Xu^{3,*}, Jing Chen¹, Xiaoyan He¹, Chengran Wang¹, Sifan Zhou¹, Xinquan Zhang^{1,*}, Yan Peng¹, Xiao Ma¹, Yanhong Yan¹, Linkai Huang^{1,*}.

С

Figure S1 Analysis of phylogenetic relationships for NAC genes. a. Multiple sequence alignment of 251 amino acids of PvNACs was conducted using ClustalX, and the phylogenetic tree was constructed via MEGA 5.0 by the Neighbor-joining method with 1000 bootstrap replicates and p-distance method. The phylogenetic tree only showed percentage bootstrap scores above 50%. A number of 19 phylogenetic subgroups were divided as I to XIX marked with different colour backgrounds. b. Exon/intron structures of *PvNACs*. Exons and introns are yellow boxes and black lines, respectively, and blue boxes indicate upstream/downstream sequence. c. Phylogenetic relationships of switchgrass, rice and *Arabidopsis* NAC proteins. We classified the NACs into 18 subgroups, and name of subgroups are followed by Ooka et al. (2003).

Reference

Ooka, H. et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. Dna Res. 10, 239-47 (2003).

Figure S2 Phylogenetic relationships of switchgrass NAC proteins. Multiple sequence alignment of NACs was conducted using ClustalX, and the phylogenetic tree was constructed via MEGA 5.0 by the Maximum likelihood method based on partial deletion mode. The classification of this figure was in accordance with the figure S1a.

Figure S3 The special expression profiles of 24 *PvNACs* upon heat stress as revealed by the Affymetrix data.

Figure S4 Heatmap of expression profiles of *PvNACs* in 21 organs, tissues or at different developmental stages. AP13_ Seed0d, AP13_ Seed5d, AP13_ Seed10d, AP13_ Seed15d, AP13_ Seed20d, AP13_ Seed25d, AP13_ Seed30d represent whole flowers at anthesis stage, whole seeds 5 days post fertilization, whole seeds with visible caryopsis, whole seeds at the milk stage, whole seeds at the soft dough stage, whole seeds at the hard dough stage, whole seeds at the physiological maturity stage, respectively. Inflo-meristem: Inflorescence meristem (0.5-3.0 mm). Inflo-floret: Floret of inflorescence (50–150 mm). Inflo-PEM: Panicle emergence of inflorescence (>200 mm). E4-LFB: Pooled leaf blade from plant. E4-LSH: Pooled leaf sheath. E4i3m: Middle 1/5 fragment of the 3rd internode. E4i3mVB: Vascular bundle isolated from 1/5 fragment of the 3rd internode. E4i4b: Bottom 1/5 fragment of the 4th internode. E4i4t: Top 1/5 fragment of the 4th internode. E4i4m: Middle 1/5 fragment of the 4th internode 4. E4-root: Whole root system. E4-crown: Whole crown. E4-node: Pooled nodes.

Figure S5 Interaction network analysis of NAC proteins identified in switchgrass according to the orthologs in rice. The line thickness indicated the combined score. The PvNAC proteins with a red color indicated they are potential functional proteins in Table S1, and the predicted functional information was listed below them. This network maybe speculative because it is unknown whether the switchgrass and rice proteins are true orthologues or not, and further studies should be conducted to confirm the exact annotation.

UCE2

PvNAC85

PvNAC141

PvNAC208

PvNAC239

PvNAC41

PvNAC87

PvNAC174

PvNAC216

PvNAC249

PvNAC64

PvNAC65

PvNAC103

PvNAC190

PvNAC224

PvNAC219

PvNAC100

PvNAC185

Figure S6 Melting curves of one reference gene (*UCE2*) and 17 *PvNAC* genes showing single peaks in qRT-PCR.

Figure S7 The PvNACs with motif 10 in figure 8 were homologous to ANA010 and ANA073 involved in secondary cell wall thickening in lignified cells.

hater L. Wanter of
SERVICE SED ANSELTE
S ABB OOD
STR LAZANG SEE
KAR SE COM
SSEAGOASX-CRKEKOAGQoo
NA SAARCESNIFAP
- ASTAR AR

b

Conserved motif

Motif a Motif b Motif c

Motif d Motif e

Motif f

Motif g

Motif h

Motif i

Motif j

Motif k Motif I **Figure S8** Schematic representation of the C-terminal of PvNACs located TARs (or TRRs) with highly divergent sequences by MEME analysis. a. A total of 12 motifs (a-l) were identified in the TARs. b. The logo of motifs a-l in C-terminal regions.

