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Part A:  Stationarity 

Under the strict mathematical definition, a series {E(t), t integer or real} is a stationary process if it has 

identical statistical properties under arbitrary shifts of the time parameter, t [1].  This requirement implies 

that events involving E(t) have long-run stable frequencies of occurrence.  However, these frequencies 

might be stochastic, i.e. different for different runs of a simulation of the process even though stable over 

time, consistent with stationarity [1].  For an ergodic stationary process, asymptotic event frequencies are 

not stochastic and therefore are the same for every run of a simulation.  Seasonal and diurnal variation 

might be modeled by periodic functions of time.  Periodic functions are not normally called stationary 

processes, but they do have the property that long-run frequencies of events are stable, and they can be 
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formally made stationary by randomizing the starting time over one period of the process.  This 

transformation changes no essential property, just the way the process is viewed.  The working definition 

of stationarity used in this paper is stable long-run frequencies of events, which is a key property of 

stationary processes (ergodic or not), and others such as periodic processes that become stationary when 

viewed in the right way.    

 

Part B: The AEDT and Nonautonomous dynamics theory 

Definition of an AEDT.  Given a population process, {N(t), t integer or real}, for example, as defined in 

Box 2, an AEDT is a population trajectory N*(t), on which all other trajectories converge in one of the 

following two senses 

(A) Forward convergence: N(t) – N*(t) → 0, as t → ∞, whenever N(s) > 0 for a fixed starting time 

s. 

(B) Backwards convergence:  N(t) → N*(t), as s → – ∞, for all t, for every fixed N(s) > 0. 

The critical issue in both cases is that the same trajectory is approached regardless of the starting value, 

N(s), of a trajectory, provided N(s) > 0. For backward convergence, N(t) depends not just on t but also on 

the starting time s, which recedes into the distant past with a fixed starting population size, N(s). It is 

important to note that N*(t) is a trajectory of the process, i.e., follows the same dynamical rules that any 

trajectory N(t) must satisfy, e.g. equation (9) of Box 3. For a process without immigration, N(s) = 0 would 

give permanent extinction, and so that is ruled out.  

For the case of forward convergence, values of the process prior to a fixed time, s, are not 

considered, and the AEDT is only asymptotically unique.  Indeed, any trajectory with nonzero N(s) is an 

AEDT in that case, but forward convergence implies also that they are asymptotically the same.  For 

backward convergence, the AEDT N*(t) is unique. Although backward and forward convergence are 
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distinct concepts, they both imply the same idea: after enough time has elapsed from any given initial 

state N(s) > 0, the population trajectory depends very little on that initial state, and reflects primarily the 

sequence of environmental states and the dynamical rules of the system. The same definitions and ideas 

apply to vector-valued population models representing either multiple species or structured populations 

subject again to the condition that initial population sizes are positive. The presence of both forward and 

backward convergence is most intellectually satisfying because then the unique AEDT applying for 

backward convergence is a natural choice for the forward direction too.  However, the absence of 

backward convergence should not get in the way of applications when the future is the focus.    

The theory of nonautonomous dynamics provides concepts and techniques that are valuable in 

understanding convergence on an AEDT. The theory concerns dynamical systems modeled by difference 

equations such as equation (9) and similar differential equations such as equation (17).  The critical 

property distinguishing a nonautonomous system from an autonomous system is dependence of the 

parameter vector E on time.  A rich theory of such systems is emerging [2-4] providing a strong 

foundation for study of dynamics in nonstationary environments.  Although some developments treat the 

environment strictly deterministically, others treat it stochastically, especially in the field of random 

dynamical systems [5, 6], which develops valuable techniques even though the prevailing assumption in 

these developments is that the environment is stationary.  

The simplest and best developed examples in deterministic cases are for perturbations of 

autonomous systems, situations transformable into autonomous systems, and cases where the 

environment process and population trajectories are bounded [2, 3].  In general, there is no requirement 

that trajectories be bounded, but it does simplify applications of the theory. However, boundedness of 

trajectories is not sufficient for ecological applications. For instance in the Beverton-Holt model, an 

important question is whether the model predicts that the population will converge on extinction or grow 

indefinitely. Although, no natural population can grow indefinitely, such indefinite growth nevertheless is 

a critical case in models in tests of sufficiency of the model to regulate the population, a question of 
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longstanding interest in ecology.  Admitting AEDTs that allow indefinite growth is therefore important. 

