SUPPLEMENTARY MATERIAL

miR-203 and *miR-205* expression patterns identify subgroups of prognosis in cutaneous squamous cell carcinoma

Javier Cañueto et al.

Supplementary Materials and methods	.pages 2-5
Supplementary Figure legend	.page 6
Supplementary Figure S1	page 7
Supplementary Table S1	.page 8
Supplementary Table S2	pages 9
Supplementary Table S3	page 10, 11
Supplementary Table S4	bage 12
Supplementary Table S5	bage 13

PATIENTS, MATERIALS AND METHODS (Supplementary information)

Clinico-epidemiological, pathological and clinical evolution variables of CSCC

We evaluated different clinico-epidemiological, pathological and clinical evolution variables in the cohort of CSCCs studied, which are described in **Supplementary Table S1**. In particular, the clinico-epidemiological variables recorded were: (i) the patients' age; (ii) gender; (iii) clinical history of actinic keratosis, non-melanoma skin cancer and CSCC; (iv) presence of immunosuppression; (v) history of chronic sun exposure; and (vi) tumour location, where we distinguished between head and neck of high risk or poor evolution (including ear, lower lip, temple, nose, eyelid and preauricular region), head and neck of low risk (including the rest of head and neck locations), and trunk and extremities.

Pathological variables: (i) tumour thickness and tumour surface size were measured using hematoxilin-eosin stained samples with the OV100 software (Olympus[™]) - tumour surface size was the length of the largest diameter of each CSCC in its surface; (ii) the degree of differentiation was classified as good, moderate or poor ^{32, 33} (iii) the growth pattern was classified as expansive, infiltrative or mixed - the infiltrative growth pattern was considered when the tumour exhibited small nests, rows of cells and/or isolated tumour cells at the periphery of the tumour; the expansive growth pattern was considered when the tumour exhibited a compact growth, with non-disaggregated cells in the invasion front; and the mixed growth pattern was considered when the tumour displayed an expansive growth pattern, but tended to infiltrate any part of the invasion front; (iv) perineural invasion was defined as the infiltration of tumour cells in the perineurum and/or in the nerve itself; (v) lymphovascular invasion was when there were infiltrating tumour cells inside lymphatic and/or blood vessels; (vi) desmoplasia was defined as the thickening of collagen bundles around and inside the tumour that involved at least 30% of the stroma³² (vii) solar elastosis; (viii) presence of actinic keratosis at diagnosis associated with the tumour (located in the flanking epithelium).

We also considered the variables of poor clinical evolution, such as the occurrence of events associated with a poor prognosis during patient follow up. We studied: (i) local recurrence, considered when the tumour appeared in the same location from where the primary tumour had been removed previously, within the scar or associated with it, two months after surgery or later; (ii) nodal progression; (iii) distant progression when the tumour developed metastases in organs during the clinical follow up; (iv) death due to the CSCC when patients died from a cause related to CSCC; (v) stage of progression, defined by changes in the TNM classification during the follow up according to the 7th edition of the American Joint Committee of Cancer (AJCC) staging guidelines for CSCC; (vi) the existence of any of the previously indicated events associated with a poor clinical evolution during the follow up was also considered as a variable to be evaluated.

In our cohort study, 10 patients were immunosuppressed, 9 of which carried a single tumour. Local recurrence was observed in two cases. One patient displayed nodal progression in this group and had one more tumour, which was not included in this study. This tumour was 15 mm in diameter, moderately differentiated, 2.6 mm in thickness, and did not display perineural invasion (PNI) or lymphovascular invasion (LVI). The likelihood of this tumour causing nodal involvement was very low when compared to the characteristics of the other tumour that was present (poorly differentiated, 28 mm in diameter, 6.3 mm in thickness, with infiltrative growth pattern and PNI). There were no distant metastases in immunosuppressed patients in our cohort. All tumours were excised with as a curative measure.

In situ hybridization

Tissue microarray slides were deparaffinised, dehydrated and immersed in 0.2 N HCl for 20 min; then, they were immersed in 0.5% Tween (PBS) solution and fixed in 10% neutralbuffered formalin. Proteinase K (200 mg/ml) digestion was used to treat fixed tissues at