Figure S9 The tissue level expression between paralogous *PvNAC* pairs under diversifying and purifying selection. The abbreviations of each tissue and developmental stage were derived from PviGEA database. AP13_ Seed0d, AP13_ Seed5d, AP13_ Seed10d, AP13_ Seed15d, AP13_ Seed20d, AP13_ Seed25d, AP13_ Seed30d represent whole flowers at anthesis stage, whole seeds 5 days post fertilization, whole seeds with visible caryopsis, whole seeds at the milk stage, whole seeds at the soft dough stage, whole seeds at the hard dough stage, whole seeds at the physiological maturity stage, respectively. Inflo-meristem: Inflorescence meristem (0.5-3.0 mm). Inflo-floret: Floret of inflorescence when glumes are 10–20 mm. Inflo-REL: Rachis and branch elongation of inflorescence (50–150 mm). Inflo-PEM: Panicle emergence of inflorescence (>200 mm). E4-LFB: Pooled leaf blade from plant. E4-LSH: Pooled leaf sheath. E4i3m: Middle 1/5 fragment of the 3rd internode. E4i4b: Bottom 1/5 fragment of the 4th internode. E4i4t: Top 1/5 fragment of the 4th internode. E4i4m: Middle 1/5 fragment of the 4th internode. E4i4m: Middle 1/5 fragment of the 4th internode. E4i4m: Middle 1/5 fragment of the 4th internode.

Locus name	NAC name	Gene functional annotation	References	Closest PvNAC homolog(s)
Os04g38720.1	OMTN2; OsNAC2	Regulator of the plant height and flowering time; Improve plant structure for higher light-use efficiency and higher yield	Chen et al. 2015 [1]; Mao et al. 2007 [2]	PvNAC126/220 in clade I
Os11g03370.1	ONAC45	Involved in drought and salt regulation	Zheng et al. 2009 [3]	PvNAC249/216/240/195 in clade II
AT1G32770	ANAC012	Regulator of secondary wall thickening in xylary fibers	Jae-Heung et al. 2007 [4]	PvNAC190/213/215 in clade III
Os03g02800.1	ONAC054/RIM1	Component of jasmonic acid (JA) signaling	Yoshii et al. 2009 [5]	PvNAC150/151 in clade IV
Os01g60020.1	OsNAC4; ONAC068	Be related to plant hypersensitive cell death	Takashi et al. 2009 [6]	PvNAC92/79/141/177 in clade V
Os03g60080.1	SNAC1; OsNAC9; OsNAC19	Involved in drought stress regulation	Khandok et al. 2014 [7]	PvNAC92/79/141/177 in clade V
Os05g34830.1	OsNAC52	Involved in ABA and drought stress regulation	Gao et al. 2010 [8]	PvNAC239/232/174/80 in clade V
AT5G63790	ANAC102	Involved in ABA regulation; An important regulator of seed germination under flooding.	Takasaki et al. 2015 [9]; Christianson et al. 2009 [10]	PvNAC239/232/174/80 in clade V
AT5G08790	ANAC081	Involved in ABA regulation	Takasaki et al. 2015 [9]	PvNAC239/232/174/80 in clade V
AT1G01720	ANAC002	Involved in ABA regulation	Takasaki et al. 2015 [9]	PvNAC239/232/174/80 in clade V
AT1G77450	ANAC032	Involved in ABA regulation	Takasaki et al. 2015 [9]	PvNAC239/232/174/80 in clade V
Os01g66120.1	OsNAC6; SNAC2	Involved cold and salt stress regulation	Kazuo et al. 2007 [11]; Hu et al.	PvNAC239/232/174/80 in

 Table S1 Plant functional-annotated NAC genes and corresponding orthologs of PvNACs.

