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Abstract

Modern technologies are enabling scientists to collect extraordinary amounts of com-
plex and sophisticated data across a huge range of scales like never before. With this
onslaught of data, we can allow the focal point to shift from data collection to data anal-
ysis. Unfortunately, lack of standardized sharing mechanisms and practices often make
reproducing or extending scientific results very difficult. With the creation of data orga-
nization structures and tools which drastically improve code portability, we now have the
opportunity to design such a framework for communicating extensible scientific discov-
eries. Our proposed solution leverages these existing technologies and standards, and
provides an accessible and extensible model for reproducible research, called ''science
in the cloud'' (SIC). Exploiting scientific containers, cloud computing, and cloud data ser-
vices, we show the capability to compute in the cloud and run a web service that enables
intimate interaction with the tools and data presented. We hope this model will inspire
the community to produce reproducible and, importantly, extensible results which will
enable us to collectively accelerate the rate at which scientific breakthroughs are discov-
ered, replicated, and extended.

1 Introduction

Neuroscience is currently in a golden age of data and computation. Through recent tech-
nological advances [1], experimentalists can now amass large amounts of high quality data
across essentially all experimental paradigms and spatiotemporal scales; such data are ripe
to reveal the principles of brain function and structure. In fact, many public datasets and
open-access data hosting repositories are going online [2; 3].

Concurrentwith this onslaught of data is a desire to run analyses, not just on data collected
in a single lab, but also on other publicly available datasets. Various tools have been developed
by the community which solve a wide variety of computational challenges on all types of data,
enabling difficult scientific questions to be answered. With the ability to perform analyses
often dependent only upon access to data and code resources, neuroscience is now more
accessible, with a lower barrier to entry.

However, there is no tool or framework that enables research to be performed and com-
municated in a way that lends itself to easy extensibility, much less reproducibility. Currently,
re-performing and extending published analyses whether through data or code is often un-
bearably difficult: (i) data may be closed-access; (ii) data may be organized in an ad hoc fash-
ion; (iii) the code may be closed-source or undocumented; (iv) code may have been run with
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undocumented parameters and dependencies; (v) analyses may have been run with code
compiled for specific hardware. These properties make validating and extending scientific
claims challenging.

A focus on reproducibility is already commonplace in a variety of disciplines. In genomics,
Bioboxes [4] provide a framework for reproducible and interchangeable analysis containers,
and tools are exploiting scalable computing solutions and being published with reproduction
instructions (see: [5; 6]). Commentaries on reproducible research provide suggestions to re-
searchers on how to tackle the challenges that are present in their scientific settings [7; 8].
While these works have accelerated reproducibility and extensibility in their fields, the meth-
ods proposed do not scale to the cloud or enable real-time interactivity, and have yet to be
thoroughly applied to the burgeoning field of computational neuroscience.

The notion of a universally web-viewable laboratory [9] is also growing in popularity, and
many initiatives have been successful in contributing to this vision. In plant biology, Cy-
Verse [10] provides infrastructure for tools, data, and education. In neuroscience, platforms
such as LONI's Pipeline [11] and neuGRID [12] alleviate the burden of managing captive com-
puting resources and integrating themwithdatastores, whileNeuroDebian [13] providesquick
and easy access to a variety of neuroimaging tools. Leveraging theNeuroDebian platform, NI-
TRC has encouraged a transition to the cloud by releasing an Amazon Machine Image (AMI)1

preloaded with commonly used packages. In parallel, many groups have strived to breach the
frontier through such efforts as developing sophisticated resource estimation-based deploy-
ment strategies [14], and these have shown the great potential for a cloud-based approach
to neuroimaging [15]. Each of these projects hasmade valuable contributions to the progress
towards accessibility and portability of neuroscience research.

Cloud Data Storage

Interactive Demos

Virtualization
Data 

Organization

Deployment

Computing

Science in  t he Cloud (SIC)

User

Figure 1: Framework for science in the cloud illustrating the six necessary components
for SIC. Cloud data storage enables universal access to data products. Data organiza-
tion structures enable consistent tools and user interactions across datasets. Interac-
tive demonstrations allow users to participate in live scientific analyses. Virtualization
enables tools to be deployed reliably and consistently. Deployment tools organize re-
sources provided by computing platforms, and enable users to run analyses at scale.
Together, these tools create a framework for discovery that is optimized for extensible
science.

