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1 Information Theory Calculations

1.1 Mutual Information

The mutual information between two random variables representing a signal, S, and a response,
R, is defined as:

I(S;R) =

∫
S

∫
R
p(s, r) log

p(s, r)

p(s)p(r)
dsdr,

where S is a random variable representing the input signal, R a random variable representing the
response, p(s, r) is the joint probability distribution for some combination of s and r values, and
p(s) and p(r) are the corresponding marginal distributions (1). One of the major difficulties in
calculating this quantity from experimental data is the fact that the continuous probability
density functions defined above must be estimated on the basis of an inherently discrete data set.
As a result, a number of approaches have been developed to obtain unbiased estimates of the
mutual information with varying degrees of accuracy (2).

In order to facilitate comparison with earlier results, we employed the same strategy used by
Cheong et al. (3). This strategy has two main components. First, one defines a set number of
“bins” in both the signal values s and response values r. In cases where one is measuring the
molecular response of individual cells to a given signal (e.g. nuclear localization of NF-κB upon
treatment with TNF-α, (3)), there are a small number of ligand concentrations used to treat the
cells, resulting in a natural discretization of the S variable and a total of SB bins of signal values.
One defines a number of bins for the response (RB), and uses these bins to estimate the
probability of observing some response bin given some signal bin (i.e. p(r|s)). A linear
extrapolation procedure is then used to estimate the mutual information one would obtain if
there were an infinite amount of data in the data set. This extrapolation procedure is described in
greater detail in section 1.1.2 below.

One issue with this approach, however, is that the number of bins into which the signal and
response values should be divided is not well-defined; using a larger number of bins generally
increases the estimated amount of information (3). To combat the potential for overestimation of
the mutual information, the second phase of the procedure involves varying the total number of
bins in the response variable (and, when appropriate, in the signal value as well) and estimating I
for both the experimental data and a set of randomized replicates of the data. This allows one to
choose a bin size that maximizes I for the real data while still estimating 0 information for the
randomized versions. This element of the procedure is detailed in section 1.1.3. Estimates of the
mutual information based on this approach can subsequently be used to calculate the channel
capacity by finding the input distribution that maximizes I (1) (section 1.2).

1.1.1 Calculating the mutual information

To calculate the mutual information from our finite data sets, we first created a “contingency
table” K based on the data: the rows of this matrix represent the various signal bins, and the
columns are the various response bins. Each entry in the matrix is the number of observations
from the data that correspond to that particular signal-response pair. The contingency table for a
particular experiment might look something like this:
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K =


r1 r2 r3 r4 r5

s1 6 1 0 0 0
s2 0 3 4 0 0
s3 0 1 2 4 0
s4 0 0 0 2 5


Note that the above table is meant only as an example, and does not contain actual data. One
can use the contingency table to calculate the mutual information in terms of the marginal and
conditional entropies:

I(S;R) = H(S)−H(S|R)

I(S;R) = −
SB∑
i

p(si) log p(si)−
SB∑
i

RB∑
j

p(si, rj) log
p(rj)

p(si, rj)

where i ranges over the signal bins and j over the response bins in the contingency table (recall
that SB and RB are the total number of signal and response bins, respectively). Since each entry
in the contingency table can be naturally considered a conditional probability, it is helpful to
rewrite this equation as:

I(S;R) = −
SB∑
i

p(si) log p(si) +

RB∑
j

p(rj)

SB∑
i

p(rj |si) log p(rj |si).

We can then calculate the frequencies from the contingency table entries and substitute these
values into the equation. We define NT as the sum over all entries in the table. Since each entry of
the matrix, kij , is the number of instances of signal i that resulted in response j, we can define the

total number of observations corresponding to a given signal bin i as ks,i ≡
∑RB

j kij . Similarly, we

can define the total number of times any particular response bin j was observed as kr,j ≡
∑SB

i kij .
Given these definitions, we can calculate the mutual information using the following equation:

I(S;R) = −
SB∑
i

ks,i
NT

log
ks,i
NT

+

RB∑
j

kr,j
NT

SB∑
i

kij
NT

log
kij
NT

. (1)

Equation 1 is used whenever a particular value of I is calculated in the estimation procedure
described below (2; 3).

1.1.2 Removing bias due to finite sample size

Although it is straightforward to use equation 1 to calculate the mutual information, the fact that
there are a finite number of data points in the contingency table (NT ) can introduce biases into
the calculation. To estimate this bias, one can create a smaller data set with N ′T points
(N ′T < NT ) and calculate I. As has been observed previously (3), as N ′T decreases, bootstrap
replicates of the data generate higher values of I. This results in a roughly linear decrease in I as
the inverse sample size decreases (Figure S1).

To correct for this bias, we used the linear extrapolation procedure employed in Cheong et al. and
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other previous studies (3; 4). We chose a total of 5 sample sizes starting from 60% of the original
data with uniform increments in inverse sample space until reaching the size of the original data
set. Our procedure then involves calculating the joint frequency distribution for the original data
set and then randomly sampling the specified number of values over 20 independent replicates
from the joint frequency distribution. Note that we re-sample the data with replacement, which
allows us to generate these 20 replicates accross the entire range of NT values. Sampling with
replacement also allows us to find the signal distribution that maximizes I(S;R) as described in
section 1.2 below. We used these randomly sampled data sets to generate new contingency tables,
and using equation 1 we calculated the distribution of I across the 20 replicates. We then
performed a linear regression of the I vs. 1/NT relationship (e.g. the straight lines in Figure S1).
The y-intercept of these lines represents the extrapolation to an infinite data set (i.e. NT →∞
implies 1/NT → 0). All the channel capacities calculated in this work (e.g. those reported in Table
1 of the main text) were obtained from these y-intercepts. The errors reported for these values in
Table 1, and the error bars in all figures, represent 95% confidence intervals on the linear model’s
intercept estimate. We calculated these intervals using two methods: the robust variance (or
sandwich) estimator (results are reported in Table 1 in the main text) and a bootstrapping
approach. This approach involves resampling the data set N times and calculating ĈS,P for each
data set to estimate the confidence interval. Results can be seen in Table S1.

Signal Response
(
ĈS,P + δ0.025, ĈS,P + δ0.975

)
(bits)

6. TRAIL Casp-8 activity (1.01− 0.02, 1.01 + 0.02)
7. TRAIL Casp-8 activity (live cells) (1.01− 0.01, 1.01 + 0.02)
8. TRAIL Casp-3 activity (0.56− 0.02, 0.56 + 0.02)
9. Casp-8 activity Casp-3 activity (1.23− 0.02, 1.23− 0.02)
11. α-factor pFUS1 -GFP (2.26− 0.08, 2.26 + 0.09)
13. Bacterium neutrophil motion (1.82− 0.12, 1.82 + 0.12)
14. cAMP Dictyostelium motion (2.19− 0.13, 2.19 + 0.14)
15. TRAIL % dead (HeLa; resampled) (2.44− 0.02, 2.44 + 0.02)
16. TRAIL % dead (HeLa; FACS) (3.41− 0.03, 3.41 + 0.02)
17. TRAIL % dead (MCF10A) (3.35− 0.04, 3.35 + 0.03)

Table S1: Select estimates from Table 1 in the main text, but with confidence intervals calculated from
bootstrapped data sets (N ≥ 100, where N is the number of bootstrap samples). δp is the difference between
the value at the pth percentile and the mean of the bootstrap distribution.

1.1.3 Finding the optimal number of bins

Generating the contingency table relies on a particular discretization or binning of the data. As
mentioned above, the signal values used to generate experimental data often represent a natural
set of signal bins (e.g. Figure 1C and D of the main text). The number of response bins to
generate, however, is not clear a priori, and the value of RB has a large impact on estimates of I.
On one extreme, if we set RB = 1, all of the signals will give the same responses, resulting in a
mutual information of 0. Alternatively, we could choose a number of bins, RB, so large that every
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Figure S1: Representative linear models for estimating mutual information at infinite sample size with
various numbers of response bins. Here we use experimental data composed of 1000 cells per each of 19
TRAIL concentrations. In this figure we are estimating the mutual information between the level of caspase-
8 activity in HeLa cells in response to a uniformly distributed set of TRAIL concentrations. We then calculate
the mean mutual information as a function of inverse sample size ( 1

NT
) by taking n = 20 independent subsets

of the data per sample size. Shown here are the calculated mutual information values for each sampled data
set. Calculation of the linear model’s intercept provides us with an estimate of mutual information at infinite
sample size for a particular number of response bins.

response bin contains exactly one response value in the contingency table:

K ′ =


r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

s1 1 1 0 1 0 0 0 0 0 0 0 0
s2 0 0 1 0 1 1 0 0 0 0 0 0
s3 0 0 0 0 0 0 1 0 1 1 0 0
s4 0 0 0 0 0 0 0 1 0 0 1 1


(where again we have used an arbitrary data set as an example). This results in a (spuriously)
high mutual information–note that, in this case, if we randomly shuffle the signal value that gives
any particular output, we will get the same mutual information:

K ′rand =


r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

s1 0 0 0 0 0 1 0 0 1 0 0 1
s2 1 1 0 0 1 0 0 0 0 0 0 0
s3 0 0 1 0 0 0 1 0 0 0 1 0
s4 0 0 0 1 0 0 0 1 0 1 0 0
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Since I generally increases with an increasing RB (note the increasing intercept for the data in
Figure S1), we must find an optimal value of RB that accurately represents the mutual
information in the underlying data without artificially inflating it.

