

Supplementary Figure 1. *Ndfip1*-deficient T_{reg} cells have normal thymic numbers and peripheral suppression.

(**a-b**) *Ndfip1*^{+/+}*Foxp3*-Cre (WT) only or WT/ *Ndfip1*^{fl/fl} *Foxp3*-Cre mixed bone marrow chimeras were analyzed 6-8 weeks after reconstitution. (a) Percentages of thymic T_{reg} cells for WT only or WT/ *Ndfip1*^{fl/fl} *Foxp3*-Cre mixed chimeras. Gated on singlets, live cells, FSCa by SSCa lymphocytes. (b) Normalized congenic contributions to total T_{reg} cells in the thymi of mixed chimera animals. Normalization to account for reconstitution bias was done by dividing the percentage of CD45.1⁺ WT cells or CD45.2⁺ Ndfip1-deficient cells within the pool of total T_{reg} cells (TCR β +CD4+CD8⁻ Foxp3⁺) by the percentages within the pool of total CD4+ single positive cells (TCRβ+CD4+CD8- Foxp3-). (**c-e**) *Ndfip1*-deficient regulatory T cells have normal *in vitro* and *in vivo* suppression of wild type T_{conv} cells. (c-d) In vitro suppression of congenically marked (CD45.1), CFSE-labeled, WT CD4⁺ T_{conv} cells by congenic WT T_{reg} cells or *Ndfip1*^{fl/fl} *Foxp3*-Cre T_{reg} cells (c) CFSE dilution of T_{conv} cells after 4 days in culture (**d**) Quantification of the percentage of T_{conv} cells that diluted CFSE in culture (e) Weight changes during an *in vivo* suppression assay using CD45.1 CD4+ T_{conv} cells and CD45.2 WT or Ndfip1fl/fl Foxp3-Cre T_{reg} cells. Error bars indicate mean ± SEM. Each dot represents an individual mouse. Male donors were used for mixed bone marrow chimeras (a-b). These chimeras are also shown in Figure 4. (c-e) represents data from at least 3 male animals of each genotype. (e) Represents one experiment. P values were determined by a paired t test (**a-b**) and student's t test (**c-e**) * p < 0.05 ** p < 0.01

Supplementary Figure 2. *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} female animals develop **disease**. (a) Inflammation index calculated by spleen weight/body weight for male *Ndfip1*^{fl/fl}*Foxp3*-Cre⁺ animals, female *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} animals, compared to male *Ndfip1*^{+/+}*Foxp3*-Cre⁺ WT controls and female *Ndfip1*^{+/+}*Foxp3*-Cre^{+/-}WT controls all between 8-16 weeks old. Male data from Figure 1 is added here for comparison. (b) Ex vivo PMA/ionomycin/golgi plug restimulated lung homogenates were analyzed by flow cytometry for IFN_γ, IL-4 and IL-17A cytokine production from WT *Ndfip1*^{+/+}*Foxp3*-Cre⁺ male, *Ndfip1*^{fl/fl}*Foxp3*-Cre male, and *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} female animals. (c-f) Analysis of ICOS, GITR, CD25 and PD-1 MFI are shown for the *Ndfip1*-sufficient (YFP⁻) T_{reg} cells in unstimulated lung homogenates from *Ndfip1*^{+/+}*Foxp3*-Cre⁺ WT female or *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} female animals. (g) Summary of T_{reg} cell proteins whose expression is increased by inflammation versus those which are increased directly due to loss of Ndfip1. Error bars indicate mean ± SEM. Each dot represents an individual mouse. All experiments were performed on at least two independent occasions using at least 3 female animals of each genotype. *P* value calculated by one way ANOVA (**a**,**b**) or unpaired *t* test (**c**-**f**). * *p*<0.05 ** *p*<0.01 *** *p*<0.001 *****p*<0.0001.

