


**Supplemental Figure 1. Ethylene Response and Ethylene Production of** *gy***1**. (A) Etiolated seedlings from Nip and *gy***1** with or without 10 ppm ethylene (ET) treatment grown for three days after germination in darkness. Arrows indicate positions of the coleoptilar nodes between mesocotyl and coleoptile. Bar = 10 mm. (B) Ethylene dose-response curves for coleoptile length from Nip and *gy***1** under 0, 1/10, 1, 10 and 100 ppm ethylene treatment. The values are means  $\pm$  SD of 20 to 30 seedlings per sample.

(C) Ethylene production in Nip and gy1 etiolated seedlings. The values are means  $\pm$  SD of three biological replicates (independent pools of tissue) per sample. There is no significant difference between them.

(D) The expression of three genes (*LOC\_Os01g67420*, *LOC\_Os01g67430* and *LOC\_Os01g67450*) located in the fine mapped region. The values are means  $\pm$  SD of three biological replicates (independent pools of tissue) per sample.

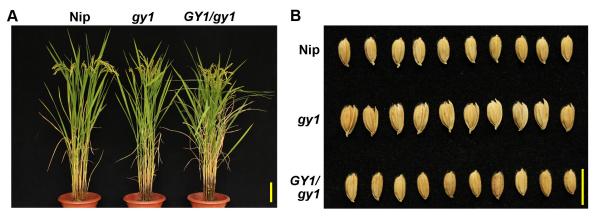


Supplemental Figure 2. Emergence Rate of gy1 Compared to the Nip Control. (A) Seedlings of Nip and gy1 sown at a depth of 2 cm in soil and grown for three days after germination (DAG) with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.

(B) Seedlings of Nip and gy1 sown at a depth of 2 cm grown for 4 DAG with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.

(C) Seedlings of Nip and gy1 sown at a depth of 2 cm grown for 5 DAG with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.

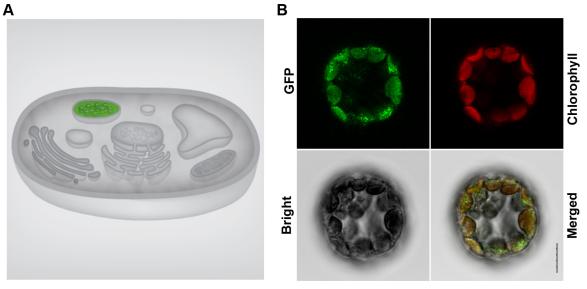
(D) Seedlings of Nip and gy1 sown at a depth of 2 cm grown for 6 DAG with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.


(E) Seedlings of Nip and gy1 sown at a depth of 2 cm grown for 7 DAG with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.

(F) Seedlings of Nip and gy1 sown at a depth of 2 cm grown for 8 DAG with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.

(G) Seedlings of Nip and gy1 sown at a depth of 2 cm grown for 9 DAG with a photoperiod of 14 h light/10 h dark. Bar = 10 mm.

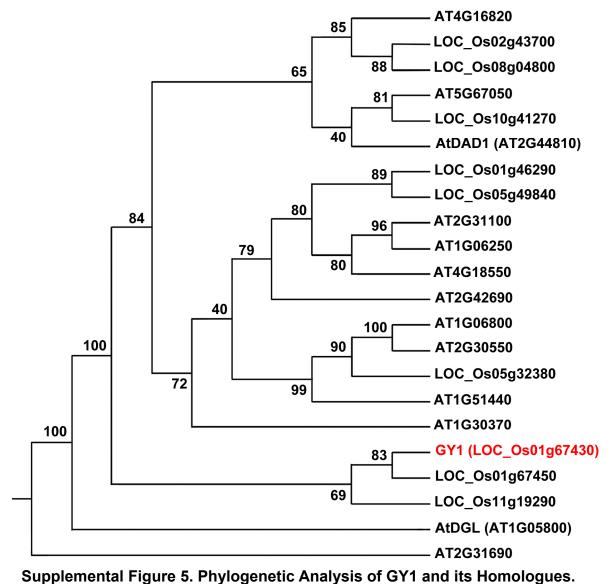
(H) Emergence rate of Nip and gy1 sown at a depth of 2 cm grown for 3 to 7 DAG with a photoperiod of 14 h light/10 h dark. The values are means  $\pm$  SD of three biological replicates (independent pools of tissue) per sample.