			2008 [12]	clade V
Os11g03300.1	OsNAC10; ONAC122	Involved in drought regulation	Sun et al. 2010 [13]; Jin et al. 2010 [14]	PvNAC208/222/185 in clade V
Os12g03040.1	ONAC131	Involved in cold and drought regulation	Sun et al. 2010 [13]	PvNAC208/222/185 in clade V
Os07g48450.1	NAC8	Involved in ABA and drought stress regulation	Nuruzzaman et al. 2012 [15]	PvNAC75/221/147/155/219/ 46 in clade V
AT2G17040	ANAC036	Involved in the growth of leaf cells.	Kato et al. 2010 [16]	PvNAC166/65/68/224/149 in clade VI
Os08g33910.1	ONAC063	Play an important role in eliciting responses to high-salinity stress	Yokotani et al. 2009 [17]	PvNAC98/191/4/20/41/28 in clade VI
AT3G49530	ANAC062	Involved in endoplasmic reticulum (ER) stress signaling from the plasma membrane to the nucleus and play an important role in regulating UPR downstream gene expression	Yang et al. 2014 [18]	PvNAC99/102 in clade VII
AT4G17980	ANAC071	Be related to ethylene and JA	Asahina et al. 2011 [5]	PvNAC148/157/143 in clade IX
AT1G34190	ANAC017	Play a key role in both biogenic and operational mitochondrial retrograde signalling, and improve plant performance when mitochondrial function is constitutively impaired.	Aken et al. 2016 [19]	PvNAC172/27/179 in clade IX
AT1G32870	ANAC013	Regulator of mitochondrial retrograde regulation (MRR) upon stress.	Clercq et al. 2013 [20]	PvNAC172/27/179 in clade IX

AT4G29230	ANAC075	Involved in flowering-time gene regulation in phloem and/or vascular tissue formation	Fujiwara et al. 2016 [21]	PvNAC202/85 in clade XI
AT2G43000	ANAC042	Key transcription factor involved in previously unknown regulatory mechanisms to induce phytoalexin biosynthesis	Saga et al. 2012 [22]	None
AT5G39610	ANAC092	transcription factor incorporating the environmental and endogenous stimuli into the process of plant lateral root development	He et al. 2005 [23]	None
AT1G52890	ANAC019	Involved in JA and ABA regulation	Qingyun et al. 2008 [24]; Jensen et al. 2010 [25]	None
AT3G15500	ANAC055	Involved in JA and ABA regulation	Qingyun et al. 2008 [24]; Takasaki et al. 2015 [9]	None
AT4G27410	ANAC072	Involved in drought, high salinity, and ABA regulation	Takasaki et al. 2015 [9]	None

Reference

1. Chen, X. *et al.* OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. *Plant J Cell Mol Biol.* **82**, 302–14 (2015).

2. Mao, C.Z. et al. Overexpression of a NAC - domain protein promotes shoot branching in rice. New Phytol. 176, 288-98 (2007).

3. Zheng, X.N., Bo, C., Lu, G.J. & Han, B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. *Biochem Biophys Res Commun.* **379**, 985-9 (2009).

4. Jae - Heung, K., Yang, S.H., Park, A.H., Olivier, L. & Han, K.H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in *Arabidopsis thaliana*. *Plant J.* **50**, 1035-48 (2007).

5. Asahina, M. *et al.* Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in *Arabidopsis*. *PNAS*. **108**, 16128-32 (2011).

6. Kaneda, T. et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. Embo J. 28, 926-36 (2009).

7. Songyikhangsuthor, K. et al. Natural variation in the sequence of SNAC1 and its expression level polymorphism in rice germplasms under drought stress. J Genet Genomics. 41, 609-12 (2014).

8. Gao, F. *et al.* OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. *Plant Cell Tissue Organ Cult.* **100**, 255-62 (2009).

9. Takasaki, H. et al. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J Cell Mol Biol. 84, 1114-23 (2015).

10. Christianson, J.A. & Dennis, E.S. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of *Arabidopsis* seeds following low-oxygen treatment. *Plant Physiol.* **149**, 1724-38 (2009).

