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The regenerative capacity in (A) was calculated as the number of shoots/total number of explants. 
Data are expressed as mean ± s.d.. n=24; p-value: Student’s t test; **p<0.01. Bar = 0.5 cm. 
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Supplemental Figure 1. Shoot Regeneration in clv3, stm and cuc2  cuc3.   (Supports Figure 1).
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(A) and (D) The expression pattern of ProWUS:dsRED-N7 (Gordon et al., 2007) reporter during 
shoot regeneration (A) and in the SAM (D). The hypocotyls of ProWUS:dsRED-N7 were used as 
explants. During shoot regeneration (A), WUS+ cells (red) were visible after 1 day transfer to SIM 
and did not mark shoot progenitor cells. The difference between the mRNA accumulation pattern 
revealed by our in situ hybridization (Figures 1D to 1I) and protein localization revealed by live 
imaging analyses of Gordon’s ProWUS:dsRED-N7 reporter is not caused by the movement of 
DsRED because DsRED was fused to the N7 nuclear localization sequence. We speculate that the 
difference between our and Gordon’s WUS reporter was due to the 35S promoter in the binary 
construct pPZP222 used by Gordon et al (Gordon et al., 2007). However, this reporter does mimic 
endogenous WUS expression pattern in the SAM (D). Bar = 50 μm. 
(B) The expression pattern of ProWUS:dsRED-N7 (Gordon et al., 2007) reporter on SIM. The roots 
were used as explants. Bar = 50 μm. 
(C) RNA in situ hybridization analyses. The roots of ProWUS:dsRED-N7 were used as explants. 
Note when comparing (B) and (C), it appears that ProWUS:dsRED-N7 reporter does not mimic the 
WUS mRNA expression pattern. Bar = 50 μm. 
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Supplemental Figure 2. Comparison of the Expression Patterns of WUS 
Reporters. (Supports Figure 1). 
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for shoot regeneration. White and yellow arrows indicate WUS+ cell and the developing SAM 
respectively. Cell outlines were stained by propidium iodide (PI, red). Bar = 50 μm. 
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Supplemental Figure 3. Dynamic Expression Patterns of WUS and CLV3 
during Shoot Regeneration.  (Supports Figure 1). 
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(A) Expression of STM is detectable beginning at stage III during shoot regeneration. Bar = 20 μm. 
(B) and (C) The transcripts of WOX2 (blue) could be detected in the proembryo during 
embryogenesis (C) but not in calli during shoot de novo regeneration (B). Bar = 20 μm. 
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Supplemental Figure 4. Expression Patterns of STM and WOX2.  (Supports Figure 1). 
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(A) and (B) The hypocotyls of wild type and arr1 arr10 arr12 mutant were used for the root 
regeneration assay. Note that the loss of function of B-ARRs did not affect root regenerative capacity. 
The regenerative capacity in (B) was calculated as the number of rooted explants/total number of 
explants. Data are expressed as mean ± s.d.. n=32; Bar = 0.5 cm. 
(C) Shoot regeneration of wild type (Col-0), arr2, arr2 arr12 and arr1 arr10 arr12. While arr2 and 
arr12 single mutant regenerated shoots normally (Mason et al., 2005), arr2 arr12 double mutant 
showed reduced shoot regenerative capacity. Bar = 0.5 cm.  
(D) The expression level of WUS and ARR5 in the wild-type and arr1 arr10 arr12 explants. The 
expression of WUS and ARR5 in wild type was normalized to that of TUB. Data are means ± s.d.. 
n=3. Student’s t test; **p<0.01. 
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Supplemental Figure 5. Regeneration Assay in the arr Mutant.  (Supports Figure 2).
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(A) EMSA assays. Competitive EMSA showing binding of ARR2 to two DNA fragments [-550 to -620 
bp (j-II) and -700 to -760 bp (i-II)] of the WUS promoter (left panel). Relative amounts (labeled 
oligonucleotide was set to 1.0) of the un-labeled competitive oligonucleotide used in the reactions 
are indicated on the top. The positions of probes (a-I, i-I, i-II, j-I, j-II, j-III) are labeled with different 
colors. Shifted bands are indicated. The D5 region (-726 to -541 bp) and a 57-bp regulatory region 
(-712 to -655 bp, i-I) identified by Bäurle and Laux are shown (Baurle and Laux, 2005). As a control, 
we performed the EMSA assays without (-) or with (+) ARR2 protein (right panel). Note that there is 
no shifted band for probe j-II and i-II in the absence of ARR2 protein.  
(B) Supershift assays of j-II segment. The purified ARR2 proteins were mixed with different amounts 
of His antibody. The binding of His antibody with ARR2-6xHis proteins caused the decreased 
amounts of j-II shifted band. 
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Supplemental Figure 6. EMSA Assays.  (Supports Figure 2).
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(A) ChIP analyses. Wild-type seedlings and explants cultured on SIM with or without OLO were used. 
Eight fragments (a to n) were analyzed. Error bars represent s.e.m. (n=3 biological replicates); p-
value: Student’s t test; *p<0.05, **p<0.01.  
(B) Shoot regeneration of the wild-type (Col-0) and swn clf +/- explants. Student’s t test; **p<0.01, 
n=18. 
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Supplemental Figure 7. The Progressive Decrease in H3K27me3 Marks at 
the WUS Locus is Delayed by OLO Treatment. (Supports Figure 3). 
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(A) to (D) The ProWUS:3xVENUS-N7 and ProTCSn:GFP explants were regenerated on SIM with 
(B) and (D) or without OLO (A) and (C). White arrows indicate WUS+ cells. Cell outlines were stained 
by PI (red). Bar = 50 μm. 
  