(I) Shoot length of Nip and gy1 sown at a depth of 2 cm grown for 6 to 11 DAG with a photoperiod of 14 h light/10 h dark. The measurement started from the day when most Nip and gy1 had emerged from soil. The values are means  $\pm$  SD of 20 to 30 seedlings per sample.

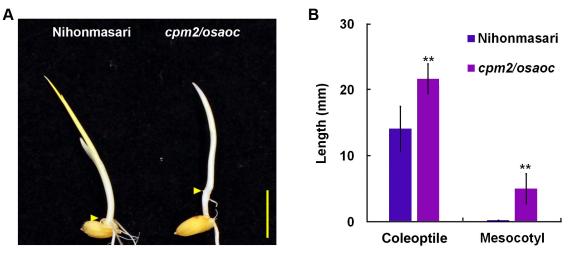


## Supplemental Figure 3. Phenotype of *gy1* and *GY1*-complemental Plants at Maturity.

(A) Adult plants of Nip, gy1 and the GY1-complemented line of gy1 after grainfilling time in the field. As the panicle shape showed, the complemented line of gy1had similar filled grain rate as Nip, while the filled grain rate of gy1 was much lower. Bar = 10 cm.


(B) Seeds of Nip, gy1 and the GY1-complemented line of gy1 after harvest. The extra glume phenotype of gy1 was completely complemented by GY1. Bar = 10 mm.

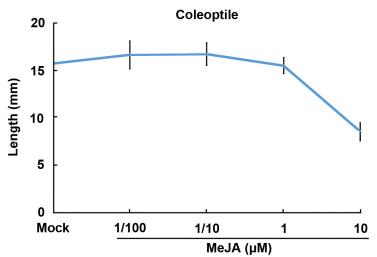



Supplemental Figure 4. GY1 Subcellular Localization in Arabidopsis protoplasts.

(A) GY1 is predicted to localize to the chloroplast, as indicated in green by LocTree3.

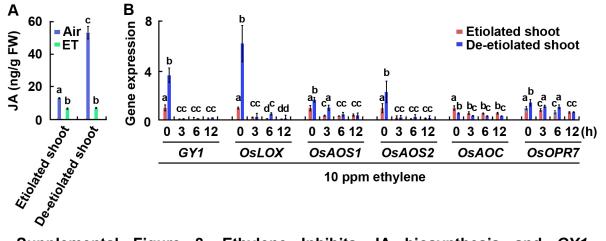
(B) GY1 is localized in chloroplasts of Arabidopsis protoplasts as revealed by the merged green fluorescence of GY1-GFP fusion protein and the red autofluorescence of chlorophyll. Bar =  $7.5 \mu$ M.




GY1 (red) is clustered with AtDGL in Arabidopsis. The tree was constructed by Phylip v3.69 with 1000 bootstrap replicates, and the bootstrap value was showed in the branch.



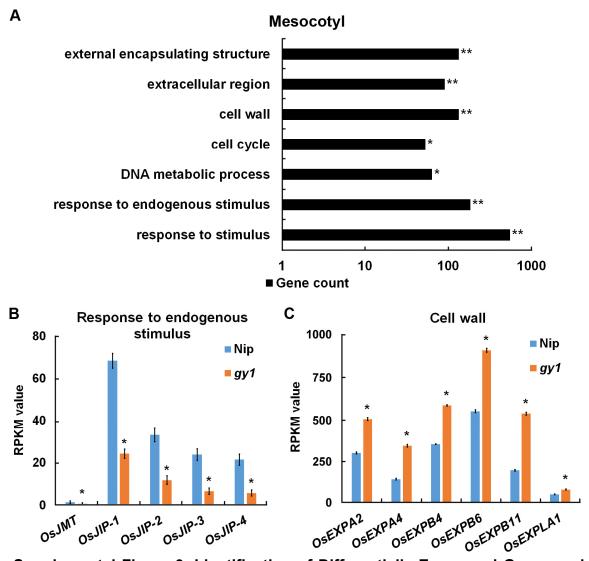
Supplemental Figure 6. Phenotype Analysis of Another JA Biosynthesis Mutant.


