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Science In the Cloud (SIC):
A use case in MRI Connectomics
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Abstract

Modern technologies are enabling scientists to collect extraordinary amounts of com-
plex and sophisticated data across a huge range of scales like never before. With this on-
slaught of data, we can allow the focal point to shift towards answering the question of
how we can analyze and understand the massive amounts of data in front of us. Unfortu-
nately, lack of standardized sharingmechanisms and practices oftenmake reproducing or
extending scientific results very diŻcult. With the creation of data organization structures
and tools which drastically improve code portability, we now have the opportunity to de-
sign such a framework for communicating extensible scientific discoveries. Our proposed
solution leverages these existing technologies and standards, and provides an accessible
and extensiblemodel for reproducible research, called “science in the cloud” (SIC). Exploit-
ing scientific containers, cloud computing and cloud data services, we show the capability
to launch a computer in the cloud and run a web service which enables intimate interac-
tion with the tools and data presented. We hope this model will inspire the community
to produce reproducible and, importantly, extensible results which will enable us to col-
lectively accelerate the rate at which scientific breakthroughs are discovered, replicated,
and extended.

1 Introduction

Neuroscience is currently in a golden age of data and computation. Through recent tech-
nological advances [1], experimentalists can now amass large amounts of high quality data
across essentially all experimental paradigms and spatiotemporal scales; such data are ripe
to reveal the principles of brain function and structure. In fact, many public datasets and
open-access data hosting repositories are going online [2].

Concurrentwith this onslaught of data is a desire to run analyses, not just on data collected
in a single lab, but also on other publicly available datasets. An assortment of tools have been
developed around the community which solve a wide variety of computational challenges on
all types of data, enabling diŻcult scientific questions to be answered. With the ability to per-
form analyses often dependent only upon access to data and code resources, neuroscience
is now more accessible, with a lower barrier to entry.

However, there is no tool or framework that enables research to be performed and com-
municated in a way that lends itself to easy extensibility, much less reproducibility. Currently,
re-performing and extending published analyses whether through new data or code is often
unbearably diŻcult; (i) data may be closed-access; (ii) data may be organized in an ad hoc
fashion; (iii) the code may be closed-source or undocumented; (iv) code may have been run
with undocumented parameters and dependencies; (v) analyses may have run with specif-
ically hardware compiled code. These properties make validating and extending scientific
claims challenging.
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We propose a solution in the form of a publicly documented and deployable cloud in-
stance with a specific pipeline installed and configured to extend published findings; an im-
plementation we simply term “science in the cloud,” or, SIC (Latin for “thus was it written”).
SIC instances have several fundamental components, as summarized in Figure 1. To address
data access, we put data in the cloud. To address data organization, we utilize recently pro-
posed data standards. To address closed source and undocumented, we generate interactive
demonstrations. To address software and hardware dependencies, we utilize virtualization,
automated deployment, and cloud computing. SIC puts these pieces together to create a
computing instance launched in the cloud designed for not only producing reproducible re-
search, but enabling easily accessible and extensible science for everyone.

Figure 1: Framework for science in the cloud illustrating the six necessary components
for SIC. Cloud data storage enables universal access to data products. Data organiza-
tion structures enable consistent tool and users interactions across datasets. Interac-
tive demonstrations allow users to participate in live scientific analyses. Virtualization
enables tools to be deployed reliably and consistently. Deployment tools organize re-
sources provided by computing platforms, and enable running analyses at scale. To-
gether, these tools create a framework for discovery that is optimized for extensible
science.

A focus on reproducibility is already commonplace in a variety of disciplines. In genomics,
Bioboxes [3] provide a framework for reproducible and interchangeable analysis containers,
and tools are exploiting scalable computing solutions and being published with reproduction
instructions (see: [4; 5]). Commentaries on reproducible research provide suggestions to re-
searchers on how to tackle the challenges that are present in their scientific setting [6; 7].
While these works have accelerated reproducibility and extensibility in their fields, the meth-
ods proposed do not scale to the cloud or enable real-time interactivity. SIC tackles these
challenges for the burgeoning field of computational neuroscience, and provides a frame-
work designed to minimize the bottlenecks between publication and novel discoveries.

