
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The paper report a novel graph oriented machine learning technique for analyzing the AFLOWlib 

repository and predicting mainly band-gaps from the connectivity and a large number of atomic 

descriptors.  

 

While I like the paper, it is a very clearly written and illustrated attempt at an interesting field, I 

have difficulties finding arguments for why it should be published in Nat. Comm., I think it belongs 

in a more specialized journal like J.Chem.Phys.  

 

My major objections are:  

1. The choice of studying E-fermi is very questionable. In a PW code this is a parameter set with 

respect to G=0 and carries no physical significance. It says nothing about band alignment as 

otherwise used as a justification by the authors in the intro and conclusion.  

 

2. As the authors mention, there are now a number of ML studies of structure property 

relationships. I don't see how the present really stands out. Especially as no new predictions about 

materials are made or surprising insights are offered. It is of methodological interest and belongs 

in a methodological journal.  

 

3. The average predictive quality might be high, but large failures of the model are numerous. This 

would strongly limit a screening based on the model. Again it is disappointing that no predictions 

are made and validated.  

 

Smaller point:  

The "Fragment construction" subsection is a bit repetitive (compare p2c2)  

 

 

Reviewer #2 (Remarks to the Author):  

 

The main claim of this paper is that the fragment material descriptors introduced by the authors in 

combination with machine learning approaches allows the development of universal models 

capable of accurately predicting electronic properties for inorganic materials.  

 To the best of my knowledge these claims are novel. They are of course a continuation of earlier 

studies by the authors and others as cited in the paper itself. Machine learning approaches for 

predicting materials properties is a very active field at the forefront of research and this paper will 

most definitely be of interest to other researchers in this field. The ideas promoted in this paper 

may be expected to influence thinking in this field in two main directions at least: (i) establishing 

feasibility of ML methods in materials properties predictions and (ii) specific contribution of the 

materials descriptors employed here including the material fragments and the mix of empirical and 

computational properties.  

The authors claim is supported by three separate analyses: (i) classification of metal/non-metal 

materials (ii) prediction of the Fermi energy relative to DFT (iii) prediction of the band gap relative 

to DFT. While the proposed method is quite successful in predicting these quantities there are 

some weaknesses arising from the choice of properties. In particular, the Fermi energy is a 

computational concept and depends strongly on the choice of model and the band gap is a 

notoriously difficult problem in DFT and the error relative to experiment can be tens of percent.  

 I think that the authors’ case would be strengthened considerably by modelling a mechanical 

parameter, such as the bulk modulus, in addition to the purely electronic properties considered. 

Another issue would be to compare the predicted band gap data to experimental band gap data, 

particularly in light of the difficulties of predicting the band gap in DFT.  

I am not sure of the extent of such work and hesitate to require it.  

 



The manuscript is clearly written and is very readable. I think that the procedure is reasonably well 

explained and the analysis is sound. The literature in the field is fairly treated. In passing I note 

that 2D at the top of page 2 should probably be 3D.  

 

To summarise, the manuscript demonstrates successfully a novel approach to predicting materials 

properties using machine learning and due to the interest, challenge and importance of such 

methods I recommend it be published in Nature Communications after the authors have 

considered both extending the set of properties and the comparison to experimental and not only 

computational data.  
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Reponses to the reviewers 
 
****************************************************************************** 
 
Reviewer #1, Comment #1: 
The paper report a novel graph oriented machine learning technique for analyzing the AFLOWlib 
repository and predicting mainly band-gaps from the connectivity and a large number of atomic 
descriptors.  
While I like the paper, it is a very clearly written and illustrated attempt at an interesting field, I have 
difficulties finding arguments for why it should be published in Nat. Comm., I think it belongs in a more 
specialized journal like J.Chem.Phys.  
My major objections are: 
1. The choice of studying E-fermi is very questionable. In a PW code this is a parameter set with respect 
to G=0 and carries no physical significance. It says nothing about band alignment as otherwise used as 
a justification by the authors in the intro and conclusion. 
 
Authors: 
We thank the reviewer for the positive feedback.   
 
After some consideration, we agree with the reviewer and the model has been removed entirely from the 
paper.  In its place, by leveraging the same methodology described for the electronic properties, we have 
constructed models for six thermomechanical properties of real practical use, including:  the bulk and 
shear moduli, Debye temperature, heat capacity (both at constant pressure and volume), and thermal 
expansion coefficient. The manuscript has been drastically extended. 
 
Here, we discuss additions specific to the six new models: 
• Added text in the Methods section (Training Set) describing the new thermomechanical training 

data. 
• Modified the Modeling Work-Flow section to include the new thermomechanical models (includes 

updated Figure 2), and introduced the public, open-access web application leveraging our models for 
real time predictions. 

• Added a new subsection in Model Interpretation discussing the most significant descriptors to the 
new thermomechanical models.  This includes the addition of new Figure 6 (partial dependence 
plots).  

• Enhanced the Discussion section to highlight the need and practicality for rapid prediction of these 
properties. 

 
Now the appropriate part of the manuscript reads (in blue): 
 

