Supplementary Information

Development of an efficient vector system for gene knock-out and near in-*cis* gene complementation in the sugarcane smut fungus

Shan Lu^{1,2}, Xiaorui Shen², Baoshan Chen^{1,2*}

¹State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Nanning, 530004, China; ²College of Life Science and Technology, Guangxi University, Nanning, 530004, China

*Corresponding author. chenyaoj@gxu.edu.cn

S1 Methods

S1 Figures

S1 Tables

S1 Methods Southern Blot

The number of sites into which the *Cas9* gene was integrated in $\Delta mfa2$ mutants was analyzed by Southern blotting using the DIG High Prime DNA Labeling and Detection Starter Kit II (Roche Applied Science, Indianapolis, IN). 40 µg of genomic DNA of $\Delta mfa2$ mutants were digested in *Hin*dIII and *Eco*RV digestion (ThermoFisher Scientific, USA) overnight at 37°C and then were electrophoresed in a 0.8% Tris-borate-EDTA (TBE) agarose gel at 100 V for 2 h. The gel was transferred onto a positively charged nylon membrane (GE, USA) overnight in 20×SSC buffer (3 M NaCl, 0.35 M sodium citrate, pH7.0). The membrane was hybridized overnight at 42°C with 25ng/ml of a 766 bp DIG probe (Roche Applied Science, Indianapolis, IN) targeted to the *Cas9* gene. The hybridized probe was immunodetected with anti-digoxigenin-AP, Fab fragments were visualized with the chemiluminescence substrate CSPD according to the manufacturer's instructions. The membrane exposes to ImageQuant LAS 500 (GE, USA) for 10 min.

S1 Figures

Figure S2. PCR amplification of the *Mfa2* locus of transformants. Primers used were mfa2C1F/mfa2C1R.

С

taaacgctcttttctcttaggtttacccgccaatatatcctgtcaaacactgatagtttaaactg (cas9 cassette) aattcaatt cggcgttaattcagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaatt<math>tgtttacaccacaatatatcctgccaI B Target 2 PAM Wild type mfa2 5'-...AACGAGGGCCGTGGTCAGCCTGCAGTCTACTGCA CCGTGGCCTAACGATGCACTCTAT...-3' Amfa2-2-1 GTCAGCCTGCAGTCTACTGCA taatcttggaattcacgcgctttgtctaagcgtcaatttgtttacaccaaCCGTGGCCTAACG Forward Amfa2-2-2 GTCAGCCTGCAGTCTACTGCA tcaaacactgatagtttaaact......ttgtctaagcgtcaatttgtttacaccaaCCGTGGCCTAACG insertion Amfa2-2-3 GTCAGCCTGCAGTCTACTGCA tcaaacactgatagtttaaactttgtctaagcgtcaatttgtttacaccaaCCGTGGCCTAACG Amfa2-2-4 GTCAGCCTGCAGTCTACTGC atatattgtggtgtaaacaaattgccttcagtttaaactatcagtgtttg ACCGTGGCCTAACG Reverse Amfa2-2-5 GTCAGCCTGCAGTCTACTGC ttgacgcttagacaacttaataa......gccttcagtttaaactatcagtgtttg ACCGTGGCCTAACG insertion Δmfa2-2-6 GTCAGCCTGCAGTCTACTGC gggtgtaaacaaattgacgctt......cttcagtttaaactatcagtgtttga ACCGTGGCCTAACG

Figure S3. Identification and characterization of *Mfa2* **targeted mutants.** (A) Mating assays of transformants targeted at the target 2 region. The fluffy colonies are the result of successful mating, while dense colonies indicate a fail in mating. (B) PCR detection of the insert arms at the cleavage site. The left image was for the forward insertion and the right one for reverse insertion. For forward insertion, the sizes of PCR products were 1211 bp with primer pair mfa2C1F/CasR01 and 1070 bp with primer pair mfa2C1F/HygR01. For reverse insertion, the sizes of PCR products were 1108 bp by primers mfa2C1F/HygR01 and 1173 bp by primers mfa2C1R/CasR01. (C) Sequences of the *Mfa2* flanking the insert at target 2 locus of the transformants. Underlined are RB and LB regions. The insertion regions are marked with wavy line. As could been seen, in both forward or reverse insertions, the whole RB and a small portion of the cassette at the 5' end were lost, but only 7-12 LB nucleotides at the far most 3' end were lost.