We introduce and document an example use case of SIC with the ndmg pipeline, thus
entitled SIC:ndmg. We have developed capability which enables users to launch a cloud in-
stance and run a container which performs an analysis of a cohort of structural and diŷusion
magnetic resonance imaging scans by (i) downloading the required data from a public repos-
itory in the cloud, (ii) fully processing each subject’s data to estimate a connectome for each
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subject’s associated graph statistics, and, optionally, (iii) plot quality control figures of various
multivariate graph statistics.

2 Methods

There are six key decisionswhichmust bemadewhen following SIC: data storage, data organi-
zation, interactive demonstrations, virtualization, deployment, and computing. The selection
made for each of these components will have a significant impact on available selections for
the others. The final product will be a highly interdependent network of tools and data. Table
1 shows a summary of the selections made for each of the criteria enumerated in the previ-
ous section with rationales for the decisions. In general, the tools selected were those which
provided the most command-line/Application Programming Interface (API) support for their
service and had the most complete documentation or online support community, enabling
setup with relative ease.

Cloud Data Storage There are several options when storing data in a publicly accessible
location, such as a cloud storage service or public repositories. Depending on the nature of
the data being stored, diŷerent concerns (such as privacy) must be satisfied. A service should
also be accessible through an API, enabling developers to access the data programatically.
Depending on the desired application, a systems autonomy is also a valuable feature, enabling
the developer full control on how the data is organized. Amazon’s S3 service was used in this
SIC implementation because it satisfied all of these requirements. Similarly, Google’s Cloud
Engine orMicrosoft Azure satisfy these requirements, and the decision wasmade based upon
our existing domain knowledge and familiarity with each of these systems.

DataOrganization The newly publicly-available data then needs to be organized in accor-
dance with a data specification which enables users to navigate the repository successfully.
Depending on the modality of data being used there are diŷerent structures which can be
adopted. In the case of MRI, the BIDS [11] specification is a well documented and community
developed standard which is intuitive and allows data to be both easily readable by humans
and navigated by programs. Organizations such as “Neurodata without Borders” [12] would
serve as an additional options for physiology data, but are unsuitable for this application. For-
mats such as MINC [13] focus heavily on metadata management but less on file hierarchy,
making them useful though not fully suŻcient for this application.

Interactive Demonstrations To encourage use of data and the tools used to analyze it,
interactive demonstrations that enable users to visualize and work with some subset of the
data are extremely valuable. Various programming languages have diŷerent types of demon-
stration environments available which either enable full interactivity or are pre-compiled to
display code and results. A popular tool for interactive development and deployment of
Python code is Jupyter [14], and thus was the tool used here. The popularity of this tool hope-
fully increases the average user’s familiarity with the interface, lowering the barrier to entry
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for interacting with SIC:ndmg. If the developer were more familiar with another program-
ming language, there is no particular reason why one would select Jupyter over an equivalent
package in R, such as R Notebook [15].

Virtualization To guarantee consistent dependencies and application setup, developing
and distributing virtualized environments containing all necessary code products minimizes
user eŷort to obtain expected performance. These virtual environments should be able to
be deployed on any operating system and have minimal hardware dependent code. A key
desiderata is that the virtualization system minimizes unnecessary overhead for the applica-
tion. Though it does not aŷect run-time performance, a repository of public machine images
is an attractive feature for this model as it enables sharing configurations. Docker [17] was
chosen because it satisfies these practical requirements, and the accessibility of Docker Hub
enables images to be quickly found and deployed. Virtual machines such as those created in
Virtual Box [18] or VMware [19] provide lots of range in terms of operating systems which can
be launched and allow native access to themachine through a GUI; while being great features,

Table 1: There are six key components which must be selected for SIC. Bold indicates
the selections made here, with their positive and negative qualities compared to some
alternatives.