II. Methods 
Data preparation. Two independent datasets were prepared for the creation and validation of the ML 
models. The training set includes electronic [4, 36–40] and thermomechanical properties [33, 34] for a 
broad diversity of compounds already characterized in the AFLOW database. This set is used to build 
and analyze the ML models, one model per property. The constructed thermomechanical models are then 
employed to make predictions of previously uncharacterized compounds in the AFLOW database. Based 
on these predictions and consideration of computational cost, several compounds are selected to validate 
the models’ predictive power. These compounds and their newly computed properties define the test set. 
The compounds used in both datasets are specified in the Supplementary Information.  
Training set. Band gap energy data for 49,934 materials were extracted from the AFLOW repository [4, 
36–40], representing approximately 60% of the known stoichiometric inorganic crystalline materials 
listed in the Inorganic Crystal Structure Database (ICSD) [2, 3]. While these band gap energies are 
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generally underestimated with respect to experimental values [41], DFT+U is robust enough to 
differentiate between metallic (no EBG) and insulating (EBG > 0) systems [42]. Additionally, errors in 
band gap energy prediction are typically systematic. Therefore, the band gap energy values can be 
corrected ad-hoc with fit- ting schemes [43, 44]. Prior to model development, both ICSD and AFLOW 
data were curated: duplicate entries, erroneous structures, and ill-converged calculations were corrected 
or removed. Noble gases crystals are not considered. The final dataset consists of 26,674 unique 
materials (12,862 with no EBG and 13,812 with EBG > 0), covering the seven lattice systems, 230 space 
groups, and 83 elements (H-Pu, excluding noble gases, Fr, Ra, Np, At, and Po). All referenced DFT 
calculations were performed with the Generalized Gradient Approximation (GGA) PBE [45] exchange-
correlation functional and projector-augmented wavefunction (PAW) potentials [46, 47] according to the 
AFLOW Standard for High-Throughput (HT) Computing [42]. The Standard ensures reproducibility of 
the data, as well as provides visibility and reasoning for any parameters set in the calculation, such as 
accuracy thresholds, calculation pathways, and mesh dimensions.  
Thermomechanical properties data for just over 3,000 materials were extracted from the AFLOW 
repository [34]. These properties include the bulk modulus, shear modulus, Debye temperature, heat 
capacity at constant pressure, heat capacity at constant volume, and thermal expansion coefficient, and 
were calculated using the AEL-AGL integrated framework [33, 34]. The AEL (AFLOW Elasticity 
Library) method [34] applies a set of independent normal and shear strains to the structure, and then fits 
the calculated stress tensors to obtain the elastic constants [48]. These can then be used to calculate the 
elastic moduli in the Voigt and Reuss approximations, as well as the Voigt-Reuss-Hill (VRH) averages 
which are the values of the bulk and shear moduli modeled in this work. The AGL (AFLOW GIBBS 
Library) method [33] fits the energies from a set of isotropically compressed and expanded volumes of a 
structure to a quasiharmonic Debye-Gruneisen model [49] to obtain thermomechanical properties, 
including the bulk modulus, Debye temperature, heat capacity, and thermal expansion coefficient. AGL 
has been combined with AEL in a single workflow, so that it can utilize the Poisson ratios obtained from 
AEL to improve the accuracy of the thermal properties predictions [34]. After a similar curation of ill-
converged calculations, the final dataset consists of 2,829 materials. It covers the seven lattice systems, 
includes unary, binary, and ternary compounds, and spans broad ranges of each thermomechanical 
property, including high thermal conductivity systems such as C, BN, BC5, CN2, MnB2, and SiC, as well 
as low thermal conductivity systems such as Bi4, Hg33(Rb,K)3, Cs6Hg40, BiI3, and Li. 
 
… 
 
Integrated modeling work-flow. Eight predictive models are developed in this work, including: a 
binary classification model that predicts if a material is a metal or an insulator and seven regression 
models that predict: the band gap energy (EBG) for insulators, bulk modulus (BVRH), shear modulus 
(GVRH), Debye temperature (θD), heat capacity at constant pressure (CP), heat capacity at constant volume 
(CV), and thermal expansion coefficient (αV). 
Figure 2 shows the overall application work-flow. A novel candidate material is first classified as a metal 
or an insulator. If the material is classified as an insulator, EBG is predicted, while classification as a 
metal implies that the material has no EBG. The six thermomechanical properties are then predicted 
independent of the material’s metal/insulator classification. The integrated modeling work-flow has been 
implemented as a web application at http://www.aflow.org/aflow-ml, requiring only the atomic species 
and positions as input for predictions.  
While all three models were trained independently, the accuracy of the EBG regression model is 
inherently dependent on the accuracy of the metal/insulator classification model in this work-flow. 
However, the high accuracy of the metal/insulator classification model suggests this not to be a practical 
concern.  
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FIG 2. Outline of the modeling work-flow. ML models are represented by orange diamonds. Target 
properties predicted by these models are highlighted in green.  
 

III. Results 
… 
Model interpretation. Model interpretation is of paramount importance in any ML study. The 
significance of each descriptor is determined in order to gain insight into structural features that impact 
molecular properties of interest. Interpretability is a strong advantage of decision tree methods, 
particularly with the GBDT approach. One can quantify the predictive power of a specific descriptor by 
analyzing the reduction of the RMSE at each node of the tree.  
Partial dependence plots offer yet another opportunity for GBDT model interpretation. Similar to the 
descriptor significance analysis, partial dependence resolves the effect of a variable (descriptor) on a 
property, but only after marginalizing over all other explanatory variables [82]. The effect is quantified 
by the change of that property as relevant descriptors are varied. The plots themselves highlight the most 
important interactions among relevant descriptors as well as between properties and their corresponding 
descriptors.  
While only the most important descriptors are highlighted and discussed, an exhaustive list of relevant 
descriptors and their relative contributions can be found in the Supplementary Information.  
For the metal/insulator classification model, the descriptor significance analysis shows that two 
descriptors have the highest importance (equally), namely avg(∆Hfusionλ−1) and avg(Vmolrcov

−1). 
avg(∆Hfusionλ−1) is the ratio between the fusion enthalpy (∆Hfusion) and the thermal conductivity (λ) 
averaged over all atoms in the material, and avg(Vmolrcov

−1) is the ratio between the molar volume (Vmol) 
and the covalent radius (rcov) averaged over all atoms in the material. Both descriptors are simple node-
specific features. The presence of these two prominent descriptors accounts for the high accuracy of the 
classification model.  
Figure 4 shows the projection of the full dataset onto the dual-descriptor space of avg(∆Hfusionλ−1) and  
avg(Vmolrcov

−1). In this 2D space, metals and insulators are substantially partitioned. To further resolve 
this separation, the plot is split into four quadrants (see dashed lines) with an origin approximately at  
 

avg(Vmolrcov
−1) = 11,   avg(∆Hfusionλ−1) = 2. 