Moreover, to understand convergence on extinction, the log scale of population size is appropriate for 

investigating decline of the population.  On this scale, population trajectories should not be constrained to 

be bounded from below. Similarly, with the lottery model (Box 4 and Part F), the natural scale of analysis 

due to the interest in species coexistence is the log-odds scale, where trajectories are potentially 

unbounded both above and below.  Indeed, if the environment processes are stochastic processes, there 

will normally be no hard bounds on the state variables, although they may be stochastically bounded, as 

discussed in Part G. Thus, in the Beverton-Holt model and the lottery model, the AEDTs exist but 

techniques that require bounded trajectories are not sufficient. Nevertheless, as we have seen here, these 

models are tractable without such conditions. 

Nonautonomous systems theory has a strong focus on the existence and properties of attractors, 

which unlike the attractors of autonomous dynamical systems are functions of time [2, 3]: {At} as defined 

in the glossary (Box 1 of the text). Zelik et al [3] review the various concepts in use.  In their simplest 

form, when these attracting sets consist of single points, their trajectories over time define AEDTs.  

Otherwise, they commonly consist of multiple trajectories allowing extensions of the various autonomous 

attractors that contain multiple stable points, limit cycles, or are strange attractors. Attracting sets can be 

forward attracting, consistent with my use of forward convergence, but pull back attracting is the term in 

common use that corresponds to backward convergence in the usage here [2].  

 

Part C: The Nonstationary Beverton-Holt 

For the model of Box 2, the quantity  
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is the geometric mean of the maximum finite rate of increase for the period s to t – 1. Note that R is the 
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finite rate of increase at zero density.  Unless the quantity (A1) is above 1 at least for large intervals of 

time, the population cannot persist because it means that the population would decline on average from all 

densities.  A geometric mean bounded above 1 for large intervals of time implies also that the first 

product in equation (3) of Box 2, viz,  

1

( )
t

u s

u



   (A2) 

is bounded asymptotically by a negative exponential, and thus the initial-state dependence in equation (3) 

of Box 2 must vanish as either s converges to – ∞ (backward convergence) or t converges to ∞ (forward 

convergence).  For backward convergence, the question remains as to whether the asymptotic trajectory is 

finite and positive, but this outcome is simply ensured by the additional conditions that a and ρ are 

positive and that a(u) cannot grow asymptotically as fast as exponentially in the negative direction of time.  

Then the quantity 
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   (A3) 

must converge on a finite positive value as s converges on – ∞, giving finite positive values for N*(t). 

Thus, only very mild conditions are needed to ensure convergence on a meaningful AEDT, 

accommodating a wide range of possibilities for nonstationary environmental conditions. The question 

remains as to how N*(t) might behave into the future.  A natural question is whether it would predict long-

term persistence of the population in some reasonable sense.  

As a nonstationary environment might be anything at all, some constraints must be placed on its 

behavior if the question of long-term persistence is to be answered.  One possible constraint is 
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for t > u + 1, and some positive constants K and b. Then 
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 *( ) (1 ) /bN t e K  . (A5) 

However, uniform boundedness seems inappropriate given likely irregularities in environmental 

fluctuations that inevitably should lead to runs of unfavorable times.  In this light, (A4) is appropriately 

replaced by a constraint on an average (an expected value), as follows 

 
1

( 1)

1

( ) ( )
t

b t u

v u

E a u v Ke


  

 

 
 

 
 , (A6) 

which is then compatible with runs of unfavorable times occurring stochastically.  This constraint implies 

that  

 E[y*(t)] < K/(1 – e–b),  (A7) 

which then implies that N*(t) persists in the sense of stochastic boundedness ( Part G). Simply put, it 

means that N*(t) has a low probability of being low.  

The condition (A6) is possibly too abstract for intuition on what it is says about the nonstationary 

environment.  However, this issue disappears if it is assumed that a(u) and the ρ(v) have a jointly 

multivariate lognormal distribution; then condition (A6) can be expressed in terms of means, variances 

and covariances of the logs of these variables.  The expected value of a product of lognormal variates is 

given from the multivariate normal moment generating function [7] with argument (1,1,...,1) and shows 

that the sum of the means of the logs, plus one half the sum of the elements of their variance-covariance 

matrix, needs to be less than lnK – b(t – u – 1) for (A6) to apply, a condition that is relatively easy to 

interpret in terms of time-series properties. 