Our approach to solving this problem is broadly inspired by previous approaches, particularly
that of Cheong et al., with some slight modifications (3; 5). Each calculation of the mutual
information requires some specified number of bins, so we defined both an initial number of bins
to use as well as the number of bins by which to increment. For any given RB value, we generated
the bins themselves (i.e. the actual range of response values in the data that belongs to each bin)
so that the total number of observations kr,j for each response bin is (roughly) equal across all the
response bins under the signal distribution given by the data set (3; 5). We then generated the
contingency table and estimated I using the linear extrapolation procedure explained above in
section 1.1.2.

Plotting I vs. the total number of response bins (Figure S2) does indeed demonstrate that mutual
information increases essentially monotonically with increasing RB. For each value of RB, we also
generated NR contingency tables with some specified sample size with randomly sampled entries.
We calculated I for each one of them; the value of I in these randomized data sets also increases
with increasing RB, eventually generating significantly non-zero mutual information where there
should be none (Figure S2).

Figure S2: Here we show a representative graph of mutual information (I) as a function of the number
of response bins. The data is the same from which Figure S1 is generated and each point shown here is
the y-intercept retrieved from the linear extrapolation procedure outlined in section 1.1.2. In red is one
randomization of the actual data set, shown in black.

Cheong et al. obtained an optimal range of bin numbers for each data set via visual inspection of
plots like those in Figure S2 (3). While this is an effective approach, the large number of data sets
and variants in our case prevented us from visually analyzing every case. We thus defined a
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uniform criterion for choosing the optimal number of bins, defined as the value of RB that gives
the largest value of I, subject to the constraint that the 95% confidence interval from the
corresponding randomized data must include 0. In other words, we chose an RB that maximizes
the I in the data, but where the randomized data gives mutual information that is not
significantly greater than 0.

The range of RB values that provides this maximum depends on the total number of data points
(NT ) and on the amount of information present in the data itself; it is thus difficult to define a
uniform range of bin numbers to consider for every data set. Therefore we implemented a method
to automate the search for the optimal number of bins. In essence, this method iteratively
increments the number of bins used in the calculation until a prespecified number of randomized
calculations (in our case, 3) for consecutive increments were biased (i.e. significantly above zero).

The discussion above assumes that SB is fixed at some particular number of signal values, as is
typical when generating experimental data. In some of the systems we considered, however, we
needed to find an optimal set of signal bins in addition to response bins. This was particularly
true of spatial quantities like the angle between the bacterium and the neutrophil (see section 3).
In those cases, we adapted this method to identify the optimal number of bins in both signal and
response space.

1.2 Channel Capacity

As mentioned in the main text, the channel capacity is the supremum of the mutual information
over all possible signal distributions:

C = sup
pS(s)

I (S;R) .

Estimating the channel capacity thus involves using the estimate of mutual information obtained
from the procedure defined in section 1.1 to search the space of signal distributions and find the
one that maximizes I. Since the set of such distributions is obviously infinite, an exhaustive
search of all well-defined signal distributions is impossible. Following the example of Cheong et al.
(3), we implemented a grid-based search, limited to a set of unimodal and bimodal Gaussian
distributions in addition to a uniform distribution of signal values and the distribution present in
the original data set (if it is not already uniform). Additionally our estimate is limited by the
finite set of signal values over which the data itself is collected. We thus define a new quantity as
the estimated channel capacity given the set of sampled signal values S and the set of probability
mass functions P attempted in our optimization:

ĈS,P ≤ C

giving us a lower bound on the true channel capacity.
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1.2.1 Unimodal signal distributions

We generated a range of unimodal signal distributions of the form:

GU (s) =
1

σ
√

2π
e−

(s−µ)2

2σ2 .

Since we can sample only a subset of possible signal distributions we limit the potential mean
values, µ, to a set of 4 evenly spaced values between the minimum and maximum signal values in
the data set (Smin and Smax, respectively):

µ ∈ {f · (Smax − Smin) + Smin} | f ∈ {0.2, 0.4, 0.6, 0.8}}.

For each µ we generate a range of σ values by calculating a maximum standard deviation:

σmax = min

(
µ− Smin

3
,
Smax − µ

3

)
.

This constrains the signal distributions so that at least 99% of the area under the distribution
falls between Smin and Smax and allows us to use a range of standard deviation values by
sampling increasing fractions of σmax:

σ ∈ {f · σmax | f ∈ {0.2, 0.4, 0.6, 0.8, 1}}.

1.2.2 Bimodal signal distributions

We also implemented a range of bimodal signal distributions of the form:

GB (s) =
w0

σ0
√

2π
e
− (s−µ0)

2

2σ20 +
w1

σ1
√

2π
e
− (s−µ1)

2

2σ21

where w0 and w1 are weighting coefficients such that w0 ∈ {0.4, 0.5, 0.6} and w1 = 1− w0. In
order to construct these distributions we first defined a minimum difference between µ0 and µ1:

µD =
Smax − Smin

5
.

We used µD to construct a series of pairs (µ0, µ1) such that

µD + Smin ≤ µ0 < Smax

µ0 + µD ≤ µ1 < Smax

and µ0 is incremented in steps of µD. Similarly to the unimodal signal distributions, both means
µ0 and µ1 have multiple, evenly spaced standard deviations, σ0 and σ1 that are fractions of some
maximum standard deviations, σ0,max and σ1,max. These values are constrained so that these
distributions have both a local minimum between µ0 and µ1 and 99% of their area between Smin
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and Smax:

σ0,max = min

(
µ1 − µ0

4
,
µ0 − Smin

3

)
σ1,max = min

(
µ1 − µ0

4
,
Smax − µ1

3

)
.

The individual σ0 and σ1 values are then:

σ0 = f · σ0,max

σ1 = f · σ1,max,

where f ∈ {0.2, 0.4, 0.6, 0.8, 1}.

1.2.3 Weighting the data

With this set of unimodal and bimodal signal distributions, we can determine how the mutual
information of a particular data set varies with different signal distributions in order to estimate
the channel capacity. To do this, we modified the original contingency table in order to recalculate
the mutual information according to each new signal distribution. Each signal bin si corresponds
to a range of signal values between, say, si,min and si,max and yields a corresponding number of
observations in the contingency table, kij for each response bin rj . For any unimodal or bimodal
signal distribution GA(s), we calculated the new value for this entry in the contingency table

k′ij =
p′(si)kij
p(si)

where

p′ (si) =

∫ si,max

si,min

GA (s) ds

is the new probability of observing some signal value si and p (si) is the uniform probability of
observing that signal bin si. We can use this to generate a new contingency table, and calculate
the relevant quantities:

N ′T =

SB∑
i

RB∑
j

k′ij , k
′
s,i =

RB∑
j

k′ij , k
′
r,j =

SB∑
i

k′ij .

The procedure produces a new contingency table that has the same number of entries as the
original one. For each distribution GA(s) that we considered, we used the procedures described in
section 1.1 to estimate the mutual information for that particular distribution. The maximum
mutual information over all signal distributions calculated is our estimate of the channel capacity
ĈS,P which we will refer to as simply Ĉ for notational convenience. As mentioned above, the

errors reported for Ĉ represent the 95% confidence interval for the intercept estimated by the
linear extrapolation procedure (section 1.1.2).
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2 Additional Experimental Calculations

2.1 Control calculations

As mentioned in the main text, we examined the channel capacities between the activities of the
initiator caspase (IC; cleaved caspase 3) and both the effector caspase (EC; cleaved PARP) and
terminal cellular phenotype. We found that the IC to EC channel capacity exceeded 1.2 bits. This
confirms the nature of IC as an intermediate component in the TRAIL signaling network due to
the relative increase in information when using IC as the input distribution to the channel
capacity estimation instead of TRAIL.