 
Insulators are predominately located in quadrant I. There are several clusters (one large and several 
small) parallel to the x-axis. Metals occupy a compact square block in quadrant III within intervals 5 < 
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avg(Vmolrcov
−1) < 12 and 0.02 < avg(∆Hfusionλ−1) < 2. Quadrant II is mostly empty with a few materials 

scattered about the origin. In the remaining quadrant (IV), materials have mixed character.  
Analysis of the projection shown in Figure 4 suggests a simple heuristic rule: all materials within 
quadrant I are classified as insulators (EBG > 0), and all materials outside of this quadrant are metals. 
Remarkably, this unsupervised projection approach achieves a very high classification accuracy of 86% 
for the entire dataset of 26,674 materials. The model misclassifies only 3,621 materials: 2,414 are in- 
correctly predicted as insulators and 1,207 are incorrectly predicted as metals. This example illustrates 
how careful model analysis of the most significant descriptors can yield simple heuristic rules for 
materials design.  
The regression model for the band gap energy (EBG) is more complex. There are a number of descriptors 
in the model with comparable contributions, and thus, all individual contributions are small. This is 
expected as a number of conditions can affect EBG. The most important are avg(χZeff

−1) and avg(Cλ−1) 
with significance scores of 0.075 and 0.071, respectively, where χ is the electronegativity, Zeff is the 
effective nuclear charge, C is the specific heat capacity, and λ is the thermal conductivity of each atom.  
Figure 5 shows partial dependence plots focusing on avg(∆IPbond) as an example. It is derived from edge 
fragments of bonded atoms (l = 1) and defined as an absolute difference in ionization potentials averaged 
over the material. In other words, it is a measure of bond polarity, similar to electronegativity. Figure 5a 
shows a steady monotonic increase in ∆EBG for larger values of avg(∆IPbond). The effect is small, but 
captures an expected physical principle: polar inorganic materials (e.g., oxides, fluorides) tend to have 
larger EBG.  
Given the number of significant interactions involved with this phenomenon, tailoring EBG involves the 
optimization of a highly non-convex, multidimensional object. Figure 5b illustrates a 2D slice of this 
object as avg(∆IPbond) and std(∆IPbond) vary simultaneously. Like avg(∆IPbond), std(∆IPbond) is the standard 
deviation of the set of absolute differences in IP among all bonded atoms. In the context of these two 
variables, EBG responds to deviations in ∆IPbond among the set of bonded atoms, but remains constant 
across shifts in avg(∆IPbond). This suggests an opportunity to tune EBG by considering another 
composition that varies the deviations among bond polarities. Alternatively, a desired EBG can be 
maintained by considering another composition that preserves the deviations among bond polarities, 
even as the overall average shifts. Similarly, Figure 5c shows the partial dependence on both the density 
(ρ) and avg(∆IPbond). Contrary to the previous trend, larger avg(∆IPbond) values correlate with smaller 
EBG, particularly for low density structures. Materials with higher density and lower avg(∆IPbond) tend to 
have higher EBG. Considering the elevated response (compared to Figure 5b), the inverse correlation of 
EBG with the average bond polarity in the context of density suggests an even more effective means of 
tuning EBG.  
A descriptor analysis of the thermomechanical property models revealed the importance of one 
descriptor in particular, the volume per atom of the crystal. This conclusion certainly resonates with the 
nature of these properties, as they generally correlate with bond strength [34]. Figure 5d exemplifies 
such a relationship, which shows the partial dependence plot of the bulk modulus (BVRH) on the volume 
per atom. Tightly bound atoms are generally indicative of stronger bonds. As the interatomic distance 
increases, properties like BVRH generally diminish.  
Two of the more interesting dependence plots are also shown in Figure 5 (e-f), both of which offer 
opportunities for tuning the Debye temperature (θD). Figure 5e illustrates the interactions among two 
descriptors, the absolute difference in electron affinities among bonded atoms averaged over the material 
(avg(∆EAatom)), and the standard deviation of the set of ratios of the enthalpies of vaporization (∆Hvapor) 
and atomization (∆Hatom) for all atoms in the material (std(∆Hvapor∆Hatom

−1)). Within atom these 
dimensions, two distinct regions emerge of increasing/decreasing θD separated by a sharp division at 
about avg(∆EAatom) = 3. Within these partitions, there are clusters of maximum gradient in θD —peaks 
within the left partition and troughs within the right. The peaks and troughs alternate with varying 
(std(∆Hvapor∆Hatom

−1)). Although (std(∆Hvapor∆Hatom
−1)) is not an immediately intuitive atom descriptor, the 

alternating clusters may be a manifestation of the periodic nature of ∆Hvapor and ∆Hatom [83]. As for the 
partitions themselves, the extremes of avg(∆EAatom) characterize covalent and ionic materials, as bonded 
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atoms with similar EA are likely to share electrons, while those with varying EA prefer to donate/accept 
electrons. Considering that EA is also periodic, various opportunities for carefully tuning θD should be 
available.  
Finally, Figure 5f shows the partial dependence of θD on the lattice parameters b and c. It resolves two 
notable correlations: (i) uniformly increasing the cell size of the system decreases θD, but (ii) elongating 
the cell (c/b ≫ 1) increases it. Again, (i) can be attributed to the inverse relationship between volume 
per atom and bond strength, but does little to address (ii). Nevertheless, the connection between 
elongated, or layered, systems and the Debye temperature is certainly not surprising—anisotropy can be 
leveraged to enhance phonon-related interactions associated with thermal conductivity [84] and 
superconductivity [85–87]. While the domain of interest is quite narrow, the impact is substantial, 
particularly in comparison to that shown in Figure 5e.  
 