 The actual environmental conditions used in the simulation of Fig 1 came from a reconstruction 

of northern hemisphere average temperature from 200 CE to 1995 CE simply for the purpose of having 

the simulation driven by real data.  The link between temperature and R was arbitrarily chosen to be  

 0.1 0.01TR e   (A8)  
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where T is the temperature anomaly.  The data are the NHCRU_CPS_COMPOSITE downloaded from the 

National Climate Data Center (NOAA).  The quantity a was arbitrarily set to the constant value 0.0001.  

The continuous-time version of the Beverton-Holt model is the logistic model, which has 

received detailed study in at least two nonautonomous forms: deterministic [8] and stochastic [9].  

Coleman [8] studied the deterministic form for case of bounded carrying capacity and intrinsic growth 

rate, and showed convergence on the AEDT, which he called the canonical solution.  Wu and Wang [9] 

review more recent studies, especially the stochastic logistic, and extended these studies to the case of 

instantaneous jumps in population size.  Although, less studied, the nonautonomous Beverton-Holt model 

has also appeared in previous work, but with rather different aims than the illustration here [10, 11]. 

Part D: The nonstationary distribution of N*(t) for the Beverton-Holt 

For the Beverton and Holt model, a good approximation to the nonstationary distribution of the 

AEDT is available provided ρ = 1/R is assumed to be a constant. Although this is in fact a serious 

limitation for applications of the model, it nevertheless allows a nice illustration of the properties 

of AEDTs as stochastic processes.  The key is the representation of the reciprocal, {y*(t)}, of the 

stochastic process {N*(t)} as a linear recursion.  Then, the first and second moments of {y*(t)} 

are easily obtained in terms of ρ and the first and second moments of {a(t)}.  As we shall see 

below, in many circumstances the distribution of the process {y*(t)} is approximately Gaussian, 

and therefore is characterized by its first and second order moments. The distribution of the 

process {N*(t)} can then be understood in terms of the reciprocal of {y*(t)}.  Moreover, {N*(t)} 

will often be approximately Gaussian also, although likely less accurately approximated in that 

way compared with {y*(t)}.  

 
The first order of business is to obtain the moments of {y*(t)} in terms of the moments of {a(t)}.  

Define  
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 ( ) [ ( )]t E y t   (A11) 

and  

 ( , ) cov( ( ), ( ))u v y u y v     (A12) 

with  

σ 2(t) = σ(t, t) and ϕ 2(t) = ϕ(t, t).   (A13)  

 

Equation (3) of the text specialized for a constant value of ρ and y(s) at the fixed initial value yinit 

is 
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On taking expected values of both sides, we obtain 
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The covariance function now follows from the standard formula for the covariance of linear 

combinations of random variables (e.g. Rao 1973) and is 
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Under mild conditions discussed below, each of these sums converges as s → −∞ respectively to 

the following forms 
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and 
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where the * indicates that these moments apply to the AEDT, y*(t). The proofs that they do 

indeed apply, and asymptotic normality, are given below in the proofs section.  Here, we further 

elaborate on the first and second moments, which characterize the distribution when asymptotic 

normality is applicable. 

 

Expression (A17) takes on a particularly interpretable form when it is appreciated that the 

sequence {(1−ρ)ρn} sums to one over n = 0 to ∞. This means that expression (A17) can be 

written as  

 
ˆ( )

*( )
1

t
t







, (A19) 

where ˆ( )t is the weighted average of θ(t −1−n) using weights (1−ρ)ρn, n = 0 to ∞. Expression 

(A18) can be expressed similarly but with a double average.  However, a particularly 

interpretable outcome is possible when {a(t)} is independent over time but still shows 

nonrandom trends because the mean θ and variance φ2 are functions of time. Expression (A19) 

for the mean remains unchanged, but the variance simplifies to  
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,  (A20) 

where 2ˆ ( )t is the weighted average of ϕ2(t −1−n) using weights (1−ρ2)ρ2n, n = 0, 1, ...  The 

covariance, for t > t', is given as  
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 2 2* ( , ) * ( )t tt t t    ,  (A21) 

a form that reflects the Markovian nature of {y*(t)} when {a(t)} is a sequence of statistically 

independent random variables.  

 

These expressions for the mean and variance reflect the fact that {y*(t)} is proportional to a 

geometric weighted average over past values of {a(t)}.  These weighted averages mean that the 

trends implied by the environment are smoothed over a period of the past. These trends reflect 

the nonstationarity of the environment, which is little constrained here. The geometric weighting 

reflects density dependence, i.e. interactions between individuals within the population. It gives 

most weight to the near past to an extent dependent on the value of ρ. The smaller ρ is, the more 

effect the recent past has on the moments of {y*(t)}. On the other hand ρ near 1 means that the 

moments of {y*(t)} reflect long stretches of the past environment. In biological terms, the 

smaller ρ is, the stronger the density dependence, and therefore the stronger the regulation of the 

population to current environmental conditions. 