2.2 Population size dependence of single-cell channel capacity estimation

Given our large data set, we investigated how Ĉ would vary for individual cells as a function of
population size; as mentioned in the main text, the population-level Ĉ has a clear dependence on
the size of the population. We expected to find that as the sample size increases the estimators
describing the response distribution will be sufficiently accurate to prevent the need to calculate
Ĉ from the entire data set of over 1.2 million cells (which is computationally expensive). We
confirmed this empirically, upon estimation of the single-cell Ĉ for increasing subsets of our
FACS-generated data, using sample sizes of 500, 1000, and 2000 cells per TRAIL concentration.

2.3 Dose-dependent scaling

In our data we observed that IC activity levels were substantially higher in dead than live cells,
most likely due to the variety of positive feedback mechanisms present in the caspase cascade (6).
Because this additional cleavage of caspase 3 in dead cells occurs downstream of the cell’s
commitment to apoptosis, it could be considered a consequence of the cell’s phenotypic outcome
rather than as an intermediate factor contributing to it. Since the channel capacity estimation is
time-dependent (and capturing the exact moment of cell death for every cell is technologically
infeasible), we proceeded to examine the impact that post-commitment IC activity has on our
estimates for channel capacity between TRAIL dose and IC activity level. We therefore performed
our analysis separately for live and dead cells by partitioning them into these two groups
according to the threshold effector caspase response, tEC (7); we calculated this quantity by
estimating the minimum density between the two peaks of the bimodal EC activity distribution:
log10 (tEC) = 2.85± 0.05 (8). We then plotted the dose response data to determine how response
varies with TRAIL concentration. These plots show clearly that only initiator caspase activity
scales with TRAIL dose, and it does so only among living cells (Figure S3). The value of Ĉ
between TRAIL and IC activity in living cells is approximately 1.01 bits as shown in Table 1 in
the main text, essntially the same as the estimated channel capacity between TRAIL and IC
activity in all cells. Mean effector caspase activity in living and dead cells in addition to mean
initiator caspase activity in dead cells does not significantly vary for differing doses of TRAIL
(Figures S3 and S4) and as a result, we did not estimate the channel capacity for these
dose-response relationships.
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Figure S3: Initiator caspase activity scales with TRAIL among living cells. Shown for each TRAIL concen-
tration are the sample mean and standard deviation (n ≈ 60, 000 cells)

2.4 Resampling experimental data

In order to estimate the channel capacity for the pheromone signaling network in yeast, we
reconstructed dose-response data shown by Bashor et al. in their Figure 4D (9). In this case the
signal distribution was a set of logarithmically spaced α-factor concentrations and the
corresponding response was pFUS1 -GFP fluorescence. With this data we constructed a series of
dose-dependent Gaussian distributions defined by the mean and standard deviation of the
pFUS1 -GFP response given some α-factor concentration. From these distributions we sampled
100 values for each of 10 α-factor concentrations in order to construct a dose-response data set
from which we could estimate the channel capacity (Figure S5). We similarly performed this
procedure for estimating the population-level channel capacity for the set of MCF10A and HeLa
cells shown in Figure 3B of the main text. In this case, the mean and standard deviation for a
particular TRAIL dose refer to the number of living cells in a given population.

3 Spatial Channel Capacity Estimation

In order to estimate the spatial channel capacity between a motile cell undergoing chemotaxis and
its target that is producing some chemical gradient, we constructed signal/response pairs from
angles between the cell and its target. We used the CellTrack program developed by Sacan et al.
(10) to output text files containing frame-by-frame coordinates for the edges of the cells and their
centers of mass (COM) as shown in Figure S6A. We used these coordinates to calculate
time-dependent signal and response angles (Figure S6B).
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Figure S4: Effector caspase activity is invariant with TRAIL among both living and dead cells. The data set
is identical to that in Figure S3.

3.1 Neutrophil motion

We initially analyzed the motion of a neutrophil that is “chasing” a bacterium from a classic
movie taken in the 1950s (www.youtube.com/watch?v=Kb-m1uDoWfU). For the purposes of our
calculation, we assume that the neutrophil is in fact following a chemical gradient generated by
the bacterium. In this case, the signal corresponds to the angle, termed θ1, between the bacterium
at a particular frame in the movie, time t, and the neutrophil at another time t+ ∆t1. The
subsequent response angle, θ2, is that of neutrophil motion between time t+ ∆t1 and time
t+ ∆t1 + ∆t2. These angles then comprise the signal and response distributions used to calculate
Ĉ of the system. A visual representation of this calculation can be seen in the main text (Figure
S6A&B).

We calculated the signal and response angles between the neutrophil COM and bacterial COM
relative to the x-axis unit vector in the Cartesian coordinate system. This method is similar to
one outlined by Burov et al. derived to provide more directional information than mean squared
displacement for analysis of random walks (11). We employ a “windowed” data collection method;
given some starting time, t, we calculate an arbitrary signal and response angle pair, requiring
information from time points, t+ ∆t1 and t+ ∆t1 + ∆t2. In our windowed data collection, the
next pair of angles is calculated using t incremented by one frame: t = t+ 1. To confirm that the
estimated channel capacity was not an artifact of the chosen time delay values, ∆t1 and ∆t2, we
explored the nearby (∆t1,∆t2)-space and discovered that Ĉ is relatively robust to ∆t1 and ∆t2 as
seen in Figure S6C.

3.2 Dictyostelium motion

The next movie we analyzed is that of a Dictyostelium cell following a cAMP gradient (Movie S1,
provided courtesy of Susan Lee and Richard Firtel, Section of Cell and Developmental Biology,
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Figure S5: Resampled data from Figure 4D in Bashor et al. (9).

Division of Biological Sciences, University of California, San Diego, La Jolla, CA). In this movie,
Dictyostelium responds to cAMP introduced by a pipette tip which changes location periodically.
Since the pipette tip remains stationary between location shifts, we can employ our original
calculation used for the neutrophil/bacterium data and omit the ∆t1 parameter (the largest value
of Ĉ occurs when ∆t2 = 18). This omission is valid since θ1 is identical for a range of θ2 values
(i.e. no motion in the gradient source/change in the signal).

4 Simple Model

As mentioned in the main text, our initial model takes the form:

R = (Rmax −Rmin) · Sn

Sn +Kn
+Rmin + ε (2)

where the normally-distributed noise term ε ∼ N (0, σ) has some chosen standard deviation, σ.
The parameter values chosen for the base model (shown in Figure 3) are as described in the
Materials and Methods section of the main text: K = 10, n = 6, Rmax = 30, and Rmin = 20. For
all models discussed in the paper, the response threshold governing an individual cell’s fate is
positioned such that half of the signal values produce mean responses below the threshold and
half produce mean responses above the threshold.
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Figure S6: A. A representative trajectory from the neutrophil movie. Points are centers of mass for the
bacterium (signal source, red) and neutrophil (motile cell, black). The bold, outlined areas show the cells?
perimeters in the trajectory’s first frame. Clearly seen here is the bacterium’s stochastic random walk-like
motion and the neutrophil’s smoother tracking of the resulting gradient. B. Black circles represent the
motile cell and red circles represent the signal source (either a micropipette or bacterium). Since cells do
not instantaneously detect or respond to extracellular stimuli, filled, solid, and dashed circles represent the
motile cell and signal source at initial (t), signal-delayed (t + ∆t1), and response-delayed (t + ∆t1 + ∆t2)
time, respectively. We can then calculate the mutual information between the signal (θ1) and response (θ2)
angles. C. Spatial Ĉ for the neutrophil as it depends on ∆t1 and ∆t2 for select values.
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4.1 Choosing signal values

For our initial analysis of the model, we selected evenly-spaced signal values to achieve responses
10% above the minimum response and 10% below the maximum response (the transition zone):

0.1 · (Rmax −Rmin) +Rmin ≤ R ≤ 0.9 · (Rmax −Rmin) +Rmin

Through simple algebra we show that the resulting minimum and maximum signal values, (Smin
and Smax, respectively) are:

Smin = K · n
√

1

9

and
Smax = K · n

√
9

This prevents selection of signal values that would produce extremely high or low responses, since
sampling more of these responses relative to intermediate responses would reduce the estimated
channel capacity.