Hurdles Available Tools Pros of Selection Cons of Selection

1) Data Storage
S3 [8],
Dropbox [9],
Google Drive [10]

API, pay-by-usage
requires user
familiarity with
Amazon tools

2) Data Organization
BIDS [11],
NWB [12],
MINC [13]

documented,
validator, active
community

new, not yet fully
adopted

3) Interactive demo’s
Jupyter [14], R
Notebook [15],
Shiny [16]

versatile,
accessible

optimized for
Python

4) Virtualization
Docker [17],
Virtualbox [18],
VMware [19]

lightweight,
self-documented

–

5) Deployment

manual, ECS [20],
Kubernetes [21],
MyBinder [22],
CBRAIN [23]

no additional
dependencies

does not scale
eŷectively

6) Computing

EC2 [20], Google
Compute
Engine [24],
Microsoft
Azure [25]

scalable, flexible
requires
technological
expertise
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it is unnecessary for this application.

Deployment Deployment platforms allow users to define a specific set of instructions that
can be launched on a single or multiple machines simultaneously. In physical hardware con-
figurations, a cluster’s scheduler would play this role; in the cloud, such tools should be able
to take advantage of compute resources across diŷerent locations and services, and enable
scaling with the amount of processing required. In the case of SIC:ndmg, a single deploy-
ment was needed, so this challenge simply solved with manual deployment of the service. If
multiple deployments were needed, either Kubernetes [21] or Amazon’s ECS serve as scal-
able solutions. Tools such as CBRAIN [23] and MyBinder [22] also enable distributed deploy-
ment of code, but are more specialized in the requirements the tools and services that can be
launched.

Computing Cloud computing services enable users to launch customized machines with
specific hardware configurations and specifications, making them versatile for diŷerent va-
rieties and scales of analyses. The more general the hardware that can be used, the more
accessible the tool is for a user to adapt and use in their own environment. With no specific
hardware requirements in this application, and previous in-house experiencewith the service,
Amazon’s EC2was selected. The benefit of using EC2 is that deploying code at diŷerent scales
and locations is trivially extendable, so implementations can be easily taken from prototype
to deployment.

Further details of our specific implementation and methods are provided in Appendix A.

3 Results

We demonstrate a working example of SIC, SIC:ndmg. The ndmg pipeline [26] is an open-
source, scalable pipeline for human structural connectome estimation from diŷusion and
structural MR images (collectively refer to hereafter as “multimodal MRI”, orM3RI for brevity).
The result is a portable and easily extensible tool for scalable connectome generation. A live
demonstration is presented that enables reader interaction with the pipeline at the cost of
a simple url click, and data products of the tool are presented in both the context of ‘repro-
ducibility’ and ‘extensibility.’ This tool enables quantitative structural analyses of the human
brain to be performed on populations of M3RI scans, and can lead to discoveries of the rela-
tionship between brain connectivity and neurological disease.

3.1 Neuroscience as a Service

The analysis transforms “raw” M3RI data into graphs. Kiar et al., (in preparation) describes
the pipeline in detail; here we provide a brief overview. The pipeline (Figure 2) consists of four
main steps: registration, tensor estimation, tractography, and graph estimation. Note that
the choices below are made for expediency and simplicity, other choices might be beneficial
depending on context.

Registration in ndmg is performed in several stages, and is all performed using FSL [27].
First, the diŷusion image is self-aligned and noise corrected using the eddy_correct func-
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tion. Second, the transform is computed which aligns the B0 volume of the diŷusion image
to the structural scan using epi_reg. Third, the transform between the structural image and a
reference atlas is computed with flirt. Finally, the transforms are combined and applied to
the self-aligned diŷusion image. The tensor estimation and tractography steps are performed
with the DiPy package [28]. A simple tensor model fits a 6-component tensor to the image,
and deterministic tractography with the EuDx algorithm is run, producing a set of streamlines.
Graph generation takes as input the fiber streamlines, and maps them to regions of interest
(ROIs) defined by a pre-built parcellation (such as those packaged with FSL or generated with
brain segmentation algorithms) and returns a ROI-wise connectome. An edge is added to the
graph for each pair of nodes along a given fiber. The final step is computing (multivariate)
graph statistics on the estimated connectomes. The statistics computed are [29]: number
of non-zero edges, degree distribution, eigen sequence, locality-statistic 1, edge weight dis-
tribution, clustering coeŻcient, and betweenness centrality. These statistics provide insight
into the structure of the brain graphs, and provide a low-dimensional feature by which the
graphs for diŷerent scans can be compared to one another. To provide a preliminary quality
control step, we plot the graph statistics [29] for each graph (Figure 4).