 

Moments of {N*(t)} 

Exact moments of {N*(t)} are in general not available, but provided the coefficient of variation 

of y*(t) is small, good approximations are possible.  To obtain these, we first write N*(t) as  
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where *( ) *( ) *( )y t y t t  . Expanding the RHS to quadratic order in *( ) / *( )y t t leads to the 

approximation 
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with error terms of  4 4* ( ) / [ *( )]O t t   under the normal approximation to {y*(t)} where all 

odd central moments are zero.  The same order of accuracy is found from linear terms in (A22) 

leading to  
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The approximations correspond to the δ-method in mathematical statistics, which is developed in 

detail in[12].  Moreover, as shown by Rao [12], the normal approximation carries over from 

{y*(t)} to {N*(t)} with these moments defining the approximating process. This approximation 

relies on a small enough coefficient of variation of y*(t) for its reciprocal to be close to linear in 

y*(t).  

 

Proofs 

Convergence in mean square 

To show that the moment formulate above do indeed apply to the AEDT, we need to 

demonstrate that the random variable ys(t), from a trajectory of y beginning at time s, with the 

arbitrary value yinit converges in mean square to y*(t). This can be done by showing that {ys(t)} is 

a Cauchy sequence in the mean square norm as a sequence in s for fixed t. From formula (A14), 

the mean square deviation between trajectories starting at different times can be seen to be 
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where we assume that s > s', and apply the standard formulae for the means and variances of 

linear functions making use also of the fact that the expected value of the square of a random 

variable is equal to the square of its expected value plus its variance.  

 

If the series in θ on the right hand side of (A25), and the double series in φ, both converge as s' 

→ −∞ to values bounded respectively by Kρhs and K 2ρ2hs, for some constant K and some h 

between 0 and 1, for s < 0, then the mean square difference (A25) can be made arbitrarily small 

for s sufficiently large and negative. Note that this condition simply insists that θ(n) and ϕ(n, m) 

do not increase too fast as n and m approach −∞. For example, they might be bounded by a 

constant, but boundedness of the series in (A25) by Kρhs and K 2ρ2hs is a much weaker 

requirement even allowing exponential increase of θ(n) and ϕ(n, m) in the negative direction, 

with no constraints in the positive direction of time.  Hence the conditions imposed here are mild. 

The result that (A25) can be made arbitrarily small by decreasing s, independently of s', means 

that {ys(t)} is a Cauchy sequence in the mean square norm. It follows that {ys(t)} converges in 

mean square and the limit must agree with the AEDT y*(t) with probability 1. This means also 

that the first and second moments of {ys(t)} converge, i.e. the series (A17) and (A18) converge, 

and these are the moments of the AEDT y*(t).  

 

 Normal approximation 

The approximate normality of the process {y*(t)} comes from the central limit theorem.  There 

are many forms of the central limit theorem.  The standard central limit theorem for sums of 

independent and identically distributed random variables is not sufficient. The basic conditions 

for approximation by a Gaussian process are that ρ is close to 1, the variances of the a(t) do not 

change too rapidly with time, the tails of the distributions of the a(t) are constrained to not vary 
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too greatly in fatness, and the process {a(t)} has long-range independence, i.e. for large values of 

the time separation h, {a(t − n), ..., a(t − 3), a(t − 2), a(t − 1)} and {a(t + h), a(t + h + 1), a(t + 

h + 2), ..., a(t + h + n)} are approximately independent. The approximating process is then 

uniquely determined by the moments. If sequence {a(t)} is not far from being a Gaussian process, 

then the Gaussian approximation for the process {y*(t)} can be expected to be highly accurate.   

 

Rather than trying to prove this idea in the greatest generality, I simply demonstrate it for the 

particular case when the environment process {a(t)} is independent over time, although 

otherwise nonstationary. We need a sequence of processes that converge on a Gaussian 

stochastic process.  To do this, we have time, t, taking the rational values ..., −2/k, −1/k, 0, 1/k, 

2/k, ..., for a positive integer k.  As k goes to ∞ a continuous time process is obtained. At the 

same time, we replace ρ by ρ1/k, which has the effect of restricting the amount of change that take 

place for successive values of t, which are 1/k apart, while retaining the total change possible in 

one unit of time. The resulting equation is   
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The parameter ρ here is fixed, and can have any value between 0 and 1, which seems at variance 

with the requirement above that ρ be near 1, but note the ρ from equation (A14) has become  ρ1/k 

which converges to 1 as k →∞. 