4.2 Varying n

In order to determine the effect of our chosen n = 6 on this model’s estimated channel capacity
(both single-cell and population-level), we varied n between 2 and 10. We see in general from
Figures S7 and S8 that this variation produces minimal difference between models; qualitatively,
models with different n are nearly identical.

4.3 Estimated channel capacity saturation with population size

As discussed in the main text, the fraction of a group of cells making a particular signal-dependent
decision is the statistic used to determine collective response for the population-level estimation of
the channel capacity. By calculating this statistic over a number of replications, we effectively
construct a sampling distribution for the fractional response to some arbitrary signal. Since the
standard deviation of this distribution (i.e. the standard error of the statistic) is dependent on
sample size, we observe an inverse correlation between the size of the population and the standard
error of the fractional response (Figure S9). In other words, the larger the population, the lower
the fluctuations in the percentage of cells that respond to some signal, and the higher the
population-level channel capacity becomes (see Figures 3B and D in the main text). In our
calculations for the Gaussian model (Equation 2), the estimated channel capacity eventually
saturates at some level as population size increases. We should note that this is a simple
consequence of the fact that we limit our sampling in this model to a particular number NS of
singal values the increasing regime of the single-cell dose-response curve. As a result, when noise
is high enough, the population-level channel capacity approaches its theoretical maximum, which
is the entropy of a uniform distribution over the sampled signal values (Ĉ ∼ log2(NS) bits).
Changing how the signal values are sampled thus has a strong influence on estimates of the
population-level channel capacity, an issue that is discussed in detail in sections 4.5 and 7.3 below.
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Figure S7: Single-cell estimated channel capacities (Ĉ) with respect to noise for a range of n values. The
starred n = 6 denotes the value used in all other calculations based on this model. There is minimal difference
between models where n > 2 and even the model with n = 2 displays qualitatively similar behavior to the
others. Error bars denote 95% confidence about the intercept estimate (see section 1.1.2)

4.4 Maximal fractional response

At high levels of noise, we observe another important feature of the population response: the
inability to effect a universal population response at arbitrarily high signal levels. In other words,
no matter how much signal is present in the environment, there will still be a fraction of cells in a
population that does not respond. This is plainly observed graphically in Figure S10; even as the
response saturates at low and high signal levels, there is sufficient noise such that a subpopulation
of cells at these signal levels fall above and below the threshold, respectively. The corresponding
population dose-response curve thus exhibits saturating, incomplete responses both at low and
high signal levels (Figure S11).

As mentioned above, we chose the threshold in the response (i.e. the value of R above which an
individual cell decides to die or undergo some other cell-fate decision) so that this saturation is
symmetric. In other words, if 25% of the cells survive at saturating levels of signal, then 25% of
them will die even when there is essentially no signal at all in our model (Figure S10). Note that,
in our experimental data for HeLa cells, we found that 100% of cells survive when the population
is not treated with TRAIL, and around 50% of them die at saturating TRAIL levels (Figure 2A
in the main text). In our model, this would correspond to moving the threshold to higher values,
so that no cells respond at low signal, and only half respond at high signal. Since I, and thus Ĉ
are invariant to this kind of transformation (i.e. changing the absolute range of the response
value), we focused on a symmetric threshold for simplicity, without loss of generality.
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Figure S8: Population-level Ĉ with respect to noise for a range of n values. Again we see little difference
between models with different n with the minor exception of n = 2. We do observe a slight shift in the
amount of noise producing maximal Ĉ, but the qualitative trends are essentially identical. Error bars are as
in Figure S7.

4.5 Population Ĉ dependence on signal spacing and noise

As mentioned in the main text, we sampled a fixed number of signal values corresponding to
responses between 10% and 90% of the maximal population response for a given noise value.
Upon reaching a noise threshold, the population-level Ĉ is effectively constant as noise approaches
0 (Figure S12), contradicting the existence of a nontrivial level of noise producing maximal
population-level Ĉ shown in the main text (Figure 3C). We also observed that by simply
increasing the number of signal values sampled in the single-cell transition region decreases the
amount of noise required to reach the maximal population-level Ĉ (Figure S13). Both of these
strategies for increasing (or maintaining) population-level Ĉ require increasingly small ∆S. Since
many in vivo inducers of intracellular signaling are cytokines that are themselves subject to
fluctuations in concentration, we posited that this variability in the signal would prevent optimal
population-level Ĉ at arbitrarily low noise.

To confirm this numerically, we introduced another noise term into the simple model (the signal
noise, εs, as opposed to the original response noise, ε) governing the limit of signal accuracy for
our populations of simulated cells. This alternate form of the model (modified from Equation 2)
has the following form:

R = (Rmax −Rmin) · (S + εs)
n

(S + εs)
n +Kn

+Rmin + ε

where the signal noise term εs is normally distributed and is sampled independently for each
population of cells: εs ∼ N (0, σ). This procedure simulates stochastic cytokine production and
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Figure S9: Population-level dose-response curves for multiple population sizes
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Figure S10: Single cell response curve at high noise values

20



0 5 10 15 20
S

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
na

l r
es

po
ns

e Transition zone, σ = 10.0
Transition zone, σ = 5.0

Figure S11: Population response curve at high noise values (population size = 1000)

distribution to cellular populations, and it is distinct from the application of the original noise
term, ε, that was applied to each individual cell. The population-level Ĉ can been seen in Figure
3D in the main text for select values of signal noise, revealing that even in the presence of very
small signal noise (1% of the signal needed to achieve a half-maximal response), there exists a
nontrivial level of noise that maximizes information available to cellular populations.

The question then becomes: what is a reasonable level of signal noise? Unfortunately, in vivo
distributions for cytokines like TRAIL have not been measured in sufficient detail for us to
characterize the typical size of such fluctuations. To estimate this, we considered a prototypical
signaling environment: namely, the intestinal crypt in mammals. This cylindrical structure
contains about 1000 cells that line a fluid-filled interior lumen with a volume of about 5× 10−12 L
(12; 13). As can be seen from Figures 2A and 2B in the main text, the population-level transition
in cell death occurs from about 1 to 102 − 103 ng/mL. This would translate to a range of
∼ 102 − 104 or 105 molecules of TRAIL in the lumen of the intestinal crypt.

Since cytokines like TRAIL are actively synthesized by cells, and would be lost from the lumen
either due to active degradation or diffusion away from the crypt, those cytokines would, at the
very least, be subject to standard Poisson-style birth-death fluctuations. The relative error in
signal values (i.e. the coefficient of variation, or σs/〈s〉) would be 1/

√
m, where m is the number

of molecules (14; 15; 16; 17). In the case of the intestinal crypt described above, we would expect
around 104 molecules, corresponding to a relative error of ∼ 1%.

We should note that the estimate of ∼ 1− 0.1% signal error ignores any “extrinsic” sources of
noise in the signal (15; 16; 17), and as such likely represents an underestimate of signal
fluctuations in biological systems. Interestingly, we observed relatively large dynamic ranges for
the population-level responses in both HeLa and MCF10A cells (over an order of magnitude of
TRAIL concentrations, see Figure 2 of the main text), which may indicate that signal noise has
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Figure S12: By sampling evenly-spaced signal values in the population dose-response transition zone (which
varies with the level of noise in individual cells), we observe that the population-level Ĉ becomes invariant
to noise levels as below a certain threshold.

played a role in shaping population-level response. In any case, although very small levels of single
cell noise could theoretically produce high population-level Ĉ (Figure S12), the presence of signal
variability in biologically realistic systems requires higher levels of noise, so that signal values can
be spaced at reasonable distances from one another while maintaining low variability in the
population-level response.

5 Analytical results for Gaussian responses to signal

Numerical calculations on our original signal-response model suggested a number of interesting
underlying relationships between noise and single-cell/population-level channel capacity. In order
to characterize those relationships more fully, we developed an analytical framework for the
model. Our original version utilized a discrete set S of signal points, and as such represents a type
of “Gaussian mixture model” commonly encountered in communication theory and other areas of
computer science. Unfortunately, there is currently no closed-form solution for the entropy of a
Gaussian mixture model (18). In order to make analytical progress on the model, we created a
closely related version where S is now construed to be a continuous, rather than discrete, random
variable. Though some parameters differ in this version (i.e. the minimum and maximum mean
response), the core structure of the model, including the signal-response relationship and the
variability of single-cell response given a particular signal value, remains the same.
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Figure S13: Increasing the number of sampled signal values in the transition zone of the individual cell’s
dose-response curve (i.e. independently of the population dose-response transition zone) results in a decrease
in optimal noise level and an increase in estimated channel capacity.