Supplementary Figure 3

• WT Foxp3-Cre+/- Female (day 13) • Ndfip1fl/fl Foxp3-Cre+/- Female (day 13)

Supplementary Figure 3. *Ndfip1*-deficient T_{reg} cells have altered phenotypes prior to inflammation onset. (a) Spleen weights and (b) Inflammation index calculated by spleen weight/body weight for 13 day old female *Ndfip1*^{fl/fl} *Foxp3*-Cre +/- neonates compared to age-matched *Ndfip1*^{+/+}*Foxp3*-Cre⁺ WT controls. (c-d) Lung homogenates were analysed by flow cytometry for total Foxp3⁺ cells (c) or stimulated *ex vivo* with PMA/ionomycin/golgi plug and analysed for total cytokineproducing CD4⁺ T cells (d). (e-f) Percentages of (e) Foxp3⁺ cells or (f) CD44⁺ eT_{reg} cells are shown as a ratio of YFP⁺: YFP⁻ cells to normalize for effects of Cre expression (g-h) Analysis of ICOS (g) and GITR (h) MFI on unstimulated lung homogenates. Error bars indicate mean ± SEM. Each dot represents an individual mouse. All experiments were performed on at least two independent occasions. P value calculated by unpaired *t* test (a-c, e-h) or one-way ANOVA (d). * *p*<0.05 ** *p*<0.01 *** *p*<0.001

Supplementary Figure 4. *Ndfip1*-deficient T_{reg} cells show normal *Foxp3* mRNA levels but lose Foxp3 protein *in vivo*. (a) Analysis of the methylation status of the CNS2 region in *Foxp3*⁻ (Cre negative) cells isolated from WT male animals. (b) Representative alleles showing methylation status of the *Foxp3* promoter region from eT_{reg} cells isolated from 9-12 week old male WT or *Ndfip1*^{fl/fl}*Foxp3*-Cre mice. (c) Expression of *Foxp3*, as measured by qPCR analysis in unstimulated or α CD3/CD28-bead-stimulated T_{reg} cells. *Foxp3* mRNA expressed as 2^{ΔCT}, relative to *Actb*. (d-e) *In vitro* percentages (d) and MFI (e) of sorted YFP+ Foxp3 cells are increased in response to IL-2 and decreased in response to IL-4 and anti-IL-2. *P* value calculated by one way ANOVA * *p*<0.05 ** *p*<0.01 *** *p*<0.001 *****p*<0.0001.

Supplementary Figure 5. Ndfip1-deficient T_{reg} cells are more likely than controls to lose Foxp3 in vivo. (a-g) CD45.1 CD4+ Tconv cells and CD45.2 WT or *Ndfip1*^{fl/fl}*Foxp3*-Cre YFP⁺ T_{reg} cells were co-injected via IP at a 5 T_{conv}:1 T_{reg} ratio into *Rag1^{-/-}* animals, as described in Figure 5. (a) Graph shows percentage change in weight over the course of the experiment. (b) Lung homogenates were sorted for T_{reg} cells that remained Foxp3⁺ (current T_{reg} cells), those that had become Foxp3⁻ following transfer (former T_{reg} cells), and for CD45.1 T_{conv} cells, restimulated, and analyzed for *Ndfip1* mRNA by qPCR. (**c-e**) IFNy production by current (**c**) and former (d) T_{reg} cells and from the co-transferred T_{conv} cells (e). (f-g) Absolute numbers of CD45.2⁺ current and former T_{reg} cells (f) or of total CD45.2⁺ cells (g) in recipients of WT or *Ndfip1*^{fl/fl}*Foxp3*-Cre T_{reg} cells. All mice were analyzed 13 weeks after the cotransfer. Error bars indicate mean ± SEM. Each dot represents an individual recipient mouse. All experiments were performed on at least two independent occasions using at least 2 animals of each genotype. P value was calculated by unpaired *t* tests (b-e,g) or by one-way ANOVA (f). **p*<0.05 ***p*<0.01 ****p*<0.001 ****p<0.0001

Supplementary Figure 6.

Supplementary Figure 6. *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} T_{reg} cells do not have decreased Foxp3 MFL. (a-c) Lung homogenates, from 8-16 week old hemizygous female *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} mice and *Ndfip1*^{+/+}*Foxp3*-Cre^{+/-} controls, were analyzed *ex vivo* by flow cytometry as described in Figure 3. Data is shown for the ratio of Foxp3 MFI on: YFP⁺ to YFP⁻ Foxp3⁺ cells (a) YFP⁺ to YFP⁻ eT_{reg} cells (b), or on YFP⁺ to YFP⁻ cT_{reg} cells (c) in *Ndfip1*^{+/+}*Foxp3*-Cre^{+/-} controls versus *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} mice. *P* values determined by student's *t* test. **p*<0.05 ***p*<0.01 ****p*<0.001 *****p*<0.0001. Each dot shows data acquired from a single female mouse. Graphs show mean ± SEM. All experiments were performed on at least two independent occasions.