3

37°C for 5 min. Following this, the slides were immersed in RNase-free water for 3 min and air-dried. The slides were prehybridized in 65% formamide, 5% SSC, 1% Tween-20, 100 mg/ml yeast RNA at 37° C for 2 hr, followed by hybridization with the probe at 37° C for 24 hr. Oligonucleotide probes complementary to miR-205 and miR-203 were purchased from Sigma. The probe sequences were: 5'-CAGACTCCGGTGGAATGAAGGA-3` (miR-205) and 5'-CAAGTGGTCCTAAACATTTCAC-3' (miR-203). Both the 5' and 3' ends were labelled with digoxigenin (DIG). The scrambled probe 5`-AGTCTATGGTATTCAGTACTCA-3` was used as a control. After hybridization the slides were washed in 2% SSC with 0.5% Tween-20 twice for 5 min at room temperature. DIG was identified through a specific antibody conjugated alkaline with phosphatase. This converts the soluble substrate 5-bromo-4-chloro-3'-indolylphosphate (BCIP) into a dark blue water- and alcohol-insoluble precipitate (NBT-BCIP). Finally, the nuclear counterstain was done with Fast Red.

Biplot interpretation

The biplot represents patients as points, and variables as vectors on a scattergram as a means of exploring the main characteristics of the data set. The distances among patients - points on the scattergram - are inversely related to their profile similarities, that is, patients close together have similar characteristics. Angles between vectors (variables) indicate the degree of association between variables. Acute angles indicate that the variables are closely related, that is, when a patient displays one of the characteristics he/she also displays the other one and vice versa. The angles between vectors representing the variables and factorial axis estimate the degree of relationship between the variable and the latent dimension, considering that the horizontal axis always provides more information. Variables forming acute angles with the first axis are the most relevant ones, ordering the patients in relation to the most important gradient of disease prognosis,

that is, to classify patients according to the prognosis of the disease. The projections of the patients onto the vector, representing the variables, estimate the expected probability of the characteristic for that patient given his/her combination of disease traits. The length of the vector that represents each variable indicates the discriminating power of the variable in separating out the patients. Shorter vectors are those with the greatest discriminatory power (as long as their information is adequately represented on the plot) ³¹.

SUPPLEMENTARY FIGURE LEGEND

Supplementary Figure S1. Clusters of CSCC prognosis identified by the logistic biplot. The figure shows cluster 1 (green) as having the best prognosis; cluster 2 as having an intermediate-good prognosis (red) and cluster 3 (blue) as having the worst prognosis. The characteristics of these clusters are shown in Table 1B. GP: Growth pattern; GD: Grade of differentiation; PNI: Perineural Infiltration; DESMO: Desmoplasia. See Supplementary materials and methods for more detailed explanation of the biplot interpretation.

Supplementary Figure S1

Supplementary Table S1. Descriptive data in the cohort of patients with CSCC.

The table shows the clinico-epidemiological, pathological and clinical evolution characteristics of the study cohort. N: number of cases. SD: standard deviation. M: males. F: females. HN: head and neck. NMSC: Non-melanoma skin cancer. EE: extremities. mm: millimetres. n.a.: not applicable.

	N	Percentage		
	Age (years) (mean (SI	83.92 (9.63)	n.a.	
	Gender	45M/34F	n.a.	
	History of actinic kerat	61	77.2	
Clinico- opidomiological	History of NMSC	41	51.9	
Variables	History of CSCC		37	46.5
	Immunosuppression		9	11.4
	Location	High risk	38	48.1
		Low risk	41	51.9
	Thickness (mean (SD) in mm)	6.68 (4.611)	n.a.
	Size (mean (SD) in m	m)	18.93 (9.96)	n.a.
		Good	25	31.6
	Grade of differentiation	Moderate	37	46.8
		Poor	17	21.5
Pathological		Expansive	26	32.9
Variables	Growth pattern	Mixed	17	21.5
		Infiltrative	36	45.6
	Perineural invasión		14	17.7
	Lymphovascular invas	6	7.6	
	Desmoplasia	21	26.6	
	Solar elastosis	76	96.2	
	Positive margins		0	0
	Events of bad prognos	sis considered globally	12	15.2
	Local recurrence		4	5.1
Clinical Evolution	Nodal progression		10	12.7
Variables	Metastasis		1	1.3
	Changes in the stage	of progression (TNM)	10	12.7
	Death	5	5.1	

Supplementary Table S2. Associations between different tumour features of CSCC. The

table shows associations among pathological traits that were statistically significant (red) or showed statistical trend (blue). N: number of cases. N.S.: non-significant. mm: millimetres. Red: significant *P* values. Blue: statistical tendency.