5.1 Model definition

Our analytical calculations of the continuous, Gaussian signal-response model are based on the
following definitions:

1. R is the response variable

2. S is the signal variable

3. p (R|S) is normally distributed:

p (R|S = s) = N (µ (s) , σ)

with some arbitrary σ and a signal-dependent µ (s).

4. In our original signal-response model, we had µ (s) = rmin + (rmax − rmin)
sn

sn +Kn
, where

K is the signal value giving a half-maximal response and rmin and rmax are the minimum
and maximum average responses, respectively. To simplify the calculation, in this model we

define rmin = 0 and rmax = 1 so that p (R|S = s) = N

(
sn

sn +Kn
, σ

)
. Since the units on R

are arbitrary and don’t influence the calculation of I(S;R), we can make this simplification
without loss of generality.
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5.1.1 Calculating entropies and channel capacities

Our initial goal with this model is to characterize the mutual information of this signal-response
relationship. We know from the definition of mutual information that:

I (S;R) = h (R)− h (R|S)

where h (R) denotes differential entropy and is defined as:

h (R) = −
∫ ∞
−∞

p (r) log2 p (r) dr,

and the base of the logarithm denotes the units of information. Here we use base 2, resulting in
units of bits. The conditional differential entropy is then:

h (R|S) = −
∫
p (s)

∫
p (r|s) log2 p (r|s) drds.

Note that we have dropped the bounds on the integral for notational convenience; the domain
(−∞,∞) is implied for both S and R. In order to calculate this, and related quantities, it is
helpful to know the probability density of signal p(s). To calculate C, we need to find the density
that maximizes I(S;R). Laughlin first introduced the principle of “gain adaptation” to show that
I is maximized when the input (signal) distribution is the first derivative of the mean
signal-response curve (as can be seen in Figure S14) (19). In other words, the optimal signal
distribution is obtained when considering µ(s) to be the Cumulative Distribution Function (CDF)
of the signal. We can thus calculate the probability density of signal as:

p (s) =
d

ds

(
sn

sn +Kn

)
=

snn

s (sn +Kn)
−

n
(
s2n
)

s (sn +Kn)2
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Figure S14: Calculating the optimal signal probability density for the continuous Gaussian signal-response
model. In this case, we have taken K = 5 and n = 6 in the model, for the purposes of display. Shown in black
is the mean response to signal and shown in red is the corresponding probability density that maximizes
information transmission.

We have p (r|s) by definition so we can then find both h (R|S) and p (r). We will focus first on
h (R|S):

h (R|S) = −
∫
p (s)

∫
1

σ
√

2π
e

(
r − sn

sn +Kn

)2

2σ2 log2
1

σ
√

2π
e

(
r − sn

sn +Kn

)2

2σ2 drds

=

∫
p (s) · 1

2
log2

(
2πeσ2

)
ds

=
1

2
log2

(
2πeσ2

)
·
∫
p (s) ds

=
1

2
log2

(
2πeσ2

)
which is obviously just the entropy of the conditional Gaussian distribution. We then calculate
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the marginal probability density of signal, p (r):

p (r) =

∫
p (s) · p (r|s) ds

=

∫ (
snn

s (sn +Kn)
−

n
(
s2n
)

s (sn +Kn)2

)
· 1

σ
√

2π
e

(
r − sn

sn +Kn

)2

2σ2 ds

=
1

2

(
erf

[
r
√

2

2σ

]
− erf

[
(r − 1)

√
2

2σ

])
(3)

where erf is the standard error function. Note that this integral was computed using Mathematica
(20). This gives us the following integral for the marginal entropy of R:

h(R) =

∫
1

2

(
erf

[
r
√

2

2σ

]
− erf

[
(r − 1)

√
2

2σ

])
log2

(
1

2

(
erf

[
r
√

2

2σ

]
− erf

[
(r − 1)

√
2

2σ

]))

Since the difference of error functions enters the integral under the logarithm, we were unable to
compute a closed-form expression for h(R), and by extension C(S;R), in this case. We consider a
simplified and more analytically tractable version of this model below (Section 6). We can,
however, calculate the marginal entropy of R in this model by using numerical integration. Using
standard integration packages in Python (21), we calculated h(R) and C(S;R) and found that the
single-cell channel capacity in this model does indeed approach 0 as noise increases (Figure S15).

To better understand this finding, we can plot the two error functions whose difference makes up
p(r) (see Figure S15A). Note that, when σ is small, the error functions are essentially two step
functions, one that occurs at 0 and the other that occurs at 1 (Figure S15A, red curve). The
marginal probability density of R, which is just the difference between these two functions
(Equation 3), is thus essentially uniform in this regime (Figure S15B, red curve). When σ is large,
however, the error functions undergo a more gradual transition, and the resulting p(r) adopts an
apparently Gaussian distribution with mean 1/2 and a standard deviation similar to that of the
underlying p(r|s) (Figures S15A and B, black curves). In other words, it appears that
p(r)→ p(r|s = K) as σ →∞. To consider this possibility in greater detail, we numerically
calculated the Kullback-Leibler divergence between p(r|s = K) and p(r), and found that this
divergence rapidly approaches 0 as σ increases (Figure S15D). This indicates that the marginal
distribution of the response is limiting to the conditional distribution of the response; since
h(R)→ h(R|S) as σ →∞, we have C(S;R)→ 0 (Figure S15C).

6 Analytical model: Uniform signal and response distributions (single cell)

The difficulty with calculating h(R) for single cells in the Gaussian signal-response model
prevented us from making any further progress on the trade-off between single-cell and
population-level information. To overcome this problem, we considered a related model that is
based on uniformly-distributed noise. To simplify the integrals and the resulting expressions, the
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Figure S15: A) The marginal probability of r is the difference between two error functions. Here this dif-
ference is visualized with high (black) and low (red) σ values. B) The marginal probability of r, p (r). As
σ approaches 0, p (r) becomes a uniform distribution between 0 and 1, with an entropy of 0 bits. As σ
increases, the distribution seems to adopt a Gaussian character with mean 1/2. C) Channel capacity result-
ing from numerical integration of the Gaussian model. The x-axis is the standard deviation, σ, of p (r|s).
D) The Kullback-Leibler divergence between p (r|s = K) and p (r), DKL (p (r|s = K) || p (r)). As σ → ∞,
DKL (p (r|s = K) || p (r))→ 0 confirming that p (r) becomes a Gaussian distribution with a standard devia-
tion equal to that of p (r|s = K).

logarithms shown in the following equations are the natural logarithm, and as a result they report
the mutual information in units of “nats.” Conversion to the more standard units of bits can be
achieved simply by multiplying each expression by the factor log2 e. To ease comparison with
previous figures, this conversion was performed for all of the plots in this section, as well as in
Section 7.

6.1 Definitions

With this model, the notation generally remains the same, and the structural differences are
outlined in the following definitions. Most notably, the signal-response relationship is linear, and
the probability distribution of responses given a particular signal are uniform.
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1. The definition of the model in this case is:

R =
S

b
+ ε; ε ∼ U (−a, a)

where U denotes a uniform distribution. In this case, the mean response at some signal s is
just s/b. Note that the parameter a in this model sets the level of “noise” in the conditional
response p(r|s), and so a plays a role similar to that of σ in our gaussian models.

2. To ensure that the mean response is restricted to the interval [0, 1], we define the domain of
S as [0, b]. As a result, we have that all responses lie on the interval [−a, 1 + a].

While this model is much simpler than the Gaussian models analyzed above, it captures the
majority of the salient features of those models: the average response is an increasing function of
s, and there is some distribution of responses about that mean, the width of which is controlled
by a “noise” parameter. As a consequence of these definitions, we have that:

p (r|s) =
1

2a

which is just the uniform probability density on the interval [s/b− a, s/b+ a]. As with the
Gaussian models above, we also need to have some marginal distribution of signal p(s) to
calculate relevant information-theoretic quantities. Using again the result of Laughlin, we have:

p (s) =
d

ds

(s
b

)
=

1

b
.

Note that we will also define the half-maximal response to be K for consistency in notation; in
this case, we simply have K = b/2.