 
FIG. 5. Partial dependence plots of the EBG, BVRH, and θD models. (a) Partial dependence of EBG on the 
avg(∆IPbond) descriptor. For EBG, the 2D interaction between std(∆IPbond) and avg(∆IPbond) and between ρ 
(density) and avg(∆IPbond) are illustrated in panels (b) and (c), respectively. (d) Partial dependence of the 
BVRH on the crystal volume per atom descriptor. For θD, the 2D interaction between avg(∆EAatom) and 
std(∆Hvapor∆Hatom

−1) and between crystal lattice parameters b and c are illustrated in panels (e) and (f), 
respectively.  

IV. Discussion 
Traditional trial-and-error approaches have proven ineffective in discovering practical materials. 
Computational models developed with ML techniques may provide a truly rational approach to materials 
design. Typical high-throughput DFT screenings involve exhaustive calculations of all materials in the 
database, often without consideration of previously calculated results. Even at high-throughput rates, an 
average DFT calculation of a medium size structure (about 50 atoms per unit cell) takes about 1,170 
CPU- hours of calculations or about 37 hours on a 32-CPU cores node. However, in many cases, the 
desired range of values for the target property is known. For instance, the optimal band gap energy and 
thermal conductivity for optoelectronic applications will depend on the power and voltage conditions of 
the device [88, 93]. Such cases offer an opportunity to leverage previous results and savvy ML models, 
such as those developed in this work, for rapid pre-screening of potential materials. Researchers can 
quickly narrow the list of candidate materials and avoid many extraneous DFT calculations—saving 
money, time, and computational resources. This approach takes full advantage of previously calculated 

a	 b	 c	

d	 e	 f	
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results, continuously accelerating materials discovery. With prediction rates of about 0.1 seconds per 
material, the same 32-CPU cores node can screen over 28 million material candidates per day with this 
frame- work.  
Furthermore, interaction diagrams as depicted in Figure 5 offer a pathway to design materials that meet 
certain constraints and requirements. For example, substantial differences in thermal expansion 
coefficients among the materials used in high-power, high-frequency optoelectronic applications leads to 
bending and cracking of the structure during the growth process [88, 93]. Not only would this work-flow 
facilitate the search for semiconductors with large band gap energies, high Debye temperatures (thermal 
conductivity), but also materials with similar thermal expansion coefficients.  
 
 
 
 
Reviewer #1, Comment #2: 
2. As the authors mention, there are now a number of ML studies of structure property relationships. I 
don't see how the present really stands out. Especially as no new predictions about materials are made 
or surprising insights are offered. It is of methodological interest and belongs in a methodological 
journal. 
 
Authors: 
This point serves as one of the primary motivations for our revisions and resubmission.  We leveraged 
our models to make rapid predictions, and subsequently validated them for 770 previously 
uncharacterized materials.  Our investigation achieves an unparalleled affirmation of the validity of 
machine learning methods in materials science. 
 
To address this concern in the text directly, we: 
• Added a subsection to the Methods section (Test Set) regarding the introduction of a new, 

independent test set to validate the thermomechanical models. 
• Added a new section in the Results (Model Performance) presenting the results of this analysis.  This 

includes the addition of (new) Figure 7 and relevant Table II demonstrating these results. 
 
Now the appropriate part of the manuscript reads (in blue): 
 

II. Methods 
… 
Test set. While nearly all ICSD compounds are characterized electronically within the AFLOW 
database, most have not been characterized thermomechanically due to the added computational cost. 
This presented an opportunity to validate the ML models. Of the remaining compounds, several were 
prioritized for immediate characterization via the AEL-AGL integrated framework [33, 34]. In 
particular, focus was placed on systems predicted to have a large bulk modulus, as this property is 
expected to scale well with the other aforementioned thermomechanical properties [33, 34]. The set also 
includes various other small cell, high symmetry systems expected to span the full applicability domains 
of the models. This effort resulted in the characterization of 770 additional compounds.  
 

III. Results 
Model validation. While the expected performances of the ML models can be projected through five-
fold cross validation, there is no substitute for validation against an independent dataset. The ML models 
for the thermo- mechanical properties are leveraged to make predictions for materials previously 
uncharacterized, and subsequently validated these predictions via the AEL-AGL integrated framework 
[33, 34]. Figure 6 illustrates the models’ performance on the set of 770 additional materials, with 
relevant statistical characteristics displayed in Table II.  
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FIG. 6. Model performance evaluation for the six ML models predicting thermomechanical 
properties of 770 newly characterized materials. Predicted vs. calculated values for the regression ML 
models: (a) bulk modulus (BVRH), (b) shear modulus (GVRH), (c) Debye temperature (θD), (d) heat 
capacity at constant pressure (CP), (e) heat capacity at constant volume (CV), and (f) thermal expansion 
coefficient (αV).  
 

 
TABLE II. Statistical characteristics of the new predictions for the six thermomechanical regression 
models (Figure 7). 
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Reviewer #1, Comment #3: 
3. The average predictive quality might be high, but large failures of the model are numerous. This 
would strongly limit a screening based on the model. Again it is disappointing that no predictions are 
made and validated. 
 
Authors: 
Certainly no model is perfect, but the outliers we observe in what is now the Model Generalizability -  
Model Validation sections are significant (revealing).  In particular, extended analysis of the outliers 
reveals many to be theoretical/high-pressure structures, offering yet another valuable application for 
machine learning methods in materials science, large database curation.  Additionally, the validation of 
the six new models to predict thermomechanical properties was particularly fruitful, as the training set 
was small (<3,000 systems) due to the complexity/cost of such characterizations.  The success of these 
models given such a small training set further corroborates the effectiveness of our unique machine 
learning approach, as well as its applicability to other complex, but essential, characterizations where 
training data is limited. 
 