 

We assume here that the processes {ak(t)} are independent over time t with   
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Here θ and ϕ are assumed to be continuous functions, and the processes {εk(t)} are independent 

over time over time with mean zero and variance 1. It follows that the process {ak(t)} has the 

mean function θ(t)/k, and variance ϕ2(t)/k. This procedure maintains constant environmental 

variance per unit time as k is varied, and constant mean per unit time, which are typical 

assumptions to obtain a central limit theorem.  The temporal independence of the {ak(t)} means 

that the process {y*
k(t)} is a Markov process, and the to key proving that {y*

k(t)} is 

asymptotically Gaussian is to show that the transition probabilities are Gaussian.  To prove this 

we note that   
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    . (A28) 

and that the right hand side above is statistically independent of * ( )ky s . Therefore, the conditional 

distribution of * ( )ky t  given * ( )ky s is simply the distribution of the RHS of (A28) shifted by

* ( )t s
ky s   , which means that we simply need to study the asymptotic behavior of the RHS of 

(A28) to determine the asymptotic behavior the transition probabilities of the process { * ( )ky t }.   

 

To demonstrate asymptotic normality of the process (A28), we evaluate its characteristic 

function and show that it converges on the normal characteristic function.  As εk(t) has mean zero 

and variance 1, the theory of characteristic functions [13] (Chapter XV) implies that the 

characteristic function of εk(t) takes the form 

  1 2 2
2

exp ( )h    ,         (A29) 

where τ is the argument of the characteristic function and h(τ) is a function that converges to 0 as 

τ → 0.  In the case where the εk(t) are identically distributed, the function h is the same for every 

t and k, and it follows that the characteristic function of (A28) is  
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The sum on the first line converges as k → ∞ to  

 2( ) 2 ( )
t t u

s
u du  , (A31) 

while the second sum is less in absolute value than 
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The sum above converges to (A31) as k → ∞, and the supremum converges to zero because h(x) 

converges to zero as x → 0 and φ is a continuous function and therefore bounded on finite 

intervals.  Thus, the characteristic function (A30) of (A28) converges to  

  
2

2( ) 2exp ( )
2

t t u

s
u du

   
 
 

 , (A33) 

which is the characteristic function of a normal random variable with mean 0 and variance (A31). 

The variance, 2* ( )t is now given by the limiting form (A31), but the covariance formula (A21) 

is unmodified.  The moving average interpretation (A20) is retained also, but ˆ( )t is now a 

negative exponential moving average rather than a geometric moving average, and 1 − ρ2 in the 

denominator of (A20) is replaced by 2β = 2(−lnρ).  

 

In the case where the εk(t) are not identically distributed, the condition  

 2

2
, { }

sup ( )1 0
k

k a t b k K
E t


  
      (A34) 

as K →∞ for finite a ≤ b, guarantees that the function h above is a uniformly bounded by a 

function that converges to 0 as its argument converges to 0. That function replaces h in 
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expression (A32), and convergence on expression (A33) remains valid. The requirement (A34) is 

essentially the Lindeberg condition [13] for the central limit theorem.    

 

Having demonstrated that expression (A28), viz * *( ) ( )t s
k ky t y s   , convergences on a mean zero 

Gaussian variable with variance (A31), and noting that this variable is independent of * ( )ky s , it 

follows that the limiting process *{ ( )}y t has transition probability distribution,  

  * 2( ) 2( ), ( )
tt s t u

s
N y s u du     (A35) 

i.e. the condition distribution of *( )y t given *( )y s is normal with the mean and variance above. 

Finally, we note that * ( )t s
ky s   converges in mean square to 0 uniformly in k as s → −∞, which 

then serves to prove convergence of the process *{ ( )}ky t on the Gaussian process *{ ( )}y t with 

transition distribution (A35). To get the process {y*(t)}, we have to add the mean back onto 

*{ ( )}y t .  That mean is 
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            (A36) 

with σ*2(t) given as the limit as s → −∞ of expression (A31), i.e. 

 *2 2( ) 2( ) ( )
t t ut u du  


  . (A37) 

Note that the limiting Gaussian distribution allows negative values of y, which are not possible 

values of the reciprocal of population size.  This means that the distribution only reasonably 

applies when the mean (A36) is large enough for the given variance for negative y values to have 

negligible probability.  The potential for negative values are admitted by the formula (A27) 

which implies that negative values of ak(t) are possible for large k. Ideally, θ will be large enough 
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to mean that the integrals of the ak(t) over finite intervals have high probability of being positive, 

despite negative contributions to that integral.   