A

Mock

0d 2d 4d 6d

OLO

B

ProWUS:3xVENUS-N7

ProWUS:3xVENUS-N7

C

D

0d 2d 4d 6d

0d 2d 4d 6d

0d 2d 4d 6d

Mock
ProTCSn:GFP

OLO
ProTCSn:GFP

Supplemental Figure 8. The Induction of WUS by Cytokinin is Delayed by 
OLO Treatment.  (Supports Figure 3). 
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(A) and (B) The expression of ARR5. The wild-type explants were regenerated on SIM with (B) or 
without OLO (A). The expression of ARR5 was analyzed at day 0, 3, 6 and 14. Bar = 50 μm. 
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Supplemental Figure 9. The Induction of ARR5 by Cytokinin is not 
Delayed by OLO Treatment.  (Supports Figure 3). 
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 (A) Set-up for the experiment to test the role of cell cycle in shoot regeneration. Four experiments 
(a-d) were designed.  
(B) Shoot regeneration assays according to the experimental designs (A). Bar = 0.5 cm. 
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Supplemental Figure 10. The Induction of Shoot Regeneration by 
Cytokinin is Delayed by OLO Treatment. (Supports Figure 3). 
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The hypocotyls from ProREV:sGFP-N7mirS (A) to (H), ProTCSn:GFP (I) to (P) and ProARR1:sGFP-
N7 (Q) to (X) were used for shoot regeneration. Yellow arrows indicate the developing SAM. Cell 
outlines were stained by propidium iodide (PI, red). Bar = 50 μm. 
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Supplemental Figure 11. Dynamic Expression Patterns of REV, 
TCS and ARR1 during Shoot Regeneration. (Supports Figures 2, 4 and 7). 
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(A) and (B) In vitro pull-down assay. 6xHis-ARR1, 6xHis-ARR2 and GST-PHB were expressed in E. 
coli. Purified proteins were mixed and immunoprecipitated with glutathione sepharose 4B resins and 
blotted against anti-His or anti-GST antibody.  
(C) BiLC assay in N. benthamiana leaves. ARR1, ARR2, ARR10 and ARR12 were fused to the 
amino-terminal domain of LUC (LUCn) and PHB/PHV/REV fused to the carboxyl-terminal domain of 
LUC (LUCc). Bar = 1.0 cm. 
  