(A) Phenotype of etiolated seedlings from Nihonmasari (wild type of *cpm2/osaoc*) and *cpm2/osaoc* (a JA biosynthesis mutant) grown for three days after germination in dark. Arrowheads indicate the coleoptilar nodes between the mesocotyl and coleoptile. Bar = 10 mm.

(B) Coleoptile and mesocotyl length of etiolated seedlings from (A). The values are means  $\pm$  SD of 20 to 30 seedlings per sample. The asterisks indicate significant difference compared to Nihonmasari (\*\*, p < 0.01, Student's t-test).



Supplemental Figure 7. MeJA Dose-response Curve for Coleoptile Length of Etiolated Seedlings.

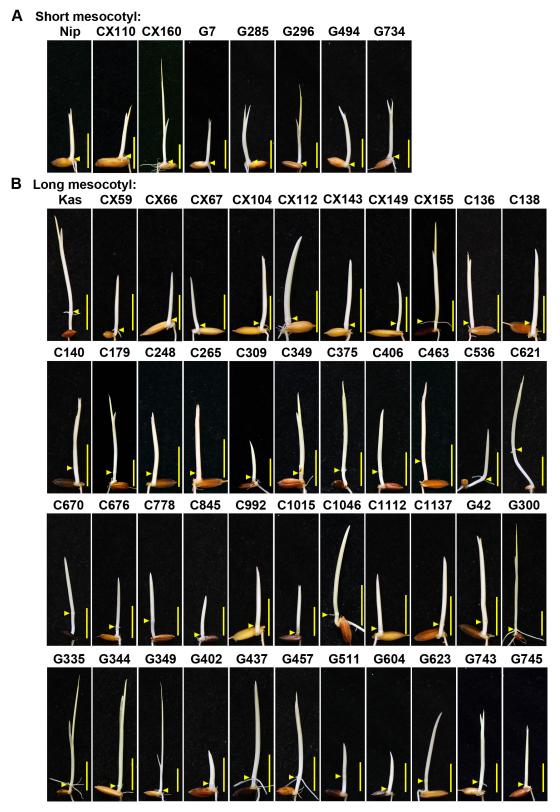

MeJA dose-response curve for coleoptile length of etiolated seedlings from Nip grown for three days after germination in dark. The values are means  $\pm$  SD of 20 to 30 seedlings per sample. MeJA treatments at concentrations of less than or equal to 1  $\mu$ M showed no significant effects on coleoptile length.



### Supplemental Figure 8. Ethylene Inhibits JA biosynthesis and GY1 Expression in shoots of de-etiolated seedlings.

(A) JA content in shoots of de-etiolated seedlings. De-etiolated seedling was produced by exposing etiolated seedling to light for 1 hour. ET indicates treatment with 10 ppm ethylene for 8 h. The values are means  $\pm$  SD of three biological replicates (independent pools of tissue) per sample. Different letters above each column indicate significant difference between the compared pairs (p < 0.05, LSD and S-N-K test).

(B) The expression of *GY1*, *OsLOX*, *OsAOS1*, *OsAOS2*, *OsAOC* and *OsOPR7* in shoots of Nip de-etiolated seedlings after 10 ppm ethylene treatment for 8 h. Deetiolated seedling was produced by exposing etiolated seedling to light for 1 hour. The quantitation was performed by qPCR relative to *OsActin2* expression. Each gene expression level at '0 h' treatment was set to 1 and other values were compared with it. The values are means  $\pm$  SD of three biological replicates (independent pools of tissue) per sample. Different letters above each column indicate significant difference between the compared pairs (p < 0.05, LSD and S-N-K test).




Supplemental Figure 9. Identification of Differentially Expressed Genes and GO Enrichment Analysis.

(A) GO enrichment terms for the shared 2623 DEGs (differentially expressed genes in gy1 compared to Nip in the mesocotyls of etiolated seedlings) in mesocotyls.

(B) Expression of DEGs in the GO term 'response to endogenous stimulus'. JA biosynthesis-related genes *OsJMT*, and JA-induced gene *OsJIP-1*, *OsJIP-2*, *OsJIP-3* and *OsJIP-4* are significantly down-regulated in *gy1* compared to Nip.