 

Part E: Convergence of trajectories on each other 

If the population model (9) of the text is replaced by a vector equation 

 ( 1) ( ( ), ( ))t t t N F N E , (A38) 

the derivative ( ( ), ( ))F N t t E is replaced by 

  
1

0
( ( ), ( ), ( )) ( ( ) (1 ) ( ), ( ))t t t h t h t t dh     F N N E F N N E  (A39) 

where Fʹ is the Jacobian matrix for the transformation F(., E(t)) and F is its average over the line 

between Nʹ and N. By the fundamental theorem of calculus, we have the vector-valued version of 

equation (10), 

 ( 1) ( ( ), ( ), ( )) ( )t t t t t    N F N N E N . (A40) 

It is important to note that this is an exact result, not a linear approximation. It implies 
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The issue now is whether the product of these Jacobian matrices converges on zero.  In traditional local 

stability analyses, with an unchanging environment, the Jacobian product can be approximated adequately 

by the power of the Jacobian at equilibrium. The elements of these matrices all reflect feedback loops 

between components of the vector N, including both intraspecific or intraclass feedback (for structured 

populations) and interspecific or interclass feedback.  At this level, the concerns of traditional and 

nonstationary analyses are the same: how do these feedbacks shrink the difference between two 



 

 

18 

population or community states overtime?  For example, the traditional answer in competition studies is 

through stronger intraspecific than interspecific competition [14] leading to convergence on a joint 

equilibrium. But when the environment fluctuates, the outcome of stronger intraspecific competition than 

interspecific competition may emerge over time, as it well known in the lottery model (Box 4) and other 

models exhibiting the storage effect [14] in the stationary case. Thus, in the case of fluctuating conditions 

that are the focus here, the ecological mechanisms may be evident in the product of the Jacobian matrices 

over time, not in each individual matrix. 

As remarked in Box 3, convergence of trajectories on each other does not guarantee convergence 

in the backwards sense on a unique AEDT. For the final piece, it is necessary to show that one trajectory 

converges in the backwards sense.  Part H illustrates how this may be done by demonstrating that N(t) is a 

Cauchy sequence in the starting time, s. Although such a demonstration can be challenging, expression 

(A41) facilitates such demonstrations as is evident from the use of the corresponding expression in Part H. 

Given that one trajectory converges in the backward sense, they all do on a unique AEDT provided they 

converge on each other, as implied by convergence of (A41) to zero.  In practice, such demonstrations 

may often be done numerically, and the simplest way of doing this is just to simulate the population 

process (A38) over ranges of starting times and starting values of most relevance to the application in 

question.  Although such numerical approaches are not mathematical demonstrations, they can be 

sufficient for applications.  Understanding of the Jacobian matrix Fʹ which is critical to convergence as 

shown by (A41) would then provide the theoretical understanding to interpret numerical outcomes.  Thus, 

study of AEDT’s may benefit greatly from following a hybrid approach to complex models, as discussed 

in [15] where understanding is derived analytically, but solutions are found numerically. 

Critical understanding of the AEDT is available when the moving equilibrium exists, because 

then the following equation applies:  
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where I is the identity matrix. This iteration leads to the formula 
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Letting s → – ∞, we see that the AEDT, if it exists in the backwards sense, must satisfy the formula 
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provided the functions are sufficiently regular to allow limits to be taken inside the infinite sum. This 

formula then specializes to formula (13) of Box 3 in the single unstructured population case.  This 

formula is not intended as a calculation tool — after all both the LHS and RHS involve N*—  but to show 

how the AEDT relates to the moving equilibrium.   

 In the case of a scalar population with * *
( )( ( ), , ( ))vv v p EF N N E , a constant, then equation 

(A44) rewrites as 

 * *
( 1)

0

( ) (1 ) u
t u

u

N t p p N


 


  E . (A45) 

This formula expresses N*(t) as a weighted average of the past values of *
( )tNE with the weights coming 

from the geometric probability distribution, i.e. negative exponentially declining weights.  A constant 

value of the derivative would not apply exactly as a model of a closed population, although it could apply 

to a sink population with immigration [16].  However, it applies to the reciprocal of N in the Beverton-

Holt model in the event that R is a constant.   