Α	325	330	340	350	360	370	390
Terfe 0.4	525	550	340		500	570	500
1 mra2-1			ACTGTTGCT	GCCTCCGTCC			
Ss mfa2 CDS	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	ITTCTGTTAA	CGAGC.
2(1)-1	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	ITTCTGTTAA	CGAGC.
2(1)-2	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	ITTCTGTTAA	CGAGC.
2(1)-3	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	TTTCTGTTAA	CGAGC.
2(1)-4	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	TTTCTGTTAA	CGAGC.
2(1)-5	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	TTTCTGTTAA	CGAGC.
2(1)-6	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	TTTCTGTTAA	CGAGC.
2(1)-8	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	TTTCTGTTAA	CGAGC.
Consensus	ATGTI	CATCTTCGAG	ACTGTTGCT	GCCTCCGTCC	AGGCCATTG	ITTCTGTTAA	CGAGC.
В	375	380	390	400	410	420	430
Tmfa2-2				CC	TGCAGTCTAC	TGCACCG	
Ss mfa2 CDS	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAGCC	TGCAGTCTAC	TGCACCGTG	CCTAA
2(2)-3	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAGCC	TGCAGTCTAC	TGCACCGTG	CCTAA
2(2)-4	CACCA	CCCCCTCTC		GTGGTGAG	TGCAGTCTAC	TCCACCC	сстал
2(2)-5	CACCA	CCCCCCTGTC	AACGAGGGGCC	GIGGICAGCC		TGCACCGIG	CCTAA
2(2) 5	GAGCA	GGCCCCTGTC	AACGAGGGCC	GIGGICAGCC	TGCAGICIAC		COMPA
2(2)-0	GAGCA	GGUUUUTGTU	AACGAGGGCC	GTGGTCAGCC	TGCAGTCTAC	TGCACCGTG	JUUTAA
2(2)-8	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAGCC	TGCAGTCTAC	TGCACCGTGC	JCCTAA
2(2)-9	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAG <mark>CC</mark>	TGCAGTCTAC	TGCACCGTG	GCCTAA
2(2)-14	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAG <mark>CC</mark>	TGCAGTCTAC	TGCACCGTG	GCCTAA
2(2)-16	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAG <mark>CC</mark>	TGCAGTCTAC	TGCACCG <mark>TGC</mark>	GCCTAA
Consensus	GAGCA	GGCCCCTGTC	AACGAGGGCC	GTGGTCAGCC	TGCAGTCTAC	TGCACCGTG	GCCTAA

Figure S5. Sequences at target site of pLS-Hcas9-Mfa2 transformants with normal mating capability. (A) Target1. (B) Target2.

Figure S6 PCR amplification of the components of the *cas9* **cassette.** (A) *Cas*9 gene; (B) PU6-sgRNA; (C) *Hph* gene. The *cas9* cassettes of 5 off-target transformants with randomly integrated T-DNA delivered were not intact.

Figure S7 The full-length gel of Figure 2B.

Figure S8 The full-length gel of Figure 3C (upper).

Figure S9 The full-length gel of Figure 3C (lower).

Figure S10 The full-length gel of Figure S2.

Figure S11 The full-length gel of Figure S3B.

Figure S12 The full-length blot of Figure S4. The first land from left was supercoiled plasmid of pLS-HCas9-Mfa2

Figure S13 The full-length gel of Figure S6A & S6B.

Figure S14 The full-length gel of Figure S6C.

