Supplemental Data for

Immunoglobulin Domain Interface Exchange as a Platform Technology for the Generation of Fc Heterodimers and Bispecific Antibodies

Darko Skegro^{1,#}, Cian Stutz¹, Romain Ollier¹, Emelie Svensson¹, Paul Wassmann^{1,#}, Florence Bourquin^{1,\$}, Thierry Monney¹, Sunitha Gn², and Stanislas Blein^{1*}

From the ¹Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland; the ²Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre, Plot no.A-607, T.T.C. Industrial Area, MIDC, Mahape, Navi Mumbai-400 709, India.

*To whom correspondence should be addressed: E-mail: <u>stanislas.blein@glenmarkpharma.com</u>, Tel: +41 32 729 35 50.

Supplemental method

BEAT Fc preparation for DSC analysis–To assess the intrinsic stability of the BEAT Fc, a BEAT Fc chain (B) with a C-terminal HA tag but without VL domain was co-expressed in HEK293-EBNA cells with a BEAT Fc chain (A) fused to a C-terminal poly-histidine tag. The resulting Fc heterodimer was purified using a two-step affinity purification strategy; in a first step, the filtered cell-culture supernatant was purified via anti-HA affinity chromatography (Roche Diagnostics AG, Rotkreuz, Switzerland), and eluted fractions were further purified in a second step by Ni²⁺-NTA chromatography (Qiagen GmbH, Hombrechtikon, Switzerland). Both chromatographic steps were run according to the resin manufacturer's protocol. The BEAT Fc material eluted from the final purification step was buffer exchanged into PBS before DSC analysis.

FIGURE S1. Amino acid sequences of parental and engineered CH3 and CH4 domains; previously described CH3 heterodimer sequences from the KiH and SEED technologies are included. Both the EU and IMGT numberings are shown for CH3 domains; for CH4 domains only the IMGT numbering is shown.

FIGURE S2. Schematic diagrams depicting the interfaces of BEAT min, IgM CH4, and BEAT CH4. The IMGT numbering is used. Charged residues are colored in red (negative) or blue (positive). Hydrophobic interactions are in grey lines, electrostatic interactions in dashed red lines. Grafted residue numbers are in yellow.

FIGURE S3. BEAT Fc. (A) BEAT Fc thermal unfolding by DSC. The single transition corresponds to the melting of the CH2 and engineered CH3 domains. (B) Solvent accessible surface area of the BEAT Fc highlighting TCR derived residues. TCR Ca derived residues are colored blue and TCR Cb derived residues are colored red.

FIGURE S4. Schematic diagrams depicting the interfaces of IgA CH3, IgD CH3, and SEED. The IMGT numbering is used. Charged residues are colored in red (negative) or blue (positive). Hydrophobic interactions are in grey lines, electrostatic interactions in dashed red lines. Grafted residue numbers are in yellow.

FIGURE S5. Impact of the W81T mutation in MI (CH3) AG/GA vs. SEED. (A) Fc-like proteins were purified by Protein A chromatography and monitored by SDS-PAGE. (B) Summary of heterodimer content.

TABLE S1. SPR binding affinities of BEAT 2/3 and variants thereof for human Fc receptors. Average KD values \pm SD based on three or more replicate measurements are shown. KD values are reported as follows: Fc γ R1a = pM, Fc γ R2a/Fc γ R2b = μ M; Fc γ R3a/FcRn= nM. For each measurement, the Rmax and χ 2 values were used to evaluate the quality of the fit between the experimental data and the binding model; average Rmax and χ 2 values \pm SD based on three or more replicates for the same antibody-Fc receptor pair are shown; Rmax unit is RU and χ 2 unit is RU². (a) BEAT 2/3 antibody used in cell assays and mouse xenograft studies. (b) BEAT 2/3 used in the rat pharmacokinetic study. The isotype of the different Ig constant domains within each BEAT Fc chain is indicated.

TABLE S2. Summary of the PK parameters in female Sprague-Dawley rats following iv bolus injection of the BEAT 2/3 antibody at 10 mg/kg. Abbreviations: AUC_{0-inf} = area under the serum concentration-time curve from time zero to infinity; $AUC_{0-tlast}$ = area under the serum concentration-time curve from time zero to time point of last concentration measured; CL = clearance; C_{max} = maximum serum concentration; IV = intravenous; PK = pharmacokinetic; SD = standard deviation; $t_{1/2}$ = elimination half-life; T_{max} = time to reach maximum serum concentration following drug administration; Vz = apparent volume of distribution based on terminal phase; MRT_{inf} = mean residence time extrapolated to infinity. (*) median (min-max).

TABLE S3. SPR binding affinities of BEAT antibodies for EGFR, HER2, and HER3 extracellular domains. Average KD values \pm SD based on two or more replicate measurements are shown. KD values are reported in nM. For each measurement, the Rmax and χ^2 values were used to evaluate the quality of the fit between the experimental data and the binding model; average Rmax and χ^2 values \pm SD based on two or more replicates for the same antibody-antigen pair are shown; Rmax unit is RU and χ^2 unit is RU². The isotype of the different Ig constant domains within each BEAT Fc chain is indicated. (n.a.) means non-applicable.