Part F: The lottery model   

Assume that δ’s are the same for two species in the lottery model of Box 4, and label these species i and j. 
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Consider two trajectories Nʹi (t) and Ni (t)  experiencing identical environmental conditions, i.e. having the 

same Bi(t) and Bj(t), but with Nʹi (s) > Ni (s).  As the lottery model iteration is monotonic in Ni (t), this 

inequality persists for all values of t. However, it is possible to show that the trajectories converge under 

certain conditions. To demonstrate this, we make the transformation to the Z scale (the log odds scale), 

where Z = ln(N/(1 – N)). Note that the densities in the lottery model sum to a constant, the total density of 

space for the two species.  Without loss of generality, this can be assumed to be 1. Hence, Nj  = 1 – Ni, in 

the two species case. Defining, ΔZi = Zʹi – Zi, the iteration (14) shows that  
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where ρ = Bi(t) /Bj(t).  The quantity ρ + ρ– 1 – 2 is always greater 0 whenever ρ ≠1, which means that the 

integrand in (A46) is positive whenever ρ ≠1 and δ < 1.  Factoring 1(1 )( 2)       out of the 

integral and noting that the denominator of the integrand is uniformly less than 

1(1 ) max{ ( ), ( )}t t     gives inequality (16) of Box 4. This inequality implies that the change in 

ΔZi from one time to the next has the same sign as ( ) ( )i iN t N t  . It follows that ΔZi is monotone 

decreasing with time, and strictly decreasing whenever ρ ≠1.  For forward convergence, first of all assume 

that Ni(t) enters a given finite interval (v, 1 – v), with 0 < v < 1, infinitely often, with ρ + ρ– 1 – 2 > ε for 

some fixed ε > 0.  Then inequality (16) implies that ΔZi must converge to zero in the forward direction, 

and hence ΔNi converges to zero also.  On the other hand, if there is no interval (v, 1 – v) entered 

infinitely often, either Ni and N’i both converge on 0 or both converge on 1, in which case ΔNi still 

converges to zero even though ΔZi need not do so. If ρ + ρ– 1 – 2 were allowed to converge on zero with 

time, neither ΔNi nor ΔZi would necessarily converge to zero.  Thus, it is clear that only mild conditions 

are sufficient to guarantee forward convergence in the lottery model. Backward convergence follows 

similar principles, but the argument is more complex.  

The strongest and most interesting form of convergence is of course the case where the two 
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species coexist. That means that also that some interval (v, 1 – v) is entered infinitely often and therefore 

that ΔZi converges on 0. Coexistence requires the two species to be favored at different times or else one 

would necessarily dominate.  The conditions for coexistence in the nonstationary case involve the same 

sorts of considerations as arise in the stationary case, namely different species being favored at different 

times, and also overlapping generations, viz, δ  < 1 (Part G). A third feature is present also, and has 

important role, viz covariance between environment and competition.  This phenomenon occurs in the 

lottery model because a species strongly favored by the environment at a particular time, leading to 

numerous offspring, causes strong competition for the available space at that time.  These are the three 

features that are important for coexistence by the storage effect in the stationary case [14], and we see 

here that they have critical roles in convergence of trajectories as well as coexistence in the nonstationary 

case.  

Note that this analysis uses the same idea as Box 3, but uses the log-odds scale.  Adding ΔZ(t) to 

each side of expression (A46) makes it the counterpart of expression (10) in Box 3, and proves 

convergence by showing that the counterpart of the derivative Fʹ is always less than 1 and infinitely often 

bounded below a given constant.  Thus, the counterpart of the product (11) must converge to zero.  

 

Part G: Stochastic boundedness, trajectories, and probability distributions 

Plots of population densities against time as shown in the graphs of Fig 1 and 2 are outcomes of 

simulations following fixed rules, driven by specific sequences of environmental states, which are 

themselves realizations of the environment.  It might be expected that stochastic processes are involved in 

the generation of the environment, but once the environment has been generated, it becomes a realization 

of that stochastic process, and we can study the environmental sequence that has actually occurred.  Thus, 

it can be treated deterministically, and the population dynamics that result from it, in so far as they are 

related to it by deterministic rules, (e.g. Boxes 2, 3 & 4 equations 1, 9 & 14) can also be treated 

deterministically. In the probabilistic sense, they are outcomes conditional on the environment.  Properties 
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of the AEDT can then be determined directly in terms of the given environmental sequence.  For example, 

the discussion above of convergence of equation (A14) depends on specific properties of the actual 

environmental sequence.   