In analyzing this model. it is helpful to first define two distinct scenarios depending on the range
of values that a can take:

1. a <
1

2

2. a ≥ 1

2

As can be seen below, these two scenarios set the different bounds of integration one needs to use
in order to calculate the marginal distribution of responses p(r). The reason for this is the fact
that, when a < 0.5 we can always find two signal values s1, s2 ∈ [0, b], s1 < s2 such that
s1/b+ a < s2/b+ a. In other words, it is always possible to find some finite regions of signal space
whose response distributions do not overlap. When a = 0.5, or course, we have that the two
extreme values of s have probability distributions that do overlap, since 0/b+ 1/2 = b/b− 1/2.
For a < 0.5, the size of this region of complete overlap increases with increasing a.

6.2 Calculating C (S;R) when a < 1/2

We will first examine the cases in which not all signal-dependent distributions overlap.
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6.2.1 Calculating p (r)

The first step in calculating the mutual information of this model is to find the marginal and
conditional distributions of one of the variables and since we have the conditional distribution of
R by definition, we will first focus on determining the marginal distribution of R.

For any given value of r there are a range of signal values from which it can arise. We define the
lower and upper bounds of this range as follows:

• Sm (r) is the minimum signal that can produce r

• SM (r) is the maximum signal that can produce r

Since a < 1/2, there are three distinct regions for r based on the fact that r values within these
regions share the functional form of the limits Sm and SM :

1. −a ≤ r ≤ a

2. a < r < 1− a

3. 1− a ≤ r ≤ 1 + a.

These regions can be visualized in Figure S16. We can use these bounds to construct an analytical
expression to the probability density p(r) in some region i of R values:

pi (r) =

SM,i(r)∫
Sm,i(r)

p (r|s) p (s) ds

=

SM,i(r)∫
Sm,i(r)

1

2ab
ds

6.2.2 Region 1

This region is characterized by the fact that p(r|s = 0) 6= 0∀r ∈ [−a, a]; in other words, this is the
only set of r values that will have any contribution from s = 0, which is the minimum possible S
value in this model. So we have that Sm,1 = 0 is the lower bound of the integral p1 (r). The upper
bound is the largest value of s that allows sampling of a particular r value, which in this case
depends on r itself. To find this limit, we note that, if s/b− a > r then p(r|s) = 0, so naturally
SM,1 = (r + a)b. To summarize, our bounds for this region are:

Sm,1 (r) = 0

SM,1 (r) = (r + a) b.
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Figure S16: This plot shows a representation of a possible dose-response curve for the uniform model where
a ≤ 1/2; in this case, a = 1/2 for simplicity. The solid black line is the average response for some signal-
dependent response distribution, and the dotted lines indicate the minimum and maximum responses for
the distribution. Red dashed lines delimit distinct response regions; region 1 is blue, region 2 is yellow and
region 3 is red. Note that the signal value ab corresponds to the maximum signal value for any response in
region 1 and the the value b− ab is the minimum for any response in region 3.

We can then construct the final expression for the probability density for any given r in region 1:

p1 (r) =

(r+a)b∫
0

1

2ab
ds =

1

2ab
(r + a) b

=
r

2a
+

1

2
.

6.2.3 Region 2

This region’s upper bound is the same as region 1, however the lower bound is the smallest value
s that allows sampling of that particular r value. Using reasoning similar to that above, we have:

Sm,2 (r) = (r − a) b

SM,2 (r) = (r + a) b.
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The probability of R in region 2 is then:

p2 (r) =

(r+a)b∫
(r−a)b

1

2ab
ds =

1

2ab
((r + a)− (r − a)) b

=
r + a

2a
− r − a

2a
=

2a

2a
= 1.

6.2.4 Region 3

This region is analogous to region 1, since one bound is constant and the other is variable.
However in this case the upper bound is fixed at b since all r values in this region have
p(r|s = b) 6= 0 and b is the largest possible value of s. The lower bound is identical to that in
region 2, so we have:

Sm (r) = (r − a) b

SM (r) = b.

The probability density for r in region 3 is then:

p3 (r) =

b∫
(r−a)b

1

2ab
ds =

1

2ab
(b− (r − a) b)

=
1− r

2a
+

1

2
.

6.2.5 Probability density of the response

The overall probability density p (r) is given by the following piecewise function:

p (r) =


r

2a
+

1

2
if − a ≤ r ≤ a

1 if a < r < 1− a
1− r

2a
+

1

2
if 1− a ≤ r ≤ 1 + a

A plot of the probability density can be found in Figure S17. We note that p(R) is continuous,
since the probability densities agree with one another on the boundaries of the three regions, and
of course

∫
p(r)dr = 1. Interestingly, as a→ 0, p (R) becomes a uniform distribution on [0, 1], and

the resulting differential entropy, h (R), limits to 0.
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Figure S17: p (r) when a ≤< 12. The red dotted lines delimit regions 1, 2, and 3 from left to right.

6.2.6 Calculating h (R) and C (S;R)

With our expressions for pi (R) we can construct an expression for h (R):

h (R) = −
1+a∫
−a

p (r) log p (r) dr

= −

 a∫
−a

p1 (r) log p1 (r) dr +

1−a∫
a

p2 (r) log p2 (r) dr +

1+a∫
1−a

p3 (r) log p3 (r) dr


= −

 a∫
−a

r + a

2a
log

r + a

2a
dr +

1−a∫
a

1 log 1 dr +

1+a∫
1−a

1− r + a

2a
log

1− r + a

2a
dr


= −

[
−a

2
+ 0− a

2

]
= a.
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We also must have the conditional differential entropy, h (R|S), to find the mutual information.
Since p (R|S) is a uniform distributions with a support range of 2a, we know that:

h (R|S) = −
∫
p (s) ·

∫
p (r|s) log p (r|s)) drds

= h (R|S = s) ·
∫
p (s) ds

= log (2a) ·
∫
p (s) ds

= log (2a) · 1
= log (2a) .

We then have an analytical expression for C (S;R) when a ≤ 1

2
:

I (S;R) = a− log 2a.

6.3 Calculating C (S;R) when a ≥ 1

2

We now calculate the expression for the channel capacity in the alternative scenario, when a ≥ 1

2
.

6.3.1 Calculating p (r)

When a ≥ 1/2, there is a region in R in which every value in S contributes to the probability
density in that region of R. Correspondingly, there is a change in the signal bounds of the three
regions of R values:

1. −a ≤ r ≤ 1− a

2. 1− a < r < a

3. a ≤ r ≤ 1 + a.

These regions can be visualized in Figure S18.

6.3.2 Regions 1 & 3

One can easily show that the bounds of integration (Sm,i(r) and SM,i(r)) are the same in this
scenario as they were for the scenario where a < 0.5. This results in identical expressions for the
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Figure S18: This plot shows a representation of a possible dose-response curve for the uniform model where
a ≥ 1/2. In this particular example, a = 3/4. The color scheme is as Figure S16. Note that the probability
density in all of the response regions have contributions from all signal values, in contrast to the case where
a < 1/2.

marginal probability densities:

p1 (r) =
r

2a
+

1

2

p3 (r) =
1− r

2a
+

1

2
.

6.3.3 Region 2

This region is slightly different from that in 6.2.3 since all signals contribute equally to all
response values (Figure S18). The bounds are thus the minimum and maximum signal values, 0
and b, respectively. The marginal probability is then:

p2 (r) =

b∫
0

1

2ab
ds

=
1

2a
.
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Figure S19: p (r) when a ≥ 1/2. The red dotted lines delimit regions 1, 2, and 3 from left to right.

6.3.4 Probability density of the response

As before we can assemble and plot the piecewise function for the probability density p (r)
(Figure S19):

p (r) =



r

2a
+

1

2
if − a ≤ r ≤ 1− a

1

2a
if 1− a < r < a

1− r
2a

+
1

2
if a ≤ r ≤ 1 + a

Note that p(r) is again continuous, and
∫
p(r)dr = 1 .

6.3.5 Calculating h (R) and C (S;R)

As before we can now find the differential entropy of R and the channel capacity.

h (R) = −

 1−a∫
−a

r + a

2a
log

r + a

2a
dr +

a∫
1−a

1

2a
log

1

2a
dr +

1+a∫
a

1− r + a

2a
log

1− r + a

2a
dr


= −

[
− 1

8a
− log (2a)

4a
−
(

1

2a
− 1

)
log (2a)− 1

8a
− log (2a)

4a

]
=

1

4a
+ log (2a)
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A B

Figure S20: A) The channel capacity, C (S;R), as a function of a. Note that the units of C have been
converted to bits for the purposes of display. As expected, we observe that when a → ∞, C → 0. B) The
Kullback-Leibler divergence between p (r|s = K) and p (r): DKL (p (r|s = K) || p (r)). Inset is the same plot
but with a scale of 0 to 1 instead of 0 to 10.