11. Nakashima, K. *et al.* Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. *Plant J.* **51**, 617-30 (2007).

12. Hu, H.H. et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol. 67, 169-81 (2008).

13. Sun, L. *et al.* Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against *Magnaporthe grisea*. *Plant Mol Biol.* **81**, 41-56 (2013).

14. Jin, S.J. *et al.* Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. *Plant Physiol.* **153**, 185-97 (2010). 15. Nuruzzaman, M. *et al.* Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. *Mol Genet Genomics.* **287**, 389-410 (2012).

16. Kato, H., Motomura, T., Komeda, Y., Saito, T. & Kato, A. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in *Arabidopsis thaliana. J Plant Physiol.* **167**, 571-7 (2010).

17. Yokotani, N. *et al.* Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic *Arabidopsis*. *Planta*. **229**, 1065-75 (2009).

18. Yang, Z.T. *et al.* A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in *Arabidopsis*. *Plant J Cell Mol Biol*. **79**, 1033-43 (2014).

19. Van Aken, O., Ford, E., Lister, R., Huang, S. & Millar, A.H. Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. *Plant J.* doi: 10.1111/tpj.13276 (2016).

20. Clercq, I.D. *et al.* The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in *Arabidopsis. Plant Cell.* **25**, 3472-90 (2013).

21. Fujiwara, S. & Mitsuda, N. ANAC075, a putative regulator of VASCULAR-RELATED NAC-DOMAIN7, is a repressor of flowering. *Plant Biotechnol.* doi: 10.5511/plantbiotechnology.16.0215b (2016).

22. Saga, H. *et al.* Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in *Arabidopsis*. *Mol Plant Microbe Interact.* **25**, 684-96 (2012).

23. †, X.J.H. *et al.* AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. *Plant J.* **44**, 903-16 (2006).

24. Bu, Q.Y. *et al.* Role of the *Arabidopsis thaliana* NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. *Cell Res.* **18**, 756-67 (2008).

25. Jensen, M.K. *et al.* The *Arabidopsis thaliana* NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. *Biochem J.* **426**, 183-96 (2009).

Table S2 Diversifying and purifying selection of PvNACs.

	Chromosomal locations	Ks	Ka	Ka/Ks	Evolutionary Selection	Duplication type
PvNAC1/21	Chr01b/01a	0.670	0.638	0.953	Purifying	Homeologous
PvNAC4/20	Chr01b/01a	0.067	0.015	0.220	Purifying	Homeologous
PvNAC5/17	Chr01a/01b	2.008	1.767	0.880	Purifying	Homeologous
PvNAC7/18	Chr01b/01a	0.447	0.636	1.423	Diversifying	Homeologous
PvNAC8/16	Chr01a/01b	0.125	0.044	0.348	Purifying	Homeologous
PvNAC11/12	Chr01b/01a	0.432	0.485	1.122	Diversifying	Homeologous
PvNAC13/14	Chr01b/01b	1.223	6.145	5.025	Diversifying	Homeologous
PvNAC22/45	Chr02a/02b	0.963	3.567	3.705	Diversifying	Homeologous
PvNAC24/44	Chr02a/02b	0.907	2.686	2.962	Diversifying	Homeologous
PvNAC25/43	Chr02a/02b	0.059	0.012	0.202	Purifying	Homeologous
PvNAC28/41	Chr02b/02a	1.328	1.261	0.950	Purifying	Homeologous
PvNAC29/42	Chr02a/02b	0.861	2.003	2.325	Diversifying	Homeologous
PvNAC30/40	Chr02b/02a	1.175	2.559	2.177	Diversifying	Homeologous
PvNAC31/39	Chr02a/02b	1.701	0.000	0.000	Purifying	Homeologous
PvNAC32/35	Chr02a/02b	0.560	4.367	7.802	Diversifying	Homeologous
PvNAC33/34	Chr02a/02b	1.169	3.506	3.000	Diversifying	Homeologous
PvNAC36/71	Chr02b/04b	1.206	3.413	2.830	Diversifying	Paralogous
PvNAC49/56	Chr03b/03a	0.389	0.624	1.604	Diversifying	Homeologous
PvNAC50/54	Chr03a/03b	1.177	2.660	2.260	Diversifying	Homeologous
PvNAC59/133	Chr08a/03b	0.590	0.969	1.641	Diversifying	Paralogous
PvNAC61/70	Chr04b/04a	0.568	0.626	1.102	Diversifying	Homeologous
PvNAC64/67	Chr04a/04b	2.120	2.356	1.111	Diversifying	Homeologous
PvNAC74/86	Chr05a/05b	4.431	2.835	0.640	Purifying	Homeologous
PvNAC76/88	Chr05b/05a	0.457	0.317	0.692	Purifying	Homeologous