Supplementary Figure 7.

Supplementary Figure 7. IL-4 does not drive the *in vivo* fitness of *Ndfip1*deficient T_{reg} cells. (a-g) Regulatory T cells from the lung of *IL-4* KO and *Ndfip1 IL-4* DKO mice were analyzed by flow cytometry *ex vivo*. (a) Representative flow plots of Foxp3⁺ T_{reg} cells from lung. (b-c) Percentage of (b) total lung T_{reg} cells or (c) total lung Ki-67⁺ T_{reg} cells. (d) Representative flow plots of eT_{reg} and cT_{reg} cells, identified by CD44 and CD62L staining of lung homogenate. Previously gated on Foxp3. (e) Summary of percentages of eT_{reg} cells from (d). (f-g) CD44⁺ lung Foxp3⁺ eT_{reg} cells were analyzed for expression of the proliferation marker, Ki-67 (f) or ICOS (g). Error bars indicate mean ± SEM. N=2-4 (age-matched male or female) animals per genotype in one experiment. P values determined by student's *t* test * *p*<0.05 ** *p*<0.01.

Supplementary Figure 8.

Supplementary Figure 8. *Ndfip1*-deficient T_{reg} cells do not show increased IL-2induced STAT5 phosphorylation. Sorted YFP⁺ total T_{reg} cells were rested overnight without TCR or cytokines. The MFI for STAT5 phosphorylation as measured by flow cytometry, is shown for the T_{reg} cells with or without addition of 119 U/ml (~50ng/ml) of rhIL-2 for 30minutes in a 37°C incubator. Each dot represents data acquired from a single mouse (male or female, between 9-16 weeks old). Graphs show mean ± SEM and represent data from at least two independent occasions.

Supplementary Figure 9

a Gating to look at surface markers or at intracellular proteins on eTreg versus cTreg YFP+ versus YFP- Treg cells

Supplementary Figure 9. Flow cytometry gating schemes. (a) Gating scheme for analyzing T_{reg} cell surface proteins and intracellular proteins in female *Ndfip1*^{+/+}*Foxp3*-Cre^{+/-} controls and *Ndfip1*^{fl/fl}*Foxp3*-Cre^{+/-} mice shown in Figures 3, Supplementary Figure 2, and Supplementary Figure 3. Male animals were gated similarly, omitting the GFP by Foxp3 step, since all Foxp3⁺ T_{reg} cells in male animals are YFP⁺. YFP was detected using an anti YFP/GFP antibody. The gating schema for males was used for Figure 1e-f, Figure 2, Figure 4, Figure 5, and Figure 8. (b) Gating scheme for sorting total CD4⁺ YFP⁺ Treg cells. Total T_{reg} cells were sorted for Figure 1a, Figure 4c, Figure 7, Figure 8, Supplementary Figure 4c, and Supplementary Figure 5b. To sort CD62L^{lo} CD44⁺ eT_{reg} and CD62L^{hi} CD44⁻ cT_{reg} cells, CD4⁺ YFP⁺ cells were further separated by CD44 and CD62L staining as shown in (a). cT_{reg} versus eT_{reg} YFP⁺ Foxp3⁺ cells were sorted for Figure 5a-b, Figure 6, Figure 7, and Figure 8. (c) Gating schema for mixed chimera experiments and adoptive transfer experiments. In the mixed chimera experiments in Figure 4, congenically marked *Ndfip1*^{+/+}*Foxp3*-Cre WT cells (CD45.1⁺ or CD45.1⁺/CD45.2⁺) were compared to CD45.2⁺ *Ndfip1*^{fl/fl}*Foxp3*-Cre cells. In the adoptive transfer experiments for Figure 5 and Supplementary Figure 5, WT T_{conv} cells (CD45.1⁺/CD45.2⁺) were co-transferred and compared to either CD45.2+ Ndfip1+/+Foxp3-Cre WT Treg cells or CD45.2+ *Ndfip1*^{fl/fl}*Foxp3*-Cre Treg cells.