Note that h(R)→∞ as a→∞, which is to be expected since the support of R becomes infinite
in this case. Since the conditional differential entropy of R given S is identical to the model when

a <
1

2
, we have mutual information for the model when a ≥ 1

2
:

I (S;R) = h (R)− h (R|S)

=
1

4a
+ log (2a)− log (2a)

=
1

4a

6.4 Analysis of C (S;R)

From the above calculations we can construct a piecewise function which defines the channel
capacity for this model (Figure S20A).

C (S;R) =

a− log (2a) if a < 0.5
1

4a
if a ≥ 0.5

Note that when a =
1

2
, a− log (2a) =

1

4a
, so C(S;R) is continuous. Furthermore, the first and

second derivatives of each portion of the piecewise function are equivalent when evaluated at

a =
1

2
: the values are −1 and 4, respectively. The two components of the piecewise function do

not, however, necessarily coincide for higher-order derivatives. Ultimately, however, we find that
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the single-cell channel capacity decays as 1/a as a (or noise) increases above 1/2 in this model.

As with the Gaussian version of the model, we can understand the above results by examining the
Kullback-Leibler divergence between the conditional probability density of the response at
half-maximal signal value (i.e. p (r|s = K)) and the marginal density p (r). In this case, the
simplicity of the model allows us to do this analytically:

DKL (p (r|s = K) || p (r)) =

∫
p (r|s) log

p (r|s)
p (r)

dr

=

∫
p (r|s) log p (r|s) dr −

∫
p (r|s) log p (r) dr

where we have omitted the “s = K” terms from the conditional densities on the right-hand side of
the equation for notational brevity. From here forward, we will use the term DKL to denote this
expression. Of course the first term is −h (R|S = K) = − log (2a), however the second term is

slightly more complex. We know that p (r|s = K) is only nonzero on the interval [
1

2
− a,

1

2
+ a],

since K = b/2. This provides the bounds for the second integral above. These bounds, and the
marginal probability density of r, depend on the value of a, and so to evaluate this integral, we
again must split the model based on ranges of values of a. In this case there are three distinct
intervals to consider:

1. a ≤ 1

4

2.
1

4
< a ≤ 1

2

3. a >
1

2

In the first case, p (r) = 1 and so the resulting expression for the Kullback-Leibler divergence
becomes:

DKL = − log (2a)− 1

2a
·

1
2
+a∫

1
2
−a

log 1 dr

= − log (2a)− 1

2a
· 0

= − log (2a)

In the second case the integral must include terms to consider all regions of R space when
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1

4
< a ≤ 1

2
:

DKL = − log (2a)− 1

2a
·

 a∫
1
2
−a

log

(
r

2a
+

1

2

)
dr +

1−a∫
a

log (1) dr +

1
2
+a∫

1−a

log

(
1− r

2a
+

1

2

)
dr


= − log (2a)− 1

2a

[
1 + 2 log 2− log

1

a
− 4a

]

Finally, the third case includes all three regions of R when a ≥ 1

2
:

DKL = − log (2a)− 1

2a
·

 1−a∫
1
2
−a

log

(
r

2a
+

1

2

)
dr +

a∫
1−a

log

(
1

2a

)
dr +

1
2
+a∫
a

log

(
1− r

2a
+

1

2

)
dr


= − log (2a)− 1

2a
·
[
−1 + log

(
1

a

)
+ (2a− 1) log

(
1

2a

)]
Thus the Kullback-Leibler divergence over all values of a is:

DKL =



− log (2a) if a ≤ 1

4

− log (2a)− 1

2a
·
[
1 + 2 log 2− log

1

a
− 4a

]
if

1

4
< a ≤ 1

2

− log (2a)− 1

2a
·
[
−1 + log

(
1

a

)
+ (2a− 1) log

(
1

2a

)]
if a >

1

2

and it can be visualized in Figure S20B. As with the Gaussian model, as a→∞, DKL → 0,
implying that p (r) becomes equivalent to p (r|s = K) for large a. We can see this intuitively in
Figure S19: note that regions 1 and 3 have a constant “width” of 1, while the size of region 2 is
2a− 1. As a→∞, region 2 grows without bound, whereas regions 1 and 3 do not and thus

contribute less and less to the overall support for the density p(r). In this limit, p(r)→ 1

2a
on the

interval [1/2− a, 1/2 + a], which is precisely p(r|s = K).

7 Analytical model: Uniform signal and response distributions (cellular populations)

In this section, we use the simpler, uniform signal-response model to better understand how noise
impacts information transfer to populations in the presence of a threshold.

7.1 Definitions

The following definitions are required for analysis of population-level information transmission:

38



• θ is the decision-making threshold; cells with r ≥ θ die and those with r < θ survive.

• N is total the number of cells in a population

• pd (s) is the probability of some cell in the population dying given a particular signal value

• ND is the total number of dead cells (i.e. the population response)

Other variables, such width of the uniform probability distribution (a) are identical to the
single-cell model (Section 6). For the following analysis we assume that θ = 1

2 to simplify the
analysis. As in our single-cell analysis, there are two cases that produce distinct behaviors:

1. 0 < a ≤ 1

2

2. a >
1

2

7.2 Characterizing signal space

7.2.1 Case 1

Since a ≤ 1
2 , there is always a region in signal space near s = 0 in which all cells fall below the

threshold (they all survive) that can be seen in Figure S21. The upper bound of this region is
termed Smin. Similarly, there is a region near s = b where all cells are above the threshold (they
all die), whose lower bound is Smax. These values can also be defined in such a way that Smin is
the largest value of s for which no cells die, and Smax is the smallest value of s for which all cells
die. These two bounds delimit the region of signal space that we term the transition zone, and
can be determined algebraically. We previously characterized the single-cell response, r, given
some value s ∈ S as a uniform distribution that lies on the interval:

r (s) ∈
[s
b
− a, s

b
+ a
]

Thus Smin corresponds to the signal producing the response distribution whose maximum is equal
to the decision threshold:

1

2
=
Smin

b
+ a

We can find Smax similarly, resulting in a transition zone corresponding to the interval:

[Smin, Smax] =

[
b

(
1

2
− a
)
, b

(
1

2
+ a

)]
which can be visualized in Figure S21. This region of signal space is of interest since it is the only
region that positively contributes to the population mutual information by having a nonzero
correlation between S and the number of dead cells in a population (the population response,
ND) as seen in Figure S22A. We will restrict our analysis of the population information
transmission in case 1 to this particular region of signal space.
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Figure S21: A visual representation of population response to signal in terms of fractional survival of cells,
where θ is the threshold above which cells die; the other variables are defined in the text. We can find the
fraction of cells that die given a particular signal value with a simple algebraic expression s/b + a − θ and
then normalize it to define the probability of death for a cell exposed to a signal value, defined in the text
as: pd (s).
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7.2.2 Case 2

Since a >
1

2
, all signal values produce response distributions that generate fractional population

survival. Therefore the bounds Smin and Smax do not exist, since they would be less than 0 and
greater than b, respectively. In other words, the entirety of signal space considered falls within the
transition zone.

7.3 Population response to signal

Given the definitions and limits defined above, we can construct both the conditional response of
the population (i.e. p(ND|s)) and, from that distribution, calculate the average response as a
function of signal. Given the conditional response of individual cells to signal (i.e. p(r|s)), we can
calculate the probability that a cell in the population dies, based on the proportion of the
response distribution that lies above the decision-making threshold, θ = 1

2 , as seen in Figure S21:

pd (s) =

s

b
+a∫
θ

p(r|s)dr =

s

b
+ a− 1

2
2a

where we have implicitly assumed that Smin ≤ s ≤ Smax for the cases defined above, depending
on the value of a. In our model, all cells respond independently, so it follows that the number of
cells that die given a particular population size and signal value is binomially distributed:

p (ND|s) =

(
N

ND

)
pd (s)ND (1− pd (s))N−ND

As a result, the mean number of dead cells at any signal value s is:

ND (s) = pd (s) ·N

which defines the (average) signal-response behavior of the population.