Homeologous	Diversifying	2.466	1.819	0.738	Chr05a/05b	PvNAC77/90
Homeologous	Diversifying	2.699	2.520	0.934	Chr05b/05a	PvNAC78/91
Homeologous	Diversifying	3.338	1.843	0.552	Chr05a/05b	PvNAC79/92
Homeologous	Diversifying	1.698	0.611	0.360	Chr05b/05a	PvNAC82/93
Homeologous	Diversifying	2.033	1.396	0.687	Chr05b/05a	PvNAC83/94
Homeologous	Diversifying	2.250	1.913	0.850	Chr06b/06a	PvNAC95/110
Homeologous	Purifying	0.000	0.000	0.788	Chr06a/06b	PvNAC96/107
Homeologous	Diversifying	4.695	3.836	0.817	Chr06b/06a	PvNAC97/108
Homeologous	Purifying	0.983	0.699	0.711	Chr06b/06a	PvNAC99/102
Homeologous	Diversifying	2.754	3.028	1.100	Chr06b/06a	PvNAC100/103
Homeologous	Diversifying	1.190	0.468	0.393	Chr07a/07b	PvNAC111/118
Homeologous	Diversifying	1.536	0.656	0.427	Chr07a/07b	PvNAC113/119
Homeologous	Purifying	0.757	0.092	0.121	Chr07a/07b	PvNAC114/124
Homeologous	Diversifying	2.122	0.927	0.437	Chr07b/07b	PvNAC121/122
Homeologous	Diversifying	1.072	2.700	2.518	Chr08b/08a	PvNAC128/136
Homeologous	Purifying	0.792	0.259	0.328	Chr08a/08b	PvNAC129/138
Homeologous	Diversifying	1.067	1.257	1.179	Chr08b/08a	PvNAC130/137
Homeologous	Diversifying	2.132	1.876	0.880	Chr09b/09a	PvNAC142/161
Homeologous	Diversifying	1.127	3.384	3.002	Chr09b/09a	PvNAC144/159
Homeologous	Diversifying	1.709	0.809	0.473	Chr09b/09a	PvNAC145/158
Homeologous	Diversifying	2.189	2.353	1.075	Chr09b/09a	PvNAC146/156
Homeologous	Diversifying	1.307	0.389	0.298	Chr09a/09b	PvNAC147/155
Homeologous	Diversifying	1.529	0.862	0.564	Chr09a/09b	PvNAC148/157
Homeologous	Purifying	0.864	0.499	0.577	Chr09a/09b	PvNAC150/151
Tandem	Diversifying	1.440	3.792	2.632	Chr02a/Chr02a	PvNAC24/25
Tandem	Purifying	0.331	0.685	2.069	Chr02b/Chr02b	PvNAC43/44

PvNAC54/55	Chr03b/Chr03b	2.262	2.723	1.203	Diversifying	Tandem
PvNAC105/106	Chr06b/Chr06b	2.632	3.792	1.440	Diversifying	Tandem

	NAC genes in Shen's study	NAC genes in our study
1	PvNAC032	PvNAC89
2	PvNAC055	PvNAC190
3	PvNAC033	PvNAC183
4	PvNAC046	PvNAC16
5	PvNAC061	PvNAC215
6	PvNAC062	PvNAC215
7	PvNAC066	PvNAC85
8	PvNAC068	PvNAC152
9	PvNAC101	PvNAC213
10	PvNAC102	PvNAC16

 Table S3 Local blast between NAC genes of Shen's study (2009) and our study.

Reference

Shen, H., Yin, Y.B., Chen, F., Xu, Y. & Dixon, R.A. A Bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. *Bioenerg Res.* **2**, 217-32 (2009).