3.2 Live Demonstration

Ademonstrationof SIC:ndmg is available athttp://scienceinthe.cloud/. This SIC is hosted
on an EC2 micro-instance – it is very aŷordable, so can stay online indefinitely with little cost
or maintenance. This instance is running a Jupyter server which contains the demonstration
notebook, sic_ndmg.ipynb. Launching this demonstration notebook will pull up an interface
which resembles that of Figure 3A.

For demonstration purposes, a downsampled subject is used in this notebook which re-
duces analysis time from∼1 hr/subject/core to∼3 min/subject/core. The ndmg pipeline has
two levels of analysis: graph generation and computing summary statistic. Graph genera-

Figure 2: Structure of the ndmg pipeline connectome estimation. Taking as input dif-
fusion and T1 weighted MRI, ndmg first aligns the diŷusion data to a reference atlas by
means of the T1 image. Tensors are then computed from the aligned diŷusion volume.
Fiber streamlines are generated by performing tractography on the tensors. Finally, the
fibers are mapped between regions of interest (ROIs) which then become nodes in the
graph.
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tion is the process of turning diŷusion and structural MR images into a connectome (i.e. brain
graph), and the summary statistic computation produces a graph of several graph features on
each produced connectome and plots them together. Running through the notebook (Fig-
ure 3A) chronologically will produce the brain graph, display the graph (Figure 3B), compute
summary statistics (Figure 3C), and then plot the statistics.

Demonstration Notebook Produced Connectome Summary Statistics
A B C

Figure 3: States of the demonstration notebook in the cloud. A) A Jupyter notebook
displaying descriptions and code snippets to be run for both connectome estimation
and summary statistic computation. B) After running connectome generation an adja-
cency matrix will appear to provide a visualization. C) Summary statistic computation
calculates several graph features and plots them in amultipanel figure. The demonstra-
tion notebook is running version v0.0.38 of ndmg.

3.3 Reproducible Results

In addition to the live demonstration, SIC:ndmg was used on the NKI1 [30] dataset consisting
of 40 scans. Instructions on setting up a computer—in the cloud or locally—and running
this analysis can be found in Appendix A. The NKI1 dataset is made publicly available through
CORR [30], but has been organized in accordance to the BIDS [11] specification and re-hosted
onour public S3 bucket, mrneurodata. The dataset consists ofMPRAGE,DWI, and fMRI scans,
where each subject has been scanned at least twice for each modality. More information
about the subjects in this dataset and the scanning parameters used can be found on the
CORR website1.

Running theDocker-hosted scientific containerbids/ndmg:v0.0.37-1on theNKI1dataset
for both on an EC2 m4.xlarge instance running Ubuntu 14.04 produced Figure 4, costing un-
der $10. Table 2 summarizes the parameters used as inputs to SIC:ndmg to generate the
graphs. Figure 4 provides insight into the variance of the dataset by a variety of diŷerentmet-
rics. According to published work on these summary statistics [29], this dataset and pipeline
combination produces expected results. A key benefit of this visualization is that it has high
information density, showing us distributions for a variety of features for a large number of
graphs, as opposed to more-common 1-dimensional features [31]. This figure was produced
by the parameters summarized in Table 3.
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Figure 4: Running SIC:ndmg on the NKI1 dataset produces plots of graph statistics.
Shown clockwise from top left are betweenness centrality distribution, clustering co-
eŻcient distribution, degree distribution, edge weight distribution, eigen sequence,
number of non-zero edges, and the locality statistic-1 distribution of the graphs. The
displayed summary statistics were computed on the graphs generatedwith the Desikan
parcellation, using the bids/ndmg:v0.0.37 Docker image.