7.3.1 Average population response for Case 1

As discussed above, we have either complete survival and or complete death in populations
exposed to signals below Smin and above Smax, respectively (see Figure S22A). Given this fact, we
obtain the following piecewise function for ND(s):

ND (s) =


0 if s < Smin

s

b
+ a− 1

2
2a

·N if Smin ≤ s ≤ Smax

N if s > Smax
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Figure S22: A plot of mean population response to signal for case 1 (A) and case 2 (B)

7.3.2 Case 2

The bounds of signal space in this case correspond to instances in which the population response
is fractional (Figure S22B). We can define the minimum and maximum average population
response as follows:

ND,min = N

(
a− 1

2

2a

)

ND,max = N

(
1 + a− 1

2

2a

)
= N

(
a+ 1

2

2a

)

In this case, the average population response follows:

ND (s) =

s

b
+ a− 1

2
2a

·N = ND,min +
N

2ab
s

7.4 Finding the optimal signal distributions

As before, to calculate the maximum of I (i.e. the channel capacity), we define the probability
density of S based on the first derivative of the average signal-response function. To do this,
however, we must focus on a dose-response relationship that is defined on the interval (0, 1), so we
focus on the fractional response of the population. The form of this fractional response depends
on the value of a as described below.

7.4.1 Case 1

Taking this derivative is relatively simple for case 1, since the minimum and maximum fractional

responses are 0 and 1, respectively, and so we can define the fractional response as just ND
N in this
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case. Thus, for s ∈ [Smin, Smax], we have:

p (s) ≡
dNDN
ds

=
1

2ab

Note that this is just the uniform probability density on [Smin, Smax. Outside the transition zone,
ND does not depend on s, so p(s) = 0.

7.4.2 Case 2

As mentioned above, interpreting the average dose-response function as the CDF of the
probability density of signal requires that this average cover the interval (0, 1). Finding p(s) thus
requires care when a > 1/2 since the minimum and maximum population responses are not 0 and
1, and depend on a. To overcome this issue, we defined a normalized response function (R′ (s))
that has minimum and maximum values of 0 and 1, respectively:

R′ (s) ≡
ND (s)−ND,min

ND,max −ND,min

which simplifies to

R′ (s) =
s

b

The resulting signal density is then just:

p (s) ≡ dR′

ds
=

1

b

which again is just the uniform density on the relevant domain of S (i.e. [0, b]).

7.5 Calculating population-level channel capacities

With the above signal distributions, we can calculate the channel capacity between the signal and
response (as the number of dead cells) by determining the marginal and conditional entropies:

C (S;ND) = H (ND)−H (ND|S)
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7.5.1 Case 1

Finding H (ND|S) is relatively straightforward, since the approximate entropy of a binomial
distribution is known:

H (ND|S) =

Smax∫
Smin

p (s) ·

 N∑
ND=0

−p (ND|S) log p (ND|S)

 ds

≈
Smax∫
Smin

1

2ab
· 1

2
log (2πe ·N · pd (s) (1− p (s))) ds

=
1

2
log (2πN)− 1

2

We then need the marginal probability of the number of dead cells to calculate H (ND):

p (ND) =

Smax∫
Smin

p (s) · p (ND|s) ds

=

Smax∫
Smin

1

2ab
·
(
N

ND

)
pd (s)ND (1− pd (s))N−ND ds

=
1

1 +N

Interestingly, for case 1, we thus have that the marginal probability p(ND) is just the uniform
probability mass function for the set {0, 1, . . . , N}; in other words, the total probability of finding
ND dead cells across all of the relevant signal space is just the uniform probability over all the
possible states (ranging from 0 cells dying to all of them dying). It is then straightforward to
calculate the entropy:

H (ND) =

N∑
ND=0

− 1

1 +N
log

1

1 +N
= log (1 +N)

Thus when 0 < a ≤ 1

2
we find that

C (S;ND) = log (1 +N)−
(

1

2
log (2πN)− 1

2

)
(4)

We first note that this expression is invariant on a for a ≤ 1

2
. This echoes our findings in Section

4.5: since we have taken S to be continuous, then by definition the “minimal signal resolution”
∆s = 0. As a consequence, the population-level channel capacity does not depend on the level of

noise below the a =
1

2
threshold. Also, note that, as N becomes large, we can re-write this

44



Figure S23: C (S;ND) increases monotonically with the size of the population, N , when a ≤ 1/2 (Equation
4). For large values of N this increase follows C(S;ND) ∼ log

√
N (Equation 5).

expression as:

C(S;ND) ∼ 1

2
logN (5)

or, in other words, the channel capacity is just log
√
N . This is perhaps not surprising, given the

underlying binomial structure of p(ND|s), but nonetheless indicates that the maximum of the
population-level information transfer scales monotonically with N (Figure S23 and Figure 3D in
the main text).
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7.5.2 Case 2

The expression for conditional entropy is slightly more complicated when a > 1
2 :

H (ND|S) =

∫ b

0

1

b
·
(

1

2
log (2πe ·N · pd (s) (1− pd (s)))

)
ds

=
1

2
log (2a+ 1)− 1

2
+ a log (2a+ 1) +

1

2
log (2a− 1)− a log (2a− 1)

− 3

2
log (2) +

1

2
log (π)− log (a) +

1

2
log (N)

Again, finding the marginal entropy requires an expression for p (ND):

p (ND) =

∫ b

0

1

b
·
(
N

ND

)
pd (s)ND (1− pd (s))N−ND ds

= 2a ·
(
N

ND

)
· (Bu (ND + 1, N −ND + 1)− Bv (ND + 1, N −ND + 1))

where Bx (a, b) denotes the incomplete beta function and

u =
a+ 1

2

2a

v =
a− 1

2

2a

Interestingly, this expression mimics the one we obtained for single-cell responses in the Gaussian
model (Section 5). Calculating H(ND) requires computing the following finite sum:

H(ND) = −
N∑

ND=0

p(ND) log p(ND) (6)

Computing this sum in closed form is made difficult by the fact that the difference of incomplete
beta functions enters the expression under the log, and in the end we did not discover a solution.
We therefore numerically calculated the marginal entropy, H (ND) for values of a ∈

[
1
2 , 2
]
, and

plotted our results for the mutual information together with those from case 1 for multiple

population sizes (Figure S24). We see that, for a >
1

2
, the population-level information decreases

significantly as a increases (see Figure S24). Intuitively, this occurs because the transition in ND

no longer covers the entire set of possibilities from 0 to N (Figure S22B).

8 Experimental Methods

HeLa cells were maintained in DMEM medium (Corning 10-013-CV) with 10% fetal bovine serum
and 1% penicillin/streptomycin solution (Life Technologies 15140-122). For TRAIL dose-response
assays, HeLa cells were plated at a density of 250k cells/well in 12-well plates (Sigma SIAL0513),
allowed to adhere overnight, and treated with varying doses of SuperKiller TRAIL (Axxora
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Figure S24: C (S;ND) as a function of a when θ = 1/2. For a < 1/2 we used the closed-form solution from
our model (Equation 4). For a ≥ 1/2 we numerically calculated C by directly evaluating the sum in Equation
6. Note that C is invariant on a for a < 1/2, but then decreases monotonically as a increases above that
threshold.
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ALX-201-115) for 11 hours. Three replicate wells were used for each TRAIL dose to establish the
technical variability of the assay. After treatment, medium containing dead cells was transferred
to flow cytometry tubes (BD Falcon 352235) containing 2 ml FACS buffer (PBS + 10% fetal
bovine serum); cells remaining in the wells were removed by trypsinization, added to the
corresponding tubes, pelleted by centrifugation and fixed in 4% paraformaldehyde for 30 minutes.
After fixation cells were washed twice in PBS and permeabilized in 100% methanol overnight at
-20C. Cells were stained with primary antibodies to cleaved caspase 3 (rabbit anti-cleaved caspase
3, BD 559565) and cleaved PARP (mouse anti-cleaved PARP, BD 552596) 1:250 in FACS buffer
(PBS + 0.1% Tween-20) for 1 hour at 25C. Cells were washed twice in PBS-T, then treated with
secondary antibodies: Alexa-488 donkey anti-rabbit IgG (Life Technologies A-21206) and
Alexa-594 donkey anti-mouse IgG (Life Technologies A21203), 1:500 in FACS buffer for 1 hr at
25C. Cells were washed in PBS-T, resuspended in PBS, and counted on a flow cytometer (BD
LSRII), with 20,000 cells analyzed per experimental replicate.

MCF10A cells were obtained from J. Brugge (Harvard Medical School, Boston, MA) and cultured
as described (22). For TRAIL dose response assays, MCF10A cells were plated in 96-well plates
(Corning 353072) and treated with varying doses of SuperKiller TRAIL for 11 hours. After
treatment the cells were washed with PBS and the density of viable cells was assayed by
methylene blue staining as described previously (23).
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