(C) Expression of DEGs in the GO term 'cell wall'. The expression of OsEXPA2, OsEXPA4, OsEXPB4, OsEXPB6, OsEXPB11 and OsEXPLA1 (expansin-like A1) are significantly up-regulated in *gy1* compared to Nip.



Supplemental Figure 10. Phenotype of Etiolated Seedlings from Different Rice Accessions.

(A) Etiolated seedlings from 8 rice varieties with short mesocotyls grown for three days after germination in darkness. Arrowheads indicate the coleoptilar nodes. Bar = 10 mm.

(B) Etiolated seedlings from 44 rice varieties with long mesocotyl grown for three days after germination in darkness. Arrowheads indicate the coleoptilar nodes between coleoptile and mesocotyl. Bar = 10 mm.

| Cross            | F  | 1 |    |    | F2 segregation |                |
|------------------|----|---|----|----|----------------|----------------|
| CIUSS            | -  | + | -  | +  | Expected ratio | X <sup>2</sup> |
| <i>gy1</i> × Nip | 42 | 0 | 68 | 21 | 3:1            | 0.76           |

+: the gy1 mutant phenotype. -: Nip phenotype. Critical value (0.05, 1) = 3.84.

## Supplemental Table 2. Agronomic Traits of Field-Grown Nip and *gy1* in 2012 and 2014.

| Plant                   | In 2012   |           |    | Ir          | In 2014   |    |
|-------------------------|-----------|-----------|----|-------------|-----------|----|
| Fidil                   | Nip       | gy1       |    | Nip         | gy1       |    |
| Total plant height (cm) | 88+/-4    | 83+/-3    | ** | 93+/-3      | 88+/-3    | ** |
| Tiller number           | 11+/-3    | 9+/-3     | *  | 13+/-3      | 11+/-3    | *  |
| Panicle length (cm)     | 19+/-1    | 18+/-1    |    | 19+/-1      | 19+/-1    | ** |
| Grain number per plant  | 991+/-319 | 697+/-265 | ** | 1,044+/-230 | 727+/-204 | ** |
| Grain number per spike  | 88+/-12   | 75+/-11   | ** | 82+/-9      | 65+/-6    | ** |
| Filled grains per plant | 827+/-324 | 191+/-126 | ** | 873+/-225   | 287+/-105 | ** |
| Filled grain rate (%)   | 82+/-14   | 26+/-9    | ** | 84+/-12     | 40+/-10   | ** |
| Filled grain weight (g) | 18+/-7    | 4+/-3     | ** | 19+/-5      | 7+/-3     | ** |
| 1000 grain weight (g)   | 21+/-1    | 21+/-1    |    | 22+/-1      | 23+/-1    |    |

The values are means +/- SD of 25 plants per sample. SPSS 18.0 one-way ANOVA (LSD and S-N-K) was used in the statistical analysis. The asterisks indicate significant difference compared to the corresponding controls (\*, P<0.05; \*\*, P<0.01).

| Species      | Subaroup                       | Total | <i>GY1</i> 376 bp |           |   |   |
|--------------|--------------------------------|-------|-------------------|-----------|---|---|
| Species      | Subgroup                       | TOTAL | G                 | T (%)     | С | А |
| Indica       | Aus/boro                       | 189   | 151               | 38 (20.1) | 0 | 0 |
|              | Indica                         | 1,564 | 1,511             | 53 (3.4)  | 0 | 0 |
| Intermediate | Intermediate type              | 84    | 75                | 0 (10 7)  | 0 | 0 |
| type         |                                | 04    | 75                | 9 (10.7)  | 0 | 0 |
|              | Aromatic (basmati/sandri type) | 55    | 24                | 31 (57.4) | 0 | 0 |
| lanonica     | Japonica                       | 66    | 63                | 3 (4.5)   | 0 | 0 |
| Japonica     | Temperate japonica             | 49    | 44                | 5 (10.2)  | 0 | 0 |
|              | Tropical japonica              | 76    | 74                | 2 (2.6)   | 0 | 0 |

#### Supplemental Table 3. Allelic Variation of GY1 in Rice Accessions.

The nucleotide at 376 bp of GY1 is G for Nip. The percentage represents its ratio in each subgroup.