Table 2: Command line arguments for connectome generation

Parameter Value

data input directory /data/raw
data output directory /data/connectome
analysis level participant
bucket name mrneurodata
path on bucket NKI24

Thedemonstration in theprevious section executed the exact samepipeline and version as
was run togenerate Figure4. The sole diŷerencebetweenexecutionof thedemonstration and
this implementation—aside from thedata being processed—is that the demonstration ran the
pipeline natively on anUbuntu 14.04machine rather than in the Docker image. The reason for
this diŷerence is that the demonstration uses a spatially downsampled set of atlases, diŷerent
to those contained within the Docker image. These atlases are not input parameters for the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://neurodata.io
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container, but are abstracted from the user for simplicity.

Table 3: Command line arguments for summary statistic computation.

Parameter Value

data input directory /data/connectome/graphs
data output directory /data/qc
analysis level group

3.4 Extensible Results

A crucial property of SIC is the simplicity it aŷords users to perform extensible science. Ex-
tensibility in this context can occur on several levels, including changing or adding (i) data,
(ii) analyses, or (ii) visualizations. Figure 5 shows an example of such extensibility. A diŷerent
dataset, the KKI2009 dataset [32], was processed using modified code, plotting the degree
distribution on a log scale, with an additional plot added for cumulative variance analysis. The
container used for this analysis on Docker hub is bids/ndmg:v0.0.37-1. Further details and
instructions about how to extend SIC:ndmg specifically are available in Appendix B.

4 Discussion

The the SIC framework does not need to be confined to standalone instances and contain-
ers. With further work, this concept can be integrated into a platform in which users are
able to launch a variety of analyses on a variety of datasets. A web browser interface which
launches cloud containers performing the computation would make this a particularly acces-
sible model, and would drastically improve the feedback loop between a scientist and their
peers. This enables analyses to be easily replicated and refined, thus expediting scientific
discovery. Tools such as Binder [22] accomplish this beautifully for Python, but the benefits
of SIC are that this model can be applied not only to any containerizable applications, but
big-data as well.

The selections made in SIC:ndmg regarding the six technological components highlighted
above were chosen based on what we perceived to be most widely used and supported in
the active online community. Other tools enumerated in Table 1 provide alternative features
which canmake SIC instances developed separately appear and run quite diŷerently, but ulti-
mately provide a comparable experience for the user. For instance, the decision to store data
independently from a public repository (such as NITRC [33], LONI’s IDA [34], LORIS [35], or
ndstore [36]) leaves the onus of data organization on the developer rather than the reposi-
tory, but in either case the user is able to access the data they need. This decision was made
so that the developer would have complete control over their data and implementation. How-
ever, hosting data within these environments would have the advantage of enabling use of
the infrastructure already built to support these platforms, such as performingmeta-analyses
and tracking provenance of the data itself, and is an exciting avenue for future work.
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Figure 5: Analyses performed with code developed under the SIC framework are easily
extensible. The extensions made between this plot and Figure 4 are a) using a diŷerent
dataset, in this case KKI2009; b) adjusting existing plotting code in order to improve
visualization of vertex degree in a log scale; and, c) adding cumulative variance analysis
of the graph. Thedisplayed summary statisticswere computedon thegraphs generated
with the Desikan parcellation, using the bids/ndmg:v0.0.37-1 Docker image.

Alternative deployment tools, such as Kubernetes, are attractive options as they provide
clear visualizations of running processes, process versions, andwould help enable SIC to scale
well when working with big-data or running many parallel jobs.