TABLE S4. Statistical analysis of Calu-3 xenograft studies. Method: one-way analysis of variance (ANOVA) followed by a Dunnett's post hoc test for multiple comparisons or Mann Whitney test for pairwise comparisons. P values of less than 0.05 were regarded as statistically significant. Asterisks denote statistically significant P values. (n.s.) means non-significant.

		22	81	84.2 86	5 90	
IgG1 CH3 IMGT Numbering	357	20 26	79	84 85.1	88	
agaa a di askar nashardag			1.1	11 11	11	
IgG1 CH3 EU Numbering	350	360 370	380 390	400	410 420	430 440
	· · · · · I · · · · I · · · · I	~		.~~~		
IgGI CH3	GQPREPQVYTLPPSR	DELT~KNQVSLTCLVKGFYPS	DIAVEWESNGQPEN~~NYKTT	PPVLDSD~~~GSFFLY	SKLTVDKSRWQQGNVFSC	SVMHEALHNHYTQKSLSLSPGK
IgG3 CH3	· · · · · · · · · · · · · · · · · · ·	З.М.∼	S~~N	M	·····I···	
BEAT (A)	•••••••	~	·····¥··	····.s.v	.w.n	••••••
BEAT (A) Q3A	A	~	·····¥··	·····S.V	.w.n	•••••
BEAT (A) min	•••••	~	·····¥		.W.N	•••••
BEAT (A) (IgG3 isotype)	••••••••••••••••••••••••••••••••••••••	E. M.~K.VT	·····Y	MS.V	W.N	
BEAT (B)	E.A.F	····~	D	L.EA.S	.R.R	•••••
BEAT (B) min	••••••	••••~••	•••••••••••••••	A.S	· • • • • • • • • • • • • • • • • • • •	••••••
BEAT (B) R90T	E.A.F	····~	D	L.E~~~A.S	.R	•••••••••
BEAT (B) D84.4Q	E.A.F	····~	D	L.E.Q~~~A.S	.R.R	····
BEAT (G)	K.T	~T.L <u>E</u> K	G	M	·.w	· · · · · · · · · · · · · · · · · · ·
BEAT (D)	M	~N. AE	F.A	S~~~N.V	.L.K	
MI (CH3)AG	••••••••••••••••	~	L.W	· · · · · · · · · · · · · · · · · · ·	.I.R	
MI (CH3)AG W81T	•••••••••••••••••	~	L		.I.R	
MI (CH3)GA	E.H	~	· · · · · · · · · · · · · · · · · · ·	R.E~~A.I		
MI (CH3)DG	V.L	~	•••••••••••••••••••••••••••••••••••••••	P.Q~~~W.W	I	
MI (CH3)GD		~	A.A		.V.R	
MI (CH3)GM	D	~	~~	M.E		
MI (CH3)MG	· · · · · · · · · · · · · · · · · · ·	~	v.s		.I	
Knob	· · · · · · · · · · · · · · · · · · ·	~	~~			
Hole		~s.A	~~~		r	
SEED GA	PS	ALNEL.T.	LOGS .ELPREK. L.W	Α	I.R.AAED.KK.DT	DR
SEED AG	FR.E.HL	. M. ~	~~~	SROEPSOGTTT. AVT		
				10000		
		3	5			112
IgM CH4 IMGT Numbering	1 5 10	15 20 25 30	40 45 77 80	84 85	90 95 100 10	05 110 115 120 125
	54321	1	123456	1234554321 .	•••••••••••••••••••••••••••••••••••••••	1
7						
IGM CH4	GVALHKPDVYLLPPAL	REQUNERESATITCLVTGFSF	ADVEVQWMQRGQPLSPEKYVT	SAPMPEPQAPGRYFAF	ISILTVSEEEWNTGETYTC	VVAHEALPNRVTERTVDKST
BEAT CH4 (A) PA			·····x·		.w.N	
BEAT CH4 (B) DA	E.A.F	v		DLA.S		
MI (CH4) MG pA	•••••Q•••••	к		V.DY		НҮ
MI (CH4) GM pA	••••••	S	к.	Τ	.к	HY