Supplemental Figure 12. ARR1, ARR2, ARR10 and ARR12 Bind to HD-ZIP 
III Proteins.  (Supports Figure 4). 
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(A) and (B) Shoot regeneration assay of HD-ZIP III mutants. Bar = 0.5 cm. 
(C) Shoot regeneration assay of Col-0, Pro35S:ARR2, rev-6 and Pro35S:ARR2 rev-6. Bar = 0.5 cm. 
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Supplemental Figure 13. Shoot Regeneration Assay of HD-ZIP III Mutants. (Supports Figure 4). 
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(A) Expression of PHB in the wild-type and arr1 arr10 arr12 explants. The explants were cultured on 
SIM for 3 days. Bar = 50 μm. 
(B) Expression of A-type and B-type ARRs in wild type and phb phv rev explants. Expression was 
examined by qRT-PCR and normalized to that of TUB. Data are means ± s.d.. n=3.  
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Supplemental Figure 14. Expression of HD-ZIP III Transcription Factors 
and B-type ARRs. (Supports Figure 4). 
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Expression was examined by qRT-PCR and normalized to that of TUB. Data are means ± s.d.. n=3. 
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Supplemental Figure 15.  Expression of ARR1 and ARR2 in Wild-Type 
Explants.  (Supports Figure 6).
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(A) Expression of ProREV:DsRED-N7 mirS ProWUS:3xVENUS-N7. The explant was cultured on 
SIM for 2 days. The WUS+ cell (green) is indicated by white arrows. Bar = 50 µm. 
(B) to (D) Expression of ProPHB:sGFP-N7 mirS (green). The explants were culture on SIM for 2, 6 
and 12 days. The expression domain of PHB is marked with dashed lines. Bar = 50 μm. 
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Supplemental Figure 16.  Spatial Activation of WUS by REV and PHB. (Supports Figure 7).
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(A) and (B) Shoot regeneration assay of wild type (Ler), phb phv rev and phb phv rev Pro35S:rREV-
GR. (A) Schematic diagram shows the experimental procedure for local induction of HD-ZIP III. A 
biplate (Thermo fisher, PB5220E) which allows two separate media formulations was used. (B) 
Explants of different genotypes were cultured on SIM with or without 10 μM DEX for 10 days. White 
arrows indicate regenerated shoots. Bar = 0.5 cm. 
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Supplemental Figure 17.  Local Induction of HD-ZIP III Promotes  Shoot Regeneration 
on SIM. (Supports Figures 4 and 7).
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(A) Phenotypes of wild type and mutants. Bar = 1 cm. The proportion of transgenic plants showing 
phenotype is shown. 
(B) to (D) Expression of WUS in wild type and mutants. The WUS transcripts were detected by in 
situ hybridization assay. Bar = 50 μm. 
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Supplemental Figure 18. Genetic Interaction between ARR2 and REV during Shoot
Development. ( Supports Figures 4 and 7).   
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Supplemental Table 1. Yeast Two-Hybrid Assay using ARR2 as Bait. 

 

 

 

Gene Interaction? Biological Function 

PHB (At2g34710) Yes HD-ZIP III transcription factor, defines adaxial leaf 
fates (Prigge et al., 2005) 

REV (At5g60690) Yes HD-ZIP III transcription factor, defines adaxial leaf 
fates (Prigge et al., 2005) 

PHV (At1g30490) Yes HD-ZIP III transcription factor, defines adaxial leaf 
fates (Prigge et al., 2005) 

CUC2 (At5g53950) No Transcription factor of the NAC gene family, required 
for the embryonic SAM (Daimon et al., 2003) 

CUC3 (At1g76420) No 
Transcription factor of the NAC gene family, required 
for embryonic apical meristem formation (Daimon et 
al., 2003; Vroemen et al., 2003; Hibara et al., 2006) 

TCP4 (At3g15030) No Target gene of miR319, regulate leaf differentiation 
(Efroni et al., 2013) 

ESR1 (At1g12980) No 
ERF/AP2 transcription factor, regulates shoot 
regeneration and meristem activity (Banno et al., 
2001) 

MP (At1g19850) No Auxin response factor, play roles in the development 
of shoot primordia (Zhao et al., 2010) 

BRC1 (At3g18550) No TCP transcription factor, functions in axillary bud 
development (Aguilar-Martinez et al., 2007) 

TFL2 (At5g17690) No TFL2 recognizes specifically H3K27me3 in vivo 
(Turck et al., 2007) 

LCR (At1g27340) No 
F-box protein, involved in the regulation of leaf 
morphology and meristem activity (Knauer et al., 
2013) 
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