This project stemmed from a sequence of three diŷerent initiatives. First, the Global Brain
Workshop2 brought together a collection of 60+ scientists who converged on a set of grand
challenges for global brain sciences. There was universal agreement that a global framework
[37] would be instrumental in transitioning neuroscience from a data deluge to a data delight.
Then, at the Open Data Ecosystem for Neurosciences3, the working group on reproducibility
decided that an example of a reproducible and extensible framework would be highly infor-
mative for ourselves and the greater community. Finally, the inaugural Stanford Center for
Reproducible Neuroscience Coding Sprint4 brought leaders in neuroimaging from around the
globe to chart a path forward with standardizing a process for containerizing both open- and
closed-source tools [38].

In summary, the SIC framework presents a standard of reliability and extensibility for sci-
entific data distribution and analysis. SIC is an important building block towards a global sci-
entific community, regardless of scientific discipline, and provides a practical implementation
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of the idiom that science is done by “standing on the shoulders of giants.”
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Appendix A Reproduction Instructions

Outlined here are the required steps to reproduce the results demonstrated. In the command
blocks which follow, all commands preceded by a $ should be executed on the system which
will run the code, with the exception of Section A.1.1, which provide instructions for how to
start and connect to a cloud instance. Commands which are executed in a single line but
were too long to fit on the page end with \ and are carried over to lines which have been
indented. Lines beginning without any of these strings or indentations indicate outputs of
previous commands. Below, the assumption is that the commands are being executed on a
Unix basedmachine with access to a terminal. If being executed onWindows, installing a GNU
environment such as Cygwin5 will enable the user to have a similar experience.

A.1 Setting up Your Machine

Depending on whether or not one has local compute resources available, the cloud is a very
appealing option for running resource-demanding computations spuriously. Depending on
where running this service, in the cloud or locally, a slightly diŷerent set of instructions apply
due to uncertainty about the user’s operating system and Amazon Machine Images (AMIs)
which come with preloaded dependencies for cloud instances.

A.1.1 Amazon EC2

The general procedure for launching any EC2 instance is as follows: select a base image,
choose instance parameters (i.e. type, storage, security, access keys), launch, and connect6.
Table 4 enumerates the specific choices that should be followed – for all others, default values
are suŻcient.
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Table 4: Key selections for starting Amazon EC2 instance.

Instance Parameter Value
Image Amazon ECS-Optimized Amazon Linux AMI from AWS Marketplace
Type m4.large
Storage Root SSD volume to 100 GB

Once the instance has been launched, finalizing setup requires opening a terminal and
connecting to the instance remotely via ssh. When connecting to the instance, the username
ec2-user should be used, with the private key selected above and instance IP address, like
follows:

$ ssh -i <path_to_private_key> ec2-user@<instance_public_ip>

A.1.2 Local Machine

The only required setup for running locally is to install Docker. Docker has installation helpers
for all operating systems available on their website7.

A.2 Getting Started with the ndmg Container

Prior to running the pipeline a directory to store the data must be created. This can be done
as follows; here, a folder called data is created within the HOME directory.

$ mkdir ~/data

The ndmg container can then be downloaded with the following line:

$ docker pull bids/ndmg:v0.0.37

Note that this will download hundreds of MB of data to the machine.

A.3 Running Connectome Generation

Once the ndmg Docker container is downloaded the pipeline can be used. This step takes
approximately 1-1.5 hours per scan (in this case, the NKI1 [30] dataset consists of 40 scans,
which will take approximately 40-60 hours), so it is recommended that the following is exe-
cuted within a screen8 or similar type of session. The general structure of the command is as
follows:

$ docker run -ti -v local_data:container_data bids/ndmg:version \
input_data output_data analysis_level --bucket s3_bucket_name \
--remote_path path_on_bucket
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The command to run the pipeline is constructed from several choices. First, to access the
derivatives producedwithin thepipeline, thedata directorymust bemounted to the container.
As established in Section A.2, this is the /data directory. This directory can be mounted to
/data within the container.