Antibody		FcyR1a	FcyR2a	FcyR2b	FcyR3a	FcRn
BEAT 2/3 ^a	KD	135 ± 14	2.12 ± 0.01	3.64 ± 0.05	206 ± 0.5	708 ±12.2
(A): CH2 γ1 - BEAT CH3 (A) γ3	Rmax	116 ± 30	122 ± 1	117 ± 1	136 ± 1	506 ± 4
(B): CH2 γ1 - BEAT CH3 (B) γ1	χ2	0.4 ± 0.17	6.5 ± 0.61	3.57 ± 0.17	23.8 ± 0.15	10.7 ± 0.97
BEAT 2/3 ^b	KD	137 ± 12	1.49 ± 0.01	2.21 ± 0.01	105 ± 0.7	543 ± 10.5
A): CH2 γ3 - BEAT CH3 (A) γ3	Rmax	133 ± 55	120 ± 1	129 ± 1	161 ± 1	655 ± 19
(B): CH2 γ1 - BEAT CH3 (B) γ1	χ2	0.68 ± 0.47	8.75 ± 0.23	7.13 ± 0.28	22.33 ± 0.6	2.62 ± 0.98
BEAT 2/3	KD	298 ± 13	3.91 ± 0.03	7.2 ± 0.11	347 ± 5.1	686 ± 17.4
(A): CH2 γ1 - BEAT CH3 (A) γ3	Rmax	108 ± 1	107 ± 1	97 ± 1	116 ± 1	461 ± 5
(B): CH2 γ1 - BEAT CH3 (B) γ1 D84.4Q	χ2	0.32 ± 0.08	3.41 ± 0.13	1.08 ± 0.09	14.47 ± 0.5	1.92 ± 0.91
BEAT 2/3	KD	317 ± 11.5	2.36 ± 0.2	5.27 ± 0.5	238 ± 4.0	577 ± 13.1
(A): CH2 y3 - BEAT CH3 (A) y3	Rmax	110 ± 1	110 ± 2	103 ± 2	124 ± 1	510 ± 6
(B): CH2 γ1 - BEAT CH3 (B) γ1 D84.4Q	χ2	0.36 ± 0.01	4.02 ± 2.32	3.98 ± 2.22	14.17 ± 0.76	1.42 ± 1.43
Herceptin IgG	KD	138 ± 12	2 ± 0.2	4.27 ± 0.1	267 ± 3.9	622 ± 56.5
	Rmax	92 ± 2	61 ± 6	61 ± 4	78 ± 11	389 ± 53
	χ2	0.31 ± 0.19	2.47 ± 1.55	1.07 ± 1.14	10.43 ± 5.61	8.45 ± 5.79

		Mean (SD)	
Mean PK Parameters	Units	Female Sprague Dawley Rat (10 mg/kg; IV)	
C _{max}	(µg/ml)	276 (29.72)	
AUC _{0-tlast}	(h.µg/ml)	12204 (4290.39)	
AUC _{0-inf}	(h.µg/ml)	12277 (4359.82)	
*T _{max}	(h)	0.25 (0.25-0.25)	
t _{1/2}	(h)	164 (55.39)	
Vz	(ml/kg)	215 (121.14)	
CL	(ml/min/kg)	0.015 (0.006)	
MRT _{inf}	(h)	112 (30.37)	

Antibody		EGFR	HER2	HER3
BEAT 1/3	KD	0.3 ± 0.01	n.a.	2.5 ± 0.1
(A): CH2 γ1 - BEAT CH3 (A) γ3	Rmax	99 ± 1	n.a.	124 ± 7
(B): CH2 γ1 - BEAT CH3 (B) γ1	χ2	0.84 ± 0.23	n.a.	0.8 ± 0.12
BEAT 2/3	KD	n.a.	2.9 ± 0.9	2 ± 0.1
(A): CH2 γ1 - BEAT CH3 (A) γ3	Rmax	n.a.	128 ± 3	163 ± 15
(B): CH2 γ1 - BEAT CH3 (B) γ1	χ2	n.a.	0.3 ± 0.2	1.6 ± 0.7
Erbitux (IgG1)	KD	0.83 ± 0.01	n.a.	n.a.
	Rmax	140 ± 2	n.a.	n.a.
	χ2	1.57 ± 0.1	n.a.	n.a.
Herceptin (IgG1)	KD	n.a.	4.7 ± 0.4	n.a.
	Rmax	n.a.	112 ± 21	n.a.
	χ2	n.a.	1.15 ± 0.71	n.a.
U1-59 (IgG1)	KD	n.a.	n.a.	1 ± 0.05
	Rmax	n.a.	n.a.	130 ± 6
	χ2	n.a.	n.a.	0.15 ±0.03

Dunnett's multiple comparison test	Adjusted P Value	Significant?	Summary
Herceptin vs. Vehicle	0.13	No	n.s.
anti-HER3 vs. Vehicle	0.93	No	n.s.
Herceptin + anti-HER3 vs. Vehicle	<0.001	Yes	***
Duligotuzumab vs. Vehicle	0.004	Yes	**
BEAT 2/3 vs. Vehicle	<0.001	Yes	***
Mann Whitney test	Adjusted P Value	Significant?	Summary
BEAT 2/3 vs. Herceptin	0.0174	Yes	*
BEAT 2/3 vs. anti-HER3	0.0013	Yes	**
BEAT 2/3 vs. Herceptin + anti-HER3	0.0181	Yes	*