To address this concern in the text directly, we: 
• Added a (new) section (Model Generalizability) in which we analyze and discuss how well each of 

the eight models is expected to perform when given an independent test set. 
• Modified Figure 3 to include an analysis of the thermomechanical models.  This includes the 

addition of relevant Table I, which includes relevant statistical information of the five-fold cross-
validation analysis for the thermomechanical properties. 

• Added a discussion in the Model Performance section detailing outliers in the prediction of the test 
set. 

• Added a discussion of the overall outlier analysis in the Discussion section. 
 
Now the appropriate part of the manuscript reads (in blue): 
 

III. Results 
Model generalizability. One technique for assessing model quality is five-fold cross validation, which 
gauges how well the model is expected to generalize to an independent dataset. For each model, the 
scheme involves randomly partitioning the set into five groups and predicting the value of each material 
in one subset while training the model on the other four subsets. Hence, each subset has the opportunity 
to play the role of the “test set”. Furthermore, any observed deviations in the predictions are addressed. 
For further analysis, all predicted and calculated results are available in Supplemental Information.  
The accuracy of the metal vs. insulator classifier is re- ported as the area under the curve (AUC) of the 
receiver operating characteristic (ROC) plot (Figure 3a). The ROC curve illustrates the model’s ability to 
differentiate between metallic and insulating input materials. It plots the pre- diction rate for insulators 
(correctly vs. incorrectly predicted) throughout the full spectrum of possible prediction thresholds. An 
area of 1.0 represents a perfect test, while an area of 0.5 characterizes a random guess (the dashed line). 
The model shows excellent external predictive power with the AUC at 0.98, an insulator-prediction 
success rate (sensitivity) of 0.95, a metal-prediction success rate (specificity) of 0.92, and an overall 
classification rate (CCR) of 0.93. For the complete set of 26,674 materials, this corresponds to 2,103 
misclassified materials, including 1,359 misclassified metals and 744 misclassified insulators. Evidently, 
the model exhibits positive bias toward predicting insulators, where bias refers to whether a ML model 
tends to over- or under-estimate the predicted property. This low false-metal rate is fortunate as the 
model is unlikely to misclassify a novel, potentially interesting semiconductor as a metal. Overall, the 
metal classification model is robust enough to handle the full complexity of the periodic table.  
The results of the five-fold cross validation analysis for the band gap energy (EBG) regression model are 
plotted in Figure 3b. Additionally, a statistical profile of these predictions, along with that of the six 
thermomechanical regression models, is provided in Table I, which includes metrics such as the root-
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mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination r2. Similar to 
the classification model, the EBG model exhibits a positive predictive bias. The biggest errors come from 
materials with narrow band gaps, c.f. scatter in the lower left corner in Figure 3b. These materials 
predominantly include complex fluorides and nitrides. N2H6Cl2 (ICSD #23145) exhibits the worst 
prediction accuracy with signed error SE = 3.78 (eV). The most underestimated materials are HCN 
(ICSD #76419) and N2H6Cl2 (ICSD #240903) with SE -2.67 and -3.19 (eV) [76]. This is not surprising 
considering that all three are molecular crystals. Such systems are anomalies in the ICSD, and fit better 
in other databases, such as the Cambridge Structural Database [77]. Overall, 10,762 materials are 
predicted within 25% accuracy of calculated values, whereas 824 systems have errors over 1 (eV).  
Figures 3c-h and Table I showcase the results of the five- fold cross validation analysis for the six 
thermomechanical regression models. For both bulk (BVRH) and shear (GVRH) moduli, over 85% of 
materials are predicted within 20 (GPa) of their calculated values. The remaining models also 
demonstrate high accuracy, with at least 90% of the full training set (> 2, 546 systems) predicted to 
within 25% of the calculated values. Significant outliers in predictions of the bulk modulus include 
graphite (ICSD #187640, SE = 100 (GPa), likely due to extreme anisotropy) and two theoretical high-
pressure boron nitrides (ICSD #162873 and #162874, under-predicted by over 110 (GPa)) [78]. Other 
theoretical systems are ill-predicted throughout the six properties, including ZN (ICSD #161885), CN2 
(ICSD #247676), C3N4 (ICSD #151782), and CH (ICSD #187642) [79–81]. Predictions for the GVRH, 
Debye temperature (θD), and thermal expansion coefficient (αV) tend to be slightly underestimated, 
particularly for higher calculated values. Additionally, mild scattering can be seen for θD and αV, but not 
enough to have a significant impact on the error or correlation metrics.  
Despite minimal deviations, both RMSE and MAE are within 4% of the ranges covered for each 
property, and the predictions demonstrate excellent correlation with the calculated properties. Of 
particular interest are the near perfect correlations observed for the heat capacities with the RMSE at just 
2 (kB/cell).  
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FIG. 3:  Five-fold cross validation plots for the eight ML models predicting electronic and 
thermomechanical properties. (a) Receiver operating characteristic (ROC) curve for the classification 
ML model. (b)-(h) Predicted vs. calculated values for the regression ML models: (b) band gap energy 
(EBG), (c) bulk modulus (BVRH), (d) shear modulus (GVRH), (e) Debye temperature (θD), (f) heat capacity 
at constant pressure (CP), (g) heat capacity at constant volume (CV), and (h) thermal expansion 
coefficient (αV).  
 