	Growth Pattern					
		Expansive	Mixed	Infiltrative	P value	
	Good	13	9	3		
Grade of Differentiation (N)	Moderate	10	8	19	0.00001	
	Poor	3	0	14		
Deemonlasia (NI)	Yes	2	3	16	0.003	
Desiliopiasia (N)	No	24	14	20	0.003	
Perineural Invasion (N)	Yes	0	1	13	0.0001	
	No	26	16	23	0.0001	
Tumour Thickness (median in mm	1)	18 (10)	18 (7)	20 (10)	0.001	
Tumour Size (median in mm)		3.5 (4.25)	5 (3.95)	6.25 (7)	N.S.	
	Grade of Differentiation					
		Good	Moderate	Poor	P value	
	Yes	3	11	7		
Desmoplasia (N)	No	22	26	10	0.092	
Perineural Invasion (N)	Yes	1	7	6		
	No	24	30	11	0.032	
Tumour Thickness (median in mm)		4 (2.63)	6 (4.5)	6 (6.25)	0.023	
Tumour Size (median in mm)		19 (9)	15 (8)	20 (10)	N.S.	
		Peri	neural Inva	ision		
		Yes		No	P value	
Tumour Thickness (median in mm)		8 (7)		5 (4.60)	0.007	
Tumour Size (median in mm)		20.5 (11.25)		15.50 (7.75)	0.069	
		[Desmoplas	ia		
		Yes		No	P value	
Danin anna I.I. (All)	Yes	9		5	0.00004	
Perineural Invasion (N)	No	12		53	0.00001	

Supplementary Table S3. List of miRNAs differentially expressed in skin cancer cell lines with different grade of aggressiveness. A) List of 45 miRNAs most differentially expressed in non-malignant versus squamous CSCC cell lines. B) List of 43 miRNAs most differentially expressed between squamous CSCC and spindle CSCC cell lines. These lists of miRNAs are represented in the heatmaps on Figure1A and 1B, respectively.

A. Non-malignant squamous / Squamous CSCC ratio									
miRNA		RMA signal (log2 ratio)		RMA signal (decimal ratio)					
hsa-miR-671-3p/mmu-miR-671-3p/rno-miR-671	倉	1.20	Ŷ	2.64					
hsa-let-7g*/mmu-let-7g*	♠	1.17	1	2.15					
hsa-miR-203/mmu-miR-203/rno-miR-203	倉	1.15	倉	2.07					
hsa-miR-19a*/mmu-miR-19a*	♠	1.14	1	2.00					
hsa-miR-200c/mmu-miR-200c/rno-miR-200c	倉	1.12	倉	1.95					
mmu-miR-34b-5p/rno-miR-34b	♠	1.11	1	1.66					
hsa-miR-140-5p/mmu-miR-140/rno-miR-140	倉	1.11	倉	1.74					
hsa-miR-194/mmu-miR-194/rno-miR-194	♠	1.10	1	1.62					
hsa-miR-205/mmu-miR-205/rno-miR-205	倉	1.10	倉	1.86					
hsa-miR-224/mmu-miR-224/rno-miR-224	倉	1.09	1	1.49					
hsa-miR-19a/mmu-miR-19a/rno-miR-19a	₽	0.90	Ŷ	0.50					
hsa-miR-182/mmu-miR-182/rno-miR-182	₽	0.90	Ŷ	0.51					
hsa-miR-26a/mmu-miR-26a/rno-miR-26a	₽	0.89	Ŷ	0.51					
hsa-miR-146a/mmu-miR-146a/rno-miR-146a	₽	0.89	↓	0.56					
hsa-miR-29c/mmu-miR-29c/rno-miR-29c	₽	0.89	Ŷ	0.53					
mmu-let-7d/rno-let-7d	₽	0.89	↓	0.46					
mmu-miR-706	₽	0.89	Ŷ	0.47					
hsa-let-7a/mmu-let-7a/rno-let-7a	₽	0.89	↓	0.46					
hsa-miR-31/mmu-miR-31/rno-miR-31	₽	0.88	Ŷ	0.40					
mmu-let-7g	₽	0.88	Ŷ	0.42					
hsa-miR-142-5p/mmu-miR-142-5p/rno-miR-142-5p	₽	0.88	Ŷ	0.53					
hsa-miR-16/mmu-miR-16/rno-miR-16	₽	0.88	Ŷ	0.42					
hsa-miR-365/mmu-miR-365/rno-miR-365	₽	0.88	↓	0.48					
hsa-miR-15b/mmu-miR-15b/rno-miR-15b	₽	0.88	Ŷ	0.43					
hsa-miR-23a/mmu-miR-23a/rno-miR-23a	₽	0.88	↓	0.38					
hsa-miR-20a/mmu-miR-20a/rno-miR-20a	₽	0.87	Ŷ	0.40					
hsa-miR-801/mmu-miR-801	₽	0.87	↓	0.43					
mmu-miR-685	₽	0.87	↓	0.44					
mmu-miR-106a	₽	0.85	Ŷ	0.36					
hsa-miR-142-3p/mmu-miR-142-3p/rno-miR-142-3p	₽	0.85	↓	0.44					
hsa-miR-106b/mmu-miR-106b/rno-miR-106b	₽	0.85	Ŷ	0.34					
hsa-miR-668/mmu-miR-668	₽	0.85	↓	0.35					
hsa-let-7e/mmu-let-7e/rno-let-7e	₽	0.85	Ŷ	0.27					
hsa-miR-9*/mmu-miR-9*/rno-miR-9*	₽	0.85	Ŷ	0.41					
hsa-miR-21/mmu-miR-21/rno-miR-21	₽	0.84	Ŷ	0.24					
mmu-miR-690	₽	0.84	Ŷ	0.22					
hsa-miR-125b/mmu-miR-125b-5p/rno-miR-125b-5p	÷	0.84	Ŷ	0.28					
hsa-miR-22/mmu-miR-22/rno-miR-22	₽	0.83	Ŷ	0.29					
hsa-miR-19b/mmu-miR-19b/rno-miR-19b	₽	0.83	Ŷ	0.28					
mmu-miR-207/rno-miR-207	₽	0.83	Ŷ	0.24					
hsa-miR-222/mmu-miR-222/rno-miR-222	₽	0.82	↓	0.25					
hsa-miR-221/mmu-miR-221/rno-miR-221	₽	0.81	Ŷ	0.27					
hsa-miR-193a-3p/mmu-miR-193/rno-miR-193	₽	0.81	Ţ	0.27					
hsa-miR-29a/mmu-miR-29a/rno-miR-29a	₽	0.79	Ŷ	0.18					
hsa-miR-29b/mmu-miR-29b/rno-miR-29b	₽	0.78	Ŷ	0.16					