#### Supplemental Table 4. The Mesocotyl and Coleoptile Length in Different Genotypes

|       | 376 | Mesocotyl | Mesocotyl   | Coleoptile  |                   |              |
|-------|-----|-----------|-------------|-------------|-------------------|--------------|
| Name  | bp  | Phenotype | length (mm) | length (mm) | Variety           | Subgroup     |
| Nip   | G   | short     | 0.0         | 13.3+/-1.3  | NIPPONBARE        | Japonica     |
| CX110 | G   | short     | 0.0         | 14.4+/-1.5  | UP15              | Aromatic     |
| CX160 | G   | short     | 0.0         | 18.6+/-1.7  | W1263             | Indica       |
| G7    | G   | short     | 0.0         | 15.5+/-1.7  | BASMATI 1         | Aromatic     |
| G285  | G   | short     | 0.0         | 20.4+/-3.3  | RAYADA            | Aus/boro     |
| G296  | G   | short     | 0.0         | 17.4+/-1.9  | KOTTEYARAN        | Indica       |
| G494  | G   | short     | 0.0         | 19.9+/-2.9  | O. SATIVA         | Indica       |
| G734  | G   | short     | 0.0         | 20.6+/-2.5  | RAJHUSAI (ACR 12) | Indica       |
| Kas   | Т   | long      | 6.0+/-2.8   | 23.9+/-1.9  | KASALATH          | Indica       |
| CX59  | Т   | long      | 1.3+/-0.6   | 15.2+/-1.5  | MILAGROSA         | Japonica     |
| CX66  | Т   | long      | 0.8+/-0.6   | 14.1+/-1.8  | TAROM MOLAII      | Intermediate |
| CX67  | Т   | long      | 1.0+/-0.6   | 14.4+/-1.9  | BINAM             | Japonica     |
| CX104 | Т   | long      | 1.2+/-0.8   | 20.6+/-1.9  | SADRI RICE 1      | Aromatic     |
| CX112 | Т   | long      | 1.3+/-0.7   | 19.7+/-1.6  | GINGA             | Aromatic     |
| CX143 | т   | long      | 1.4+/-0.6   | 15.0+/-2.1  | KHASAR            | Aromatic     |
| CX149 | т   | long      | 2.4+/-1.0   | 12.1+/-1.9  | KARNAL LOCAL      | Aromatic     |
| CX155 | т   | long      | 2.7+/-1.3   | 23.2+/-1.4  | MADHUKAR          | Indica       |
| C136  | т   | long      | 1.7+/-0.5   | 16.6+/-2.1  | AUS 278           | Aus/boro     |
| C138  | Т   | long      | 1.7+/-1.0   | 19.6+/-1.4  | AUS 295           | Aus/boro     |
| C140  | Т   | long      | 3.4+/-1.3   | 17.1+/-3.1  | AUS 301           | Aus/boro     |
| C179  | Т   | long      | 2.9+/-1.1   | 23.2+/-2.1  | BONGEZA           | Aus/boro     |
| C248  | Т   | long      | 2.8+/-0.7   | 15.7+/-1.5  | DJ 47             | Aus/boro     |
| C265  | Т   | long      | 1.6+/-0.6   | 18.3+/-1.6  | DV 86             | Aus/boro     |
| C309  | Т   | long      | 1.8+/-0.5   | 13.6+/-1.7  | HERATH BANDA      | Aus/boro     |
| C349  | Т   | long      | 2.0+/-0.8   | 17.4+/-2.0  | JHUL DIGA         | Aus/boro     |
| C375  | Т   | long      | 4.6+/-2.4   | 23.3+/-3.5  | KARIA             | Aus/boro     |
| C406  | Т   | long      | 3.3+/-1.2   | 18.9+/-2.9  | KORTIK KAIKA      | Aus/boro     |
| C463  | Т   | long      | 4.6+/-2.1   | 19.5+/-3.0  | MALCHI            | Aus/boro     |
| C536  | Т   | long      | 7.3+/-2.4   | 14.7+/-2.3  | P 335             | Aus/boro     |
| C621  | Т   | long      | 14.1+/-2.1  | 23.0+/-3.4  | SIDALI            | Aus/boro     |
| C670  | т   | long      | 8.3+/-3.2   | 18.6+/-3.1  | UCP 122           | Aus/boro     |
| C676  | т   | long      | 3.5+/-1.1   | 15.6+/-2.3  | UPRH 58           | Aus/boro     |
| C778  | т   | long      | 6.0+/-1.9   | 16.7+/-2.2  | BENA JHUPI        | Aus/boro     |
| C845  | т   | long      | 1.9+/-0.5   | 13.6+/-1.7  | KARUTHA SEENATI   | Aus/boro     |
| C992  | т   | long      | 2.0+/-1.3   | 16.5+/-3.1  | BAMLA SUFFAID 320 | Aus/boro     |
| C1015 | т   | long      | 2.2+/-1.1   | 16.8+/-2.6  | CIPPI             | Aus/boro     |
| C1046 | Т   | long      | 3.4+/-2.0   | 22.4+/-5.9  | HIJOL DIGA        | Aus/boro     |
| C1112 | т   | long      | 2.2+/-0.4   | 13.4+/-2.1  | ΜΟΤΙΑ             | Aus/boro     |