 
TABLE I. Statistical characteristics of the five-fold cross-validated predictions for the seven regression 
models (Figure 3).  
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III. Results 
Model validation.  
… 
Comparing with the results of the generalizability analysis shown in Figure 3 and Table I, the overall 
errors are consistent with five-fold cross validation. Five out of six models have r2 of 0.9 or higher. 
However, the r2 value for the thermal expansion coefficient (αV) is lower than forecasted. The presence 
of scattering suggests the need for a larger training set—as new, much more diverse materials were 
likely introduced in the test set. This is not surprising considering the number of variables that can affect 
thermal expansion [88]. Otherwise, the accuracy of these predictions are a testament to the effectiveness 
of the PLMF representation, which is particularly compelling considering: (i) the limited diversity 
training dataset (only about 11% as large as that available for predicting the electronic properties), and 
(ii) the relative size of the test set (over a quarter the size of the training set).  
In the case of the bulk modulus (BVRH), 665 systems (86% of test set) are predicted within 25% of 
calculated values. Only the predictions of four materials, Bi (ICSD #51674), PrN (ICSD #168643), 
Mg3Sm (ICSD #104868), and ZrN (ICSD #161885), deviate beyond 100 (GPa) from calculated values. 
Bi is a high-pressure phase (Bi-III) with a caged, zeolite-like structure [89]. The structures of zirconium 
nitride (wurtzite phase) and praseodymium nitride (B3 phase) were hypothesized and investigated via 
DFT calculations [90, 91] and have yet to be observed experimentally.  
For the shear modulus (GVRH), 482 materials (63% of the test set) are predicted within 25% of calculated 
values. Just one system, C3N4 (ICSD #151781), deviates beyond 100 (GPa) from its calculated value. 
The Debye temperature (θD) is predicted to within 50 (K) accuracy for 540 systems (70% of the test set). 
BeF2 (ICSD #173557), yet another cage (sodalite) structure [92], has the largest errors in three models 
including θD (SE = 423 (K)) and both heat capacities (CP and CV). Similar to other ill-predicted 
structures, this polymorph is theoretical, and has yet to be synthesized.  
 

IV. Discussion 
… 
While the models themselves demonstrated excellent predictive power with minor deviations, outlier 
analysis revealed theoretical structures to be among the worst of- fenders. This is not surprising, as the 
true stability conditions (e.g., high-pressure/high-temperature) have yet to be determined, if they exist at 
all. The ICSD estimates that structures for over 7,000 materials (or roughly 4%) come from calculations 
rather than actual experiment. Such discoveries exemplify yet another application for ML modeling, 
rapid/robust curation of large datasets.  
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Reviewer #1, Comment #4: 
Smaller point: 
The "Fragment construction" subsection is a bit repetitive (compare p2c2) 
 
Authors: 
Yes, we agree.  We have modified the Methods section to reduce this redundancy. 
 
Now the appropriate part of the manuscript reads (in blue): 
 

II. Methods 
Universal Property-Labeled Materials Fragments (PLMF).  
… 
Figure 1 shows the scheme for constructing PLMFs. Given a crystal structure, the first step is to 
determine the atomic connectivity within it. In general, atomic connectivity is not a trivial property to 
determine within materials. Not only must the potential bonding distances among atoms be considered, 
but also whether the topology of nearby atoms allows for bonding. Therefore, a computational geometry 
approach is employed to partition the crystal structure (Figure 1a) into atom-centered Voronoi-Dirichlet 
polyhedra [59–62] (Figure 1b). This partitioning scheme was found to be invaluable in the topological 
analysis of metal organic frameworks (MOF), molecules, and inorganic crystals [63, 64]. Connectivity 
between atoms is established by satisfying two criteria: (i) the atoms must share a Voronoi face 
(perpendicular bisector between neigh- boring atoms), and (ii) the interatomic distance must be shorter 
than the sum of the Cordero covalent radii [65] to within a 0.25 ̊A tolerance. Here, only strong inter- 
atomic interactions are modeled, such as covalent, ionic, and metallic bonding, ignoring van der Waals 
interactions. Due to the ambiguity within materials, the bond order (single/double/triple bond 
classification) is not considered. Taken together, the Voronoi centers that share a Voronoi face and are 
within the sum of their covalent radii form a three-dimensional graph defining the connectivity within 
the material.  
In the final steps of the PLMF construction, the full graph and corresponding adjacency matrix (Figure 
1c) are constructed from the total list of connections. The adjacency matrix A of a simple graph 
(material) with n vertices (atoms) is a square matrix (n × n) with entries aij = 1 if atom i is connected to 
atom j, and aij = 0 otherwise. This adjacency matrix reflects the global topology for a given system, 
including interatomic bonds and contacts within the crystal. The full graph is partitioned into smaller 
sub-graphs, corresponding to individual fragments (Figure 1d). While there are several subgraphs to 
consider in general, the length l is restricted to a maximum of three, where l is the largest number of 
consecutive, non-repetitive edges in the subgraph. This restriction serves to curb the complexity of the 
final descriptor vector. In particular, there are two types of fragments. Path fragments are subgraphs of at 
most l = 3 that encode any linear strand of up to four atoms. Only the shortest paths between atoms are 
considered. Circular fragments are subgraphs of l = 2 that encode the first shell of nearest neighbor 
atoms. In this context, circular fragments represent coordination polyhedra, or clusters of atoms with 
anion/cation centers each surrounded by a set of its respective counter ion. Coordination polyhedra are 
used extensively in crystallography and mineralogy [66].  
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****************************************************************************** 
Reviewer #2, Comment #1: 
The main claim of this paper is that the fragment material descriptors introduced by the authors in 
combination with machine learning approaches allows the development of universal models capable of 
accurately predicting electronic properties for inorganic materials.  
To the best of my knowledge these claims are novel. They are of course a continuation of earlier studies 
by the authors and others as cited in the paper itself. Machine learning approaches for predicting 
materials properties is a very active field at the forefront of research and this paper will most definitely 
be of interest to other researchers in this field. The ideas promoted in this paper may be expected to 
influence thinking in this field in two main directions at least: (i) establishing feasibility of ML methods 
in materials properties predictions and (ii) specific contribution of the materials descriptors employed 
here including the material fragments and the mix of empirical and computational properties. The 
authors claim is supported by three separate analyses: (i) classification of metal/non-metal materials (ii) 
prediction of the Fermi energy relative to DFT (iii) prediction of the band gap relative to DFT. While the 
proposed method is quite successful in predicting these quantities there are some weaknesses arising 
from the choice of properties. In particular, the Fermi energy is a computational concept and depends 
strongly on the choice of model and the band gap is a notoriously difficult problem in DFT and the error 
relative to experiment can be tens of percent.  
 
