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Web Appendix A: The connection between coun-
terfactual and observational data

Here, we demonstrate that following the causal inference assumptions
made in Section 3 of the manuscript, we would be able to deduce the dis-
tribution for regime gb specific counterfactuals p

R
b
K ,L

b
K−1

(rK , lK−1) from the
distribution of the observed data. This can be written as
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First, we have for a fixed gb
k−1(ok−1,ak−2) = ak−1 ∈ Ak−1, k = 1, · · · , K,
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and for k = 1, · · · , K − 1,
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Here we need to show that the three assumptions are sufficient to connect
these to the distribution of observed data, i.e., we want to show
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Since SADT treatment will not start at baseline, A0 = 0, thus for k = 1, we
have

pRC
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Next we want to show that equation (1) and (2) also held for k > 1 cases. Let
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denote the set of corresponding counterfactual variables for

k = 1, · · · , K. Thus ZC
R,K = ZC is the full set of counterfactuals up to tK .
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Then joint density of (ZC
k ,Ak−1) can be linked to the observed variables as
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Notice the no unmeasured confounders and consistency assumptions are em-
ployed here. Similarly,
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Furthermore, the observed data can be further linked to the treatment spe-
cific counterfactuals through ZC
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Thus, for k = 2, · · · , K, we have
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This completes the argument.

Web Appendix B: Proof of Property 1

For a given regime g, Cb
k = Akg
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(ii) For the case that ak−1 = 1, the patient will stay on treatment after tk−1
by the setting, so we have P (Cb

k = 1|Cb

k−1 = 1̄,Ok = ok,Ak−1 = ak−1) = 1,
on the other hand,

P
(
Ak = 1|Ok = ok,Ak−1 = ak−1

)
= I

{
gb(ok,ak−1) = 1

}
= 1

P
(
Ak = 0|Ok = ok,Ak−1 = ak−1

)
= I

{
gb(ok,ak−1) = 0

}
= 0

thus, we have

P (Cb
k = 1|Cb

k−1 = 1̄,Ok = ok,Ak−1 = ak−1)

=P
(
Ak = 1|Ok = ok,Ak−1 = ak−1

)
I
{
gb(ok,ak−1) = 1

}
+ P

(
Ak = 0|Ok = ok,Ak−1 = ak−1

)
I
{
gb(ok,ak−1) = 0

}
Property 1 then follows by combining (i) and (ii).

Web Appendix C: Proof of Proposition 1

The consistency of µ̂b can be proved by first proving the consistency of
Λ̂b(t) for t ∈ (0, tK ]. For subject i, let Ti be the observed event time and Di

be the censoring time for subject i. Let T b
i be the counterfactual event time

if subject i follows regime gb. For simplicity, here, we consider the setting
we used in our simulation studies that Di is unconditionally independent of
Ti and T b

i . The more general setting where Di is conditionally independent
of Ti and T b

i can be proved in a very similar way. Let Xi = min{Ti, Di}
and δi = I(Ti ≤ Di). The observed event counting process is defined as
Ni(t) = δiI(Xi ≤ t), and denote the at risk indicator by Yi(t) = I(Xi ≥ t).
Let ŵb

A,k,i and wb
A,k,i be the estimated and true weight for subject i at time

tk, respectively. Similarly, for the gb specific outcome we will have Xb
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b
A,j(s)

dNi(s)

=

∫ t

0

n−1
∑n

i=1 ŵ
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when the weight are consistently estimated, i.e. ŵb
A,i(s) → wb

A,0,i(s) for k =
maxj{tj ≤ s} as n→∞, by the Weak Law of Large Numbers (WLLN), one
can obtain that n−1
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Notice here only the gb adherent person-time pieces from observed data were
included here, i.e. ak,i = gbk(ok,i,ak−1,i) for k = 1, . . . , K − 1. Thus, the
second last equality holds by the results in Web Appendix A. Using similar
techniques, one can show that n−1

∑n
i=1 ŵ

b
A,i(s)dNi(s) converges to P (Di >

s)dF b(s) as n → ∞. By combining these two parts, one can obtain that
Λ̂b(t)→Λb

0(t). It is then straightforward to show that µ̂b converges to µb
0 as

n→∞ using the continuous mapping theorem.