B. Squamous CSCC / Spindle CSCC ratio								
miRNA	RMA signal (log2 ratio)	RMA signal (decimal ratio)						
hsa-miR-205/mmu-miR-205/rno-miR-205	1.31	4.51						
hsa-miR-200b/mmu-miR-200b/rno-miR-200b	1.25	1 3.33						
hsa-miR-141/mmu-miR-141/rno-miR-141	1.25	1 3.33						
hsa-miR-106b/mmu-miR-106b/rno-miR-106b	1.24	1 4.04						
hsa-miR-200a/mmu-miR-200a/rno-miR-200a	1.24	2.98						
hsa-miR-200c/mmu-miR-200c/rno-miR-200c	1.20	2.47						
hsa-miR-31/mmu-miR-31/rno-miR-31	1.20	3.75						
hsa-miR-23a/mmu-miR-23a/rno-miR-23a	1.20	3.67						
mmu-miR-466f-3p	1.19	3.27						
hsa-miR-20a/mmu-miR-20a/rno-miR-20a	1.19	3.06						
hsa-miR-22/mmu-miR-22/rno-miR-22	1.18	3.12						
hsa-miR-21/mmu-miR-21/rno-miR-21	1.18	3.95						
hsa-miR-222/mmu-miR-222/rno-miR-222	1.18	3.07						
hsa-miR-183/mmu-miR-183/rno-miR-183	1.17	2.45						
hsa-miR-182/mmu-miR-182/rno-miR-182	1.16	2.46						
hsa-miR-30b/mmu-miR-30b/rno-miR-30b-5p	1.16	2.44						
hsa-miR-16/mmu-miR-16/rno-miR-16	1.15	2.52						
hsa-miR-30c/mmu-miR-30c/rno-miR-30c	1.14	2.23						
hsa-miR-30a/mmu-miR-30a/rno-miR-30a	1.14	2.29						
hsa-miR-146a/mmu-miR-146a/rno-miR-146a	1.13	1.86						
hsa-miR-18a/mmu-miR-18a/rno-miR-18a	1.13	1.98						
hsa-miR-146b-5p/mmu-miR-146b	1.11	1.73						
hsa-miR-301a/mmu-miR-301a/mo-miR-301a	1.11	1.89						
mmu-miR-20b	1.10	1.75						
hsa-miR-24-2*/mmu-miR-24-2*/rno-miR-24-2*	1.10	1.65						
hsa-miR-19b/mmu-miR-19b/rno-miR-19b	1.10	2.02						
mmu-miR-466e-5p	1 10	1 68						
mmu-miR-20h*/rno-miR-20h-3n	1 10	1.55						
hsa-miR-200a*/mmu-miR-200a*	1 10	1.57						
hsa-miR-31*/mmu-miR-31*	1.10	1.07						
hsa-miR-34a/mmu-miR-34a/rno-miR-34a	1.10	1.73						
hsa-miR-24-1*/mmu-miR-24-1*/rno-miR-24-1*	1.10	1.75						
hsa-miR-135h/mmu-miR-135h/rno-miR-135h	1.05	1.75						
hsa-miR-27b/mmu-miR-27b/rno-miR-27b	1.05	1.88						
mmu-miR-34h-5p/mo-miR-34h	0.89	0.58						
mmu-miR-382*		0.50						
mmu-miR-455	0.03 0.89	0.52						
mmu-miR-433*	- 0.03 - 0.87							
hsa_miR_109a_5n/mmu_miR_100a_5n/mo_miP_100a_	0.07							
mmu-miP-100h*								
hea-miP-100a-2n/hea-miP-100h-2n/mmu miP-100a								
hsa-miD-181a/mmu-miD-191a/ma-miD-191a	- U.04 L Ω 02							
$h_{2} = miR_{1} + 10 ra/minu-miR_{1} + 10 ra/miR_{1} + 10 ra$								
119a-1111(* 149/11111(* 111(* 149/1110*1111(* 149	V.01	▼ 0.00						