Authors: 
We appreciate the positive feedback. 
 
To the first point, as stated in response to Reviewer #1 Comment #1, we have removed the Fermi energy 
model from the paper.  Six new models have been added in its place extending the suggestions of the 
reviewers. 
 
To the second next point, we address this concern in the Methods section, under the new Training Set 
subsection.  The particular band gap energy values we train on were calculated using the DFT+U 
approach (effective Hubbard U from Hartree Fock), using parameters listed in Ref. [42] (Calderon et al., 
Comput. Mater. Sci 108 Part A, 2015).  This correction serves to enhance the accuracy of the calculated 
band gap energy values within the DFT framework, and generally can differentiate between metals and 
insulators.  However, we strongly emphasize that while this paper focuses on DFT calculations as 
training input, experimentally observed band gap energy values can be used in its place.  The framework 
does not depend on the source or nature of the training data.  
 
 
Reviewer #2, Comment #2: 
I think that the authors’ case would be strengthened considerably by modelling a mechanical parameter, 
such as the bulk modulus, in addition to the purely electronic properties considered. Another issue would 
be to compare the predicted band gap data to experimental band gap data, particularly in light of the 
difficulties of predicting the band gap in DFT. 
I am not sure of the extent of such work and hesitate to require it. 
 
Authors: 
This suggestion serves as the other primary motivation for resubmission.  We agree with and followed 
through with the reviewer’s request regarding modeling (thermo)mechanical properties like the bulk 
modulus.  In fact, we modeled other five additional thermomechanical properties, including shear 
modulus, Debye temperature, heat capacity (at constant pressure and volume), and thermal expansion 
coefficient.  Please see our response to Reviewer #1 Comment #1 for details. 
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As per Referee2 request for the band gap energy data, please see the answer to Comment #1.  Ultimately, 
this investigation demonstrates that it is feasible to develop predictive models based on 
elemental/structural properties, but independent of the source of the training data. 
  
 
Reviewer #2, Comment #3: 
The manuscript is clearly written and is very readable. I think that the procedure is reasonably well 
explained and the analysis is sound. The literature in the field is fairly treated. In passing I note that 2D 
at the top of page 2 should probably be 3D. 
 
Authors: 
The reviewer is correct, sorry for the typo. 
 
Now the appropriate part of the manuscript reads (in blue): 
 

II. Methods 
Universal Property-Labeled Materials Fragments (PLMF).  
…  
In this representation, fragment descriptors characterize subgraphs of the full 3D molecular network. 
 
 
 
Reviewer #2, Comment #4: 
To summarise, the manuscript demonstrates successfully a novel approach to predicting materials 
properties using machine learning and due to the interest, challenge and importance of such methods I 
recommend it be published in Nature Communications after the authors have considered both extending 
the set of properties and the comparison to experimental and not only computational data. 
 
Authors: 
Thanks for the support. Validation and experimental comparison have been addressed at the beginning of 
this report. We look forward for a positive outcome of the review process. 
 

****************************************************************************** 
END OF REPORT 
****************************************************************************** 
 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

It was a pleasure to see how the authors have improved the manuscript. With a relative small 

effort I think it deserves publication in Nat. Comm.  

 

I still feel the work falls short on the "general interest" scale. The authors now make and validate 

predictions on thermomechanical properties for a large number of materials. I accept that the very 

interested reader could get these values from AFLOWlib or from the (very) fine print in the SI.  

 

However, some discussion of these properties is necessary to get a broad interest in the materials 

science community which would justify publication in a general interest journal like Nat. Comm.  

 

Are there any extreme values (large or small B and G). Are there any interesting combinations? 

E.g. large B small G  

 

Smaller points  

 

The authors mention the very good predictive power for the heat capacities. Isn't this just due to 

Dulong-Petit? Try giving the the heat capacities as k_B/atom instead of k_B/cell  

 

More than 100 citations for a communication is a lot.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors in their resubmission have responded to all the issues raised by this reviewer. In 

particular, the choice of physical properties to which the proposed method is applied has been 

extended significantly. Furthermore, the discussion of the validity and application of the model has 

also been revised.  

 

Therefore this referee recommends that this work should be accepted for publication.  

 

However, prior to final acceptance the authors should make the following modifications which will 

improve the quality of their presentation.  

(i) With respect to heat capacity all the data should be presented in terms of kB/atom and not 

kB/cell. In the latter case most of the variation is dominated by the number of atoms per cell and 

we do not obtain relevant information in a transparent manner.  

(ii) The authors should consider adding the average values of the training set descriptors to Fig 5 

eg Fig 5e makes much sense if the average training value for deltaEAbond is approx. 3.2. If it is 

not, then the authors should explain this difference.  
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Reponses to the reviewers 
 
****************************************************************************** 
 
Reviewer #1, Comment #1: 
It was a pleasure to see how the authors have improved the manuscript. With a relative small effort I 
think it deserves publication in Nat. Comm. 
I still feel the work falls short on the "general interest" scale. The authors now make and validate 
predictions on thermomechanical properties for a large number of materials. I accept that the very 
interested reader could get these values from AFLOWlib or from the (very) fine 
print in the SI. 
 
Authors: 
We thank the reviewer for positive feedback. 
 
Yes, the original Supplementary Information was quite difficult to read.  We have since reformatted the 
document in LaTeX to enhance both its presentation and utility.  The newly formatted document is also 
significantly shorter than the original.   
 
We have attached the document with this submission. 
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Reviewer #1, Comment #2: 
However, some discussion of these properties is necessary to get a broad interest in the materials 
science community which would justify publication in a general interest journal like Nat. Comm. 
Are there any extreme values (large or small B and G). Are there any 
interesting combinations? E.g. large B small G. 
 