Web Appendix D: The true weights in simula-
tion study

In our setting, we consider the treatment regime when the number of
decision making stages is relatively large, since Ak grows very fast with the
increase of k, a practical problem is then for certain regimes the positivity
assumption may not always hold. Thus it is possible that, a regime we are
interested in may not always be viable across all iterations of our simulations.
To avoid this problem and make sure the regimes of interest are estimable,
we set up the simulation to make sure that there is no very extreme values
for the true weights among the regimes of interest. To better understand
this point, here we briefly explain how the probabilities of observing different
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regimes in our simulation are connected to the true weights, and how the
weights are bounded away from extreme values.

In the simulation study, we generate the observational data by randomly
assigning a patient to one treatment regime in a given set of finite number of
regimes (10 for Scenario 1 and 100 for Scenario 2). This is trying to mimic
the situation where patients may go to different physicians and/or different
hospitals. Meanwhile, we will show below that, this also guaranteed that the
true weights for each of these regimes involved are bounded.

First, it may not be obvious how such a mechanism is connected with
time-dependent treatment assignment P (Ak|Ak−1,Ok) at time tk, k = 1, · · · , K.
Let PSA0

K denote the counterfactual SADT free PSA trajectory. As men-
tioned in the paper, for a given regime gb, we can determine the time to
initial SADT solely based on PSA0

K as

U b = min{tk : PSA0
k ≥ b,PSA0

k−1 < b,PSA0
k > PSA0

k−1, k = 1, · · · , K}

For patients whose PSA does not go above the threshold b, i.e., will not be
assigned to SADT within the time period of the study if they follow regime
gb, we denote the observed SADT initiation time U b = ∞. Then for all J
regimes that were used to simulate the observational data gb1 , gb2 , · · · , gbJ ,
we can calculate the treatment time U b1 , U b2 , . . . , U bJ . Let pj denote the
probability to assign to regime gbj , j = 1, . . . , J , then the probability to start
treatment at tk can be written as

P (Ak = 1|Ak−1 = 0,Ok) =
J∑

j=1

I{U bj = tk} × pj.

i.e. the probability to initiate SADT at tk is the sum of probabilities of
observing the regimes which would initiate SADT at tk according to the
patient’s given SADT free PSA trajectory. Furthermore, we can calculate
the true weight for regime gb adherence as

wb
A,k =

I{Cb
k = 1|Cb

k−1 = 1,Ok}
P (Cb

k = 1|Cb

k−1 = 1,Ok)

where there are two cases:
(i) If the observed treatment ak = 0, i.e. the patient did not receive
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SADT up to time tk, we have

P (Cb
k = 1|Cb

k−1 = 1,Ok) = 1−
k∑

l=1

P (Al = 1|Al−1 = 0,Ol),

(ii) If there exists l ≤ k such that al = 1 and al−1 = 0, i.e. we observe
the patient starts SADT at tl before or at tk, then

P (Cb
k = 1|Cb

k−1 = 1,Ok) = P (Al = 1|Al−1 = 0,Ol).

Thus in both (i) and (ii) we can calculate wb
A,k from {pj : j = 1, . . . , J}.

Furthermore, since the regime of interest is within the set of regimes used
to generate the observational data. and pj > 0 for all j = 1, . . . , J . For
case (i), there exists at least one regime gbq (the regime of interest) with
A

bq
k−1 = 0, thus we have

∑k
l=1 P (Al = 1|Al−1 = 0,Ol) <

∑J
j=1 pj = 1, i.e.

P (Cb
k = 1|Cb

k−1 = 1,Ol) > 0. Similarly, for case (ii), there exists at least
one regime gbq (the regime of interest) with A

bq
l = 1 and A

bq
l−1 = 0, thus

P (Cb
k = 1|Cb

k−1 = 1,Ok) = P (Al = 1|Al−1 = 0,Ol) ≥ pq > 0. Thus the
positivity assumption holds in our simulation settings.
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