Supplementary Table S4: Quantification of *miR-203* and *miR-205*

expression in human CSCC. The table shows the degree of expression in differentiated and undifferentiated areas, and in the invasion front. N: number of cases.

	miR-203						
		Differentiated areas	Undifferentiated	P value			
	Absent and scarce (N)	33	36	0.014			
ч	Moderate and intense (N)	28	10	0.014			
ssio		miR-205					
pre		Differentiated areas	Undifferentiated	P value			
A ex	Absent and scarce (N)	38	11	< 0.0001			
IRN/	Moderate and intense (N)	8	27				
Ĩ		Front of invasion					
		miR-203	miR-205	P value			
	Absent and scarce (N)	33	19	0 0008			
	Moderate and intense (N)	11	29	0.0000			

Supplementary Table S5. Associations of *miR-205* and *miR-203* genral expression with different characteristics of CSCC. A) Associations of clinico-pathological tumour traits and *miR-205* and *miR-203* expression. B) Associations of expression of *miR-205* and *miR-203* in the invasion front with the presence of different tumour traits. C) Associations of *miR-205* and *miR-203* and epithelial markers, E-CADHERIN and P63 expression. N.S.: non-significant. I.R.: interquartile range. Red: significant *P* values. Blue: statistical trend.

A. CLINICO-PATHOLOGICAL TUMOUR TRAITS AND GLOBAL EXPRESSION OF <i>miR-205</i> AND <i>miR-203</i>							
			miR-203		mi		
		Expression	No expression	P value	Expression	No expression	P value
Deemenleeis	Yes	4	17	0.05	14	7	0.001
Desmoplasia	No	25	33		25	33	0.004
	Expansive	11	15	N.S.	6	20	
Growth pattern	Mixed	4	13		9	8	0.003
	Infiltrative	14	22		24	12	
.	Yes	3	11		11	3	
Perineural invasion	No	26	39	N.S.	28	37	0.016
Thickness (Median (IR))		6 (8.25)	6(3)	N.S.	6 (7)	5.75 (2.88)	0.023
Surface (Median (IR))		21 (10.75)	20 (11.50)	N.S.	20 (11)	20 (8.5)	N.S.

	R
	υ.

PATHOLOGICAL TUMOUR TRAITS AND EXPRESSION OF miR-205 AND miR-203 IN THE FRONT OF INVASION

		miR-203		mi				
		Expression	No expression	P value	Expression	No expression	P value	
Growth pattern	Expansive	7	4		4	9		
	Mixed	3	9	0.001	6	4	0.026	
	Infiltrative	1	20		19	6		
Desmoplasia	Yes	0	12	0.086	9	6		
	No	11	21		20	13	N.S.	
Perineural invasion	Yes	0	11	0.007	10	2	0.061	
	No	11	22	0.027	19	17	0.001	
Thickness (Median (IR))		4 (2.75)	6.5 (6.5)	0.003	6.5 (7.5)	5.75 (2.38)	N.S.	

C.

EPITHELIAL MARKERS AND GLOBAL EXPRESSION OF miR-205 and miR-203

		miR-203			mi			
		Expression	No expression	P value	Expression	No expression	P value	
E-CADHERIN	Expression	21	30	NS	24	27	NS	
	No expression	8	20	15 13	13	N.5		
Ex Ex	Expression	8	29	0.000	27	10	0.0001	
F03	No expression	21	21	0.009	12	30	0.0001	