Authors: 
Yes there are, many of which have already been included in the description of our training set, but 
characterized by thermal conductivity.  We have added to this discussion. 
 
Now the appropriate part of the manuscript reads (in blue): 
 

II. Methods 
Training set.  … After a similar curation of ill-converged calculations, the final dataset consists 
of 2,829 materials. It covers the seven lattice systems, includes unary, binary, and ternary com- 
pounds, and spans broad ranges of each thermomechanical property, including high thermal 
conductivity systems such as C (ICSD #182729), BN (ICSD #162874), BC5 (ICSD #166554), 
CN2 (ICSD #247678), MnB2 (ICSD #187733), and SiC (ICSD #164973), as well as low thermal 
conductivity systems such as Hg33(Rb,K)3 (ICSD #410567 and #410566), Cs6Hg40 (ICSD #240038), 
Ca16Hg36 (ICSD #107690), CrTe (ICSD #181056), and Cs (ICSD #426937). Many of these systems 
additionally exhibit extreme values of bulk and shear moduli, such as C (high bulk and shear 
moduli) and Cs (low bulk and shear moduli). Interesting systems such as RuC (ICSD #183169) 
and NbC (ICSD #189090) with a high bulk modulus (BVRH = 317.92 GPa, 263.75 GPa) but low 
shear modulus (GVRH = 16.11 GPa, 31.86 GPa) also populate the set.   
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Reviewer #1, Comment #3: 
The authors mention the very good predictive power for the heat capacities. Isn't this just due to Dulong-
Petit? Try giving the heat capacities as kB/atom instead of kB/cell. 
 
Authors: 
We have created two new models to predict the per atom heat capacities at constant pressure and at 
constant volume.  These were built independently of the per cell variants, and thus all analyses 
(including Feature Importance in the Supplementary Information) have been updated.  Indeed, this 
representation clearly exhibits the Dulong-Petit law.  We now comment on this in the Results section.  
While the per atom variants replace the per cell ones in the revised manuscript, both representations are 
independently predicted and displayed in our online application. 
 
Now the appropriate part of the manuscript reads (in blue): 
 

III. Results 
Model generalizability. … Note the tight clustering of points just below 3 (kB/atom) for the heat 
capacity at constant volume (CV). This is due to CV saturation in accordance with the Dulong-Petit law 
occurring at or below 300 K for many compounds.  
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FIG. 3:  Five-fold cross validation plots for the eight ML models predicting electronic and 
thermomechanical properties. (a) Receiver operating characteristic (ROC) curve for the classification 
ML model. (b)-(h) Predicted vs. calculated values for the regression ML models: (b) band gap energy 
(EBG), (c) bulk modulus (BVRH), (d) shear modulus (GVRH), (e) Debye temperature (θD), (f) heat capacity 
at constant pressure (CP), (g) heat capacity at constant volume (CV), and (h) thermal expansion 
coefficient (αV).  

 

 
 
Model validation.  … BeF2 (ICSD #173557), yet another cage (sodalite) structure [94], has 
among the largest errors in three models including θD (SE = -423 K) and both heat capacities (Cp: SE = 
0.65 kB /atom; CV: SE = 0.61 kB /atom).  
 

 
FIG. 6. Model performance evaluation for the six ML models predicting thermomechanical 
properties of 770 newly characterized materials. Predicted vs. calculated values for the regression ML 
models: (a) bulk modulus (BVRH), (b) shear modulus (GVRH), (c) Debye temperature (θD), (d) heat 
capacity at constant pressure (CP), (e) heat capacity at constant volume (CV), and (f) thermal expansion 
coefficient (αV).  
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Reviewer #1, Comment #4: 
More than 100 citations for a communication is a lot. 
 
Authors: 
This work discusses the calculation, prediction, and (experimental) validation of a plethora of properties.  
To balance transparency and efficiency, we provide the minimum references needed to reproduce the 
results. 
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****************************************************************************** 
Reviewer #2, Comment #1: 
The authors in their resubmission have responded to all the issues raised by this reviewer. In particular, 
the choice of physical properties to which the proposed method is applied has been extended 
significantly. Furthermore, the discussion of the validity and application of the model has also been 
revised. 
Therefore this referee recommends that this work should be accepted for publication. 
However, prior to final acceptance the authors should make the following modifications which will 
improve the quality of their presentation. 
(i) With respect to heat capacity all the data should be presented in terms of kB/atom and not kB/cell. In 
the latter case most of the variation is dominated by the number of atoms per cell and we do not obtain 
relevant information in a transparent manner. 
 
Authors: 
The positive review is very much appreciated. 
 
Indeed, the per atom variants of the heat capacity have been constructed and added to the paper, 
replacing the per cell ones.  See our response to Reviewer #1 (Comment #3). 
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Reviewer #2, Comment #2: 
(ii) The authors should consider adding the average values of the training set descriptors to Fig 5 eg Fig 
5e makes much sense if the average training value for deltaEAbond is approx. 3.2. If it is not, then the 
authors should explain this difference. 
 
Authors: 
We have calculated the averages for all descriptors highlighted in the work and added it to the 
Supplementary Information (see Feature Importance).  The average of this particular descriptor 
(avg(∆EAatom)) is 2.63.  A distinction should be made between the descriptor and the partial dependence 
function.  The latter describes variations of a property (e.g., θD) in the context of (two) descriptors.  The 
partition in the plot is a feature of θD in this context, and not simply of avg(∆EAatom).  Conversely, the 
intuition we discuss (covalent vs. ionic materials) only applies to the descriptor and not to the partial 
dependence function. 
 
We show an example table from the Supplementary Information: 
 

I. Feature Importance 

 
 
 
****************************************************************************** 
END OF REPORT 
****************************************************************************** 
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