S1 Tables

Table S1 Primers used in this work					
Primer	Sequence				
SsPu6F	5'-ATCGGCAGCAAAGGATACGATCGTCCCGACGATGCTC				
SsPu6R	5'-TCTTCAGAGGTCTCTCGAGGGTAAAATCTGATTGTATGAG				
U-F	5'-CTCCGTTTTACCTGTGGAATCG				
gR-R	5'-CGGAGGAAAATTCCATCCAC				
SsU6T mfa1①-	5'-AGGCCGAGGTCTGGGCGGTCGAGGGTAAAATCTGATTGTATG				
gRTmfa1①+	5'-ACCGCCCAGACCTCGGCCTGTTTTAGAGCTAGAAAT				
SsU6T mfa1@-	5'-CTCTTGCGGCCCTCATCGGCGAGGGTAAAATCTGATTGTATG				
gRTmfa1@+	5'-CCGATGAGGGCCGCAAGAGGTTTTAGAGCTAGAAAT				
SsU6T mfa2①-	5'-GGACGGAGGCAGCAACAGTCGAGGGTAAAATCTGATTGTATG				
gRTmfa2①+	5'-ACTGTTGCTGCCTCCGTCCGTTTTAGAGCTAGAAAT				
SsU6T mfa2@-	5'-CGGTGCAGTAGACTGCAGGCGAGGGTAAAATCTGATTGTATG				
gRTmfa2②+	5'-CCTGCAGTCTACTGCACCGGTTTTAGAGCTAGAAAT				
U-Fs-BamHI	5'-CTATGTTACTAGAGGATCCCGGAATGATCTACAAAGCGTTCTTC				
gR-R-HindIII	5'-TAACCATGGTACCAAGCTTATTCCATCCACTCCAAGCTCTTG				
Thph+	5'-ACCTGATGCAGCTCTCGGAGTTTTAGAGCTAGAAATAG				
Thph-	5'-TCCGAGAGCTGCATCAGGTCGAGGGTAAAATCTGATTGTATG				
ngU-FsBamHI	5'-CGACTCTAGAGGATCCCTTAAGCGGAATGATCTACAAAGCGTTCTTC				
NGgR-RBamHI	5'-AATCACTAGGGGATCCATTCCATCCACTCCAAGCTCTTG				
C mfa2 PstIF	5'-CTAAGCTTGCATGCCTGCAGGCTAGCCCATTGGGCACACCAG				
new mfa2F	5'-GAAACTGTTGCTGCCTGTGTGCAAGCCATTGTTTCTGTTAACGAGC				
new mfa2R	5'-TTGCACACAGGCAGCAACAGTTTCGAAGATGAACATGGTGAATTGGTAAA				
C mfa2 PstIR	5'-CCTCTAGAGTCGACCTGCAGTTAGGCCACGGTGCAGTAGACTGC				
mfa2C1F	5'-TGCCTGAATTGCTCCGCTTGTC				
CasR01	5'-GGATACCGACCTTCCGCTTCTTC				
mfa2C1R	5'-TGGCTCTGTTTCTCACGAGATCACG				
HygR01	5'-TGTATGGAGCAGCAGACGCGCTAC				
Gpd F	5'-GATTAGATCTTGCTGAT				
Cmfa2R	5'-TTAGGCCACGGTGCAGTAGACTG				
natR01	5'-CGGACTCCCGGACGTTCGTC				
Hph F	5'-ATGAAAAAGCCTGAACTCACCGCG				
hph1-F	5'-GCAAGACCTGCCTGAAACCG				

hph1-R	5'-GGTCAAGACCAATGCGGAGC
cas9-F	5'-ATGGCTCCTAAGAAGAAGCGGAAGG
cas9-R	5'-TTACTTTTTTTTTTGCCTGGCCG
Pu6-F	5'-GCATGACGTTATTTATGAGGTGGG
sgRNA-R	5'-AAAAAAGCACCGACTCGGTGCC
U6T 1621-	5'-GCTACTTCCTGCTGCGGACCGAGGGTAAAATCTGATTGTATG
RT 1621+	5'-GTCCGCAGCAGGAAGTAGCGTTTTAGAGCTAGAAATAG
U6T 6375-	5'-CATCGTGCCGCCTGCCCAGCGAGGGTAAAATCTGATTGTATG
gRT 6375+	5'-CTGGGCAGGCGGCACGATGGTTTTAGAGCTAGAAATAG
U6T 5775-	5'-GCGTCCAAGACCCTGGTCACGAGGGTAAAATCTGATTGTATG
gRT 5775+	5'-TGACCAGGGTCTTGGACGCGTTTTAGAGCTAGAAATAG
U6T 5019-	5'-CGCGAGATGCTCGCAGCCACGAGGGTAAAATCTGATTGTATG
gRT 5019+	5'-TGGCTGCGAGCATCTCGCGGTTTTAGAGCTAGAAATAG
U6T 3949-	5'-GGTCGCTTGGAGGGCGGAACGAGGGTAAAATCTGATTGTATG
1621 F	5'-ATGTCGAACGTCAACACATCTAC
1621 R	5'-TACACGAGGTTTGTCAG
3949 F	5'-ATGCGAGACCAAGCTACCACGG
3949 R	5'-CTTGCCCTGCGCCTTGAGAATG
5019 F	5'-CTCGCCTCTCAAGGATATTTCGG
5019 R	5'-TCCACAACCCAGTCTGCAGTGC
5775 F	5'-TACTGCAGACCATCTGACAGCCAG
5775 R	5'-TGGAGTCAACACAGGGTCCC
6375 F	5'-GGTCGTAGCCCCTCGTTTCTTG
6375 R	5'-AATGCCCGTCTCGAACCACTCG