However, it is also possible to take a probabilistic approach where these properties are not given, 

but probabilistic rules generating them are given. We could then ask the probability that (A14) converges 

as s converges on – ∞ or t converges on ∞, as well as about the values it might converge on. In the 

stationary case, these questions have well defined answers. For example, Lemma 5.2 of [10] shows how 

the ergodic theorem for stationary processes guarantees both forward and backward convergence in a 

model like the Beverton-Holt. A nonstationary stochastic process can be anything at all, but given the 

simplicity of the conditions for convergence on a meaningful AEDT for the Beverton and Holt model, for 

a given environmental realization, is easy to see how a nonstationary stochastic process might be 

constrained to guarantee convergence.  For example, bounding the process R(t) below by a stationary 

process for which suitable convergence occurs, and bounding a(t) above by a stationary process plus 

polynomial trends in both the positive and the negative direction of time identifies a broad range of 

nonstationary processes for which convergence on the AEDT will also occur with probability 1.   

In the lottery model in the case of a stationary environment, independent from one time to the 

next, I show[17] how a simple linear iteration places a uniform lower bound on the probability that the 

population at any time is below a specific value.  That bound is of the form  

 P(Ni(t) < x) < xεM, (A47) 

for some positive numbers ε and M, which means that low population sizes have uniformly low 

probability of being found— a condition that is called stochastically bounded persistence. The same 

technique can be applied to the nonstationary case.  As a simple sketch as to how this nonstationary 

analysis is done, assume that the environment fluctuates randomly from year to year about some 

nonstationary environmental trajectory, Ens(t), t = ...– 2, – 1, 0, 1, 2, ... Conditional on Ens(.), the 

environment varies independently over time, but with a time-dependent probability distribution. 
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Following the same technique in Appendix 3 of [17], but now conditional on Ens(.), for any given positive 

ε, a difference inequality can be derived: 

   ns ns( 1) | (.) ( ) | (.) ( , )i iE N t E N t t a
            E E  (A48) 

where a is a positive constant and ρ(t, ε) becomes less than 1 for ε sufficiently small whenever the 

conditional expected growth from low density is positive, i.e. 

  ns
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Like the reciprocal density in the Beverton-Holt model, inequality (A48) has the explicit solution
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An average tendency for growth from low density in the lottery model is derived from fluctuations in the 

environment, both conditional on Ens(.), and overall [18].  Thus, sufficient environmental fluctuations, 

relative to their overall tendency to favor one species over the other, can lead the products of the ρ’s in 

inequality (A50) to converge to 0 as either s tends to – ∞ or t tends to ∞. This outcome requires also δ < 1, 

or else only one of the two species could satisfy these conditions [17]. With these considerations, various 

scenarios for nonstationary change lead to a uniform bound  

  ( )iE N t M
      , (A51) 

from which (A47) follows in the nonstationary case, proving stochastically bounded persistence.  

 Note that the condition (A6) of Part C is sufficient for condition (A51) to apply to the Beverton-

Holt model with ε = 1 (equation A7). In addition, asymptotic bounds, both upper and lower are given by 

the nonstationary distribution elucidated for y*(t) of the Beverton-Holt model in Part D.  These can be 

looked up in normal distribution tables for the asymptotic Gaussian distribution, or given limits from 
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Chebychev’s and related inequalities directly from the moments.  

 

Part H: The Dam Model 

Box 5 leaves two loose ends.  First, the sign of S’ − S never changes.  Second, a unique AEDT is 

approached in the backwards sense.  To see that S’ − S never changes sign, note that both S’ and 

S can only change continuously, and so to change sign they would have to approach each other, 

become equal and cross over. As they approach each other, however, the derivative of their 

difference must approach zero as they are governed by the same equation, and at most they can 

become equal and stay equal. In most cases, however, the declining derivative of their difference 

means they can only approach each other asymptotically. No change between positive and 

negative signs is possible in any case.   

 

To see that a unique AEDT is approached in the backward sense, assume that S’ starts at the 

same value as S but at an earlier time s’.  Indexing S by the starting time as well as the current 

time, we consider the sequence {Ss(t)} as a sequence in s for fixed t with S’(t) = Ss’ (t).  Equation 

(18) of Box 5, now implies 

 ( )| ( ) ( ) | K t s
s sS t S t Me 

  , (A52) 

where M is the maximum capacity of the dam, and therefore the maximum possible difference 

between S values. As a consequence, the LHS of (A52) must approach zero as s → −∞, 

independently of the value of s’.  Thus, {Ss(t)} is a Cauchy sequence in s and so converges on a 

unique value, which defines the AEDT.  
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