#### of *GY1* in Etiolated Seedlings of Different Varieties.

The values are means +/– SD of 20 to 30 seedlings per sample.

Supplemental Table 4. The Mesocotyl and Coleoptile Length in Different Genotypes of *GY1* in Etiolated Seedlings of Different Varieties (continued).

| Name  | 376 | Mesocotyl | Mesocotyl   | Coleoptile  | Variety Subgro   |          |
|-------|-----|-----------|-------------|-------------|------------------|----------|
| Name  | bp  | Phenotype | length (mm) | length (mm) | vanety           | Subgroup |
| C1137 | Т   | long      | 3.2+/-1.1   | 17.2+/-1.6  | PANDRI PAREWA    | Aus/boro |
| G42   | Т   | long      | 3.8+/-1.4   | 22.4+/-2.4  | KHARSU 80        | Aus/boro |
| G300  | Т   | long      | 2.4+/-0.9   | 30.0+/-3.8  | PERUNEL          | Indica   |
| G335  | Т   | long      | 2.8+/-3.8   | 22.4+/-4.2  | BADUIE           | Indica   |
| G344  | Т   | long      | 1.7+/-0.5   | 28.3+/-2.3  | BENGALY MORIMO   | Indica   |
| G349  | Т   | long      | 1.1+/-0.7   | 15.7+/-1.5  | BK 26            | Indica   |
| G402  | Т   | long      | 1.6+/-0.6   | 9.9+/-1.6   | GALWAKA HANDERAN | Indica   |
| G437  | Т   | long      | 2.4+/-1.0   | 26.5+/-2.3  | KALU ILANKALAYAN | Indica   |
| G457  | Т   | long      | 5.8+/-2.0   | 23.0+/-2.8  | LALKA (LAL DHAN) | Indica   |
| G511  | Т   | long      | 6.8+/-2.6   | 11.8+/-1.7  | RACE PERUMAL     | Indica   |
| G604  | Т   | long      | 1.4+/-0.6   | 13.4+/-2.2  | POKKALI          | Indica   |
| G623  | Т   | long      | 3.9+/-1.3   | 23.7+/-3.7  | 498-2A BR 8      | Indica   |
| G743  | Т   | long      | 2.5+/-0.9   | 24.2+/-2.8  | URAIBOOL         | Indica   |
| G745  | Т   | long      | 0.4+/-0.6   | 21.1+/-1.8  | XITTO            | Indica   |

The values are means +/- SD of 20 to 30 seedlings per sample.