Table S4 The interaction relationship for PvNAC proteins and their orthologous rice NAC proteins.

Node 1 PvNACs	Node 1 rice NAC proteins	Node 2 PvNACs	Node 2 rice NAC proteins	Score
PvNAC92	LOC_Os01g60020.1	PvNAC32	LOC_Os07g12340.1	0.606
PvNAC141	LOC_Os03g60080.1	PvNAC92	LOC_Os01g60020.1	0.687
PvNAC62	LOC_Os06g33940.1	PvNAC56	LOC_Os12g29330.1	0.414
PvNAC245	LOC_Os06g46270.1	PvNAC56	LOC_Os12g29330.1	0.725
PvNAC238	LOC_Os12g41680.1	PvNAC56	LOC_Os12g29330.1	0.479
PvNAC175	LOC_Os05g48850.1	PvNAC213	LOC_Os08g02300.1	0.582
PvNAC89	LOC_Os01g48130.2	PvNAC175	LOC_Os05g48850.1	0.601
PvNAC46	LOC_Os07g48450.1	PvNAC147	LOC_Os03g21060.1	0.814
PvNAC239	LOC_Os02g12310.1	PvNAC31	LOC_Os01g29840.1	0.582
PvNAC80	LOC_Os01g66120.1	PvNAC141	LOC_Os03g60080.1	0.767
PvNAC32	LOC_Os07g12340.1	PvNAC141	LOC_Os03g60080.1	0.678

Cana	Forward primar	Deverse minor	Amplification	
Gene	Forward primer	Reverse primer	efficiency (%)	
PvNAC4	1 CTATCTCAAGCGAAAGATTCAGC	ATATGGGCCTATCTGTTCCTGTT	95.63	
PvNAC14	41 AGTCGGAGATCGTGGACAAC	GAAGAGCGACGAGTAGAAGTCCT	92.15	
PvNAC1	74 GTACGGCGAGAAGGAGTGGTACT	GTACTCGTGCATGATCCAGTTG	95.74	
PvNAC1	85 AACCTGAACCACCGCTAA	ACTGCTGCTACCATCCAA	97.43	
PvNAC2	08 TCTCCTCAACACCATCGACTACT	CATAGTCATCACTCGCTTCCTCT	98.22	
PvNAC2	16 AGTTTCTGAACCCTAGCTTCGAC	CTTGAAGATCTCCCTGTCCTTG	88.39	Stress-related
PvNAC2	19 GCTTCTTCATTCTTGTCGATCTC	GACATCATCATCTCCATCTCCAT	91.28	genes
PvNAC2	39 GGAGGAGGAATCAATCAAGAAAG	AGGGGTCGAACTTGTAGAGGTC	89.90	
PvNAC24	49 CAACAAACAACAGTGGCAGTTAC	TCACCGTAGTTGTTGCCTAACTT	93.68	
PvNAC6	55 CCTCTGCACCGTTCGTCAC	GTAGCCTTCCGTTGTCCTTCTC	102.87	
PvNAC1	03 AGGAGGACTGGGTGCTATGC	CAGTGTTGGTGTCTGTGAGGG	98.88	
PvNAC2	24 TGGAAGCCAAGCAGGAAGC	CGCCAAGGGAGACAAGAAA	96.58	
PvNAC6	ACAATCTGGAGCATAACC	GAATCACCATCCCACAAC	90.33	
PvNAC8	AAGGATGGCTACTGGAAG	AAGGAGGTTGAACTGGATG	88.67	
PvNAC2	39 GGAGGAGGAATCAATCAAGAAAG	AGGGGTCGAACTTGTAGAGGTC	91.20	Tissue-specific
PvNAC8	5 ATGTGCCAGCAATCCTTC	GGCGGCCAGTATGGGTAA	97.28	genes
PvNAC1	90 CAGCAGCAAGCACCACCAGG	CCGATCCAGCGTGTCCCAGT	90.89	
PvNAC1	00 GCAGAACAACCAACCCAAAG	AGAAGGTCACCAAGGCTCACT	91.93	
UCE2	TATATGACGGAGGCTACT	CAGGTGGATGAAGAATAGA	95.34	Reference gene

Table S5 The primers of genes used to be validated.