There are also several pipeline-specific parameters that need to be provided. These are:
data input directory, data output directory, analysis level, and (optionally, but exercised here)
the S3 bucket location and path to the data on said bucket. Table 2 enumerates the param-
eter selections for this demonstration. In summary, data is stored on an S3 bucket called
mrneurodata, within the folder NKI24, and will be downloaded to the /data/raw folder lo-
cally. Connectome computation will be run (i.e. graphs and intermediate derivatives will be
generated) and outputs stored in /data/connectome.
The pipeline can then be executed with the following command:

$ docker run -ti -v ~/data:/data bids/ndmg:v0.0.37 /data/raw \
/data/connectome participant --bucket mrneurodata \
--remote_path NKI24

Executing the above command will launch the container running the ndmg pipeline after
retrieving data (organized in accordance to BIDS) from Amazon S3, and produce brain graphs
in the location specified.

While the pipeline is executing it will produce verbose text output indicating which stage
of the pipeline is being executed. The frequency of these updates ranges with the commands
being executed, and spans approximately 30 seconds to 30 minutes depending on the point
in the pipeline. If the pipeline were to fail, an error message would be displayed in the ter-
minal indicating the problem. Once the job completes, a common desire is to visualize the
derivatives produced; this can be done in the summary statistics step.

A.4 Running Summary Statistic Computation

The folder earlier assigned for derivatives for connectome generation now contains additional
sub-folders, one of which is labeled graphs. Inside this folder are sub-folders for each of
the parcellations used when generating the graphs. To generate Figure 4, the pipeline needs
to be relaunched to compute summary statistics. The parameters are similar to the above,
with the changes being analysis level, input data location, and the omission of the S3-related
parameters. Table 3 summarizes these values.
The pipeline can again be run with the following command:

$ docker run -ti -v ~/data:/data bids/ndmg:v0.0.37 \
/data/connectome/graphs /data/qc group

The folder assigned for this summary statistic or quality control storage will now contain
a directory for each parcellation, and within that a file for each of several derivatives of the
graphs, as well as an image and a JSON file which displays these metrics. The plot shown in
Figure 4 can be found by opening∼data/qc/desikan/desikan_summary.png.
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Appendix B Extension Instructions

As this is a living and breathing project undergoing development, changes are being made
regularly. The reproduction instructions given in Appendix A will reproduce the exact results
presented within this manuscript. There are several ways described below which enable stay-
ing up-to-date with the project and performing ones own analyses using this tool. All of the
following instructions assume that the methods in Appendix A.1 have been executed.

B.1 Updating the ndmg Container

Re-pulling the container fromDocker Hub using the tag latest enables using themost recent
version of this tool.

$ docker pull bids/ndmg:latest

In order touse thenewest version, the commandsmust bemodified to replace the:v0.0.37
version tag with :latest.

B.2 Using Your Data

The ndmg pipeline processes data according to the BIDS data specification. To use the tool
with an alternate dataset, it first needs to be organized according to this specification. This
can be validated using the BIDS Validator9. Once the data are organized, they can either be
uploaded to an S3 bucket and processed with a command similar to that in Section A.3 (up-
dating the bucket name and path to data on the bucket), or kept locally and omitting the
bucket and remote_path values.

B.3 Changing the Parameters

All of the code for this project is open-source and resides in a Github repository10. To test
the pipeline with diŷerent sets of parameters, it can be cloned and the source code can be
modified directly. The repository can be cloned to the HOME directory with the following.

$ git clone https://github.com/neurodata/ndmg ~/ndmg

Once adjustments have beenmade and the newpipeline is ready to be tested, the package
can be re-installed by executing the setup.py file contained within the repository.

$ cd ~/ndmg
$ python setup.py install

B.4 Changing the Functions

Much like changing parameters, once the repository is cloned it is possible to swap out algo-
rithms or implementations for various parts of the pipeline. Examples of tools which could
be replaced include registration or tractography. Again, once this is completed, the pipeline
must be re-installed prior to execution.
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Notes
1http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
2http://brainx.io
3https://neurographics.net/2016/07/28/oden-2016/
4https://goo.gl/DDMcMG
5https://www.cygwin.com/
6For instructions on EC2 follow this guide: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
7https://www.docker.com/products/overview
8https://www.gnu.org/software/screen/
9http://incf.github.io/bids-validator/
10https://github.com/neurodata/ndmg
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