# Supplemental Table 5. Primers Used for Gene Expression Analysis and Vector Construction.

| Genes or<br>Constructs | Locus          | Forward primers $(5' \rightarrow 3')$ | Reverse primers (5' $\rightarrow$ 3') |
|------------------------|----------------|---------------------------------------|---------------------------------------|
| qRT-PCR                |                |                                       |                                       |
| GY1                    | LOC_Os01g67430 | gatacagatgggcggcttggt                 | tgtcgaagaggattagtggtct<br>tta         |
|                        | LOC_Os01g67420 | gcggaactgagactcctgaaga                | agctggcactgcatctggtt                  |
|                        | LOC_Os01g67450 | cacgacctcggatcctacgt                  | tgcgtccttcgactgccatt                  |
| OsLOX                  | LOC_Os02g10120 | aggcatttgctagtgtgtttgagt              | catccgtccgcatgacatactg                |
| OsAOS1                 | LOC_Os03g55800 | ctcgctcaagaaggccacct                  | cgtacaagctgattgatcacac                |
|                        |                |                                       | ata                                   |
| OsAOS2                 | LOC_Os03g12500 | gtgctcgtcggaaggctgtt                  | cgattgacggcggaggttga                  |
| OsAOC                  | LOC_Os03g32314 | ctgcctcaacaacttcaccaact               | cgcacatgccgcaattaacac                 |
| OsOPR7                 | LOC_Os08g35740 | gggcggctcttcatatcaaacc                | cgacttaggctgtccgaggaa                 |
| OsEXPA2                | LOC_Os01g60770 | gcggccagttctgatcgagta                 | gcagcctcagaatagccaaago                |
| OsEXPA4                | LOC_Os05g39990 | ccgtctccgacacccacatat                 | tggacgaagtccagagaaggaa                |
| OsEXPB4                | LOC_Os10g40730 | cccaacacattctaccgctcct                | acagaccgaccacacaatccc                 |
| OsEXPB6                | LOC_Os10g40700 | aatttgcgtgggattgaggtgt                | tgggtagtacagtgacagtggg                |
| OsEXPB11               | LOC_Os02g44108 | tgcagtgcagagttgcggtaa                 | cagagaccgtggagggaagaac                |
| OsEXPLA1               | LOC_Os03g04020 | acacgcacgagtggaagtagaa                | tgccgagggattaggaggact                 |
| OsActin2               | LOC_Os10g36650 | ttatggttgggatgggaca                   | agcacggcttgaatagcg                    |
| Region a               | LOC_Os01g67430 | cttgagagtctctgcccatgtatc              | atattacactcttctgtacgct                |
|                        |                | ta                                    | tgc                                   |
| Region b               | LOC_Os01g67430 | gcagagcgtacagaagagtgtaat              | catcatcaatggctaaagctaa                |
|                        |                |                                       | са                                    |
| Region c               | LOC_Os01g67430 | gatacagatgggcggcttggt                 | tgtcgaagaggattagtggtct                |
|                        |                |                                       | tta                                   |
| Vectors                |                |                                       |                                       |
| pC-GY1                 |                | cccccgggaccggcgacttcattg              | cctgcagggttggcgctccggc                |
|                        |                | cacacgaac                             | agcag                                 |
| pGY1-OX                |                | cgggatccatgacgctcccgaggc              | gctctagagattagccgtcttg                |
|                        |                | aatg                                  | cagtggtgg                             |
| pGY1:LUC               |                | ggggacaagtttgtacaaaaaagc              | ggggaccactttgtacaagaaa                |
|                        |                | aggetteaceggegaetteattge              | ctgggtttgccgccgcgctgct                |
|                        |                | acacgaac                              | gtgcca                                |
| pBI-GY1-GFP            | •              | ggatccatgacgctcccgaggcaa              | aagcttgattagcccgagcgtc                |
|                        |                | tg                                    | gca                                   |
| p <i>OsElL2</i> -OX    |                | ggggtaccatgatgggagcagcgg              | gctctagatcagtagaaccagt                |
|                        |                | tgac                                  | ggatccg                               |

#### Supplemental Table 6. Oligonucleotides Used for EMSA.

| Oligonucleot | Orientation $(5' \rightarrow 3')$                                   |
|--------------|---------------------------------------------------------------------|
| ides         |                                                                     |
| Probe a      | gtctctgcccatgtatctagatgcctcgggaatgtagtggcagagc                      |
| Probe b      | $\tt gtgtaatataatgtatgtatgtgtgtgtacaggtccaattaaatcatgaaagcaaagggaa$ |
|              | aatgggggggacatgtatgtgt                                              |

#### Supplemental Table 7. dCAPS Primers Used for *gy1* Allelic Mutant Analysis.

| Allele   | Forward primers (5' $\rightarrow$ 3') | Reverse primers $(5' \rightarrow 3')$ |
|----------|---------------------------------------|---------------------------------------|
| gy1      | tgctggaggaggtcgggatg                  | acgagacgagcacgtagcgc                  |
| Kasalath | gtgcggggattgggagggga                  | tgacctcgtaccctgcgc                    |