We propose a solution to these gaps in the form of a framework which leverages publicly
documented and deployable cloud instances with specific pipelines installed and configured
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to extend published findings: an implementation we simply term ''science in the cloud,'' or,
SIC (Latin for ''thus was it written''). SIC instances have several fundamental components, as
summarized in Figure 1. To address data access, we put data in the cloud. To address data or-
ganization, we utilize recently proposed data standards. To address closed source and undoc-
umented code, we generate open-source code and interactive demonstrations. To address
software and hardware dependencies, we utilize virtualization, automated deployment, and
cloud computing. SIC puts these pieces together to create a computing instance launched
in the cloud, designed not only for generating reproducible research, but also enabling easily
accessible and extensible science for everyone. SIC is designed to minimize the bottlenecks
between publication and novel discoveries; leveraging the experience of the community, we
propose a solution for transitioning to a universal, and ''future-proof,'' deployment of software
to the cloud.

We introduce and document an example use case of SIC with the ndmg pipeline, thus
entitled SIC:ndmg. We have developed a capability which enables users to launch a cloud in-
stance and run a container which performs an analysis of a cohort of structural and diffusion
magnetic resonance imaging scans by (i) downloading the required data from a public repos-
itory in the cloud, (ii) fully processing each subject's data to estimate a connectome for each
subject's associated graph statistics, and, optionally, (iii) plot quality control figures of various
multivariate graph statistics.

2 Methods

There are six key decisions which must be made when following SIC: data storage, data orga-
nization, interactive demonstrations, virtualization, deployment, and computing. The selec-
tion made for each of these components will have a significant impact on available selections
for the others. The final product will be a highly interdependent network of tools and data.
Table 1 shows a summary of the selections made for each of the criteria enumerated in the
previous section with rationales for the decisions. In general, the tools selected were those
which provided themost command-line/Application Programming Interface (API) support for
their service and had the most complete documentation or online support community, en-
abling setup with relative ease.

Cloud Data Storage There are several options when storing data in a publicly accessi-
ble location, such as a cloud storage service or public repositories. Depending on the nature
of the data being stored, different concerns (such as privacy) must be satisfied. For instance,
sensitive data (i.e. not anonymized/de-identified) requires authentication for access, whereas
de-identified data does not. It is our recommendation to host de-identified data in the cloud
and store linking metadata privately on HIPPA (or equivalent) compliant organization datas-
tores. Researchers whomay not wish to release their data prior to publication are encouraged
to store their data with secure protocols. The datastore should also be accessible through an
API, or another interface enabling developers to access the data programmatically. Depend-
ing on the desired organization, autonomy is also a valuable feature, affording the developer
full control on how the data is stored, as opposed to working within the confines of an exist-
ing infrastructure. The type of virtualization (described below) used may also influence the
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types of shared datastores which will be natively compatible with the application. Consider-
ing the above, Amazon's S3 service was used in this SIC implementation because it satisfied
all of these requirements. While Google's Cloud Engine or Microsoft Azure also satisfy these
requirements, the decision to use S3 was made based upon our existing domain knowledge
and familiarity with each of these systems.

Data Organization The newly publicly-available data then needs to be organized in ac-
cordance with a data specification which enables users to navigate the repository success-
fully. Such standards include both file formats, which can be interpreted by programs, as
well as folder organizations, which enable grouping of data by subject, observation, type,
etc. Depending on the modality of data being used, there are different structures which
can be adopted. In the case of MRI, the BIDS [16] specification is a well-documented and
community-developed standard which is intuitive and allows data to be both easily read-
able by humans and navigated by programs. Organizations such as ''Neurodata without Bor-
ders'' [17] would serve as additional options for physiology data, but are unsuitable for this
application. Formats such as MINC [18] focus heavily on metadata management but less

Table 1: There are six key components which must be selected for SIC. Bold indicates
the selections made here, with their positive and negative qualities compared to some
alternatives.

Hurdles Available Tools Pros of Selection Cons of Selection

1) Data Storage
S3, Dropbox,
Google Drive

API, pay-by-usage
requires familiarity
with Amazon tools

2) Data Organization
BIDS [16],
NWB [17],
MINC [18]

documented,
validator, active
community

new, not yet fully
adopted

3) Interactive demo's
Jupyter, R
Notebook, Shiny

versatile,
accessible

optimized for
Python

4) Virtualization
Docker,
Virtualbox [19],
VMware [20]

lightweight,
self-documented

--

5) Deployment

Batch/ECS,
Kubernetes [21],
MyBinder [22],
CBRAIN [23],
Nextflow [24]

no additional
dependencies

restricted to
Amazon's cloud

6) Computing

EC2, Google
Compute
Engine [25],
Microsoft
Azure [26]

scalable, flexible
requires
technological
expertise
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on file hierarchy, making them useful though not fully sufficient for this application. Though
some standards may consider securely handling identifying information, we recommend only
storing de-identified data publicly to avoid possible security risks.

Interactive Demonstrations To encourage use of data and the tools used to analyze it,
interactive demonstrations that enable users to visualize and work with some subset of the
data are extremely valuable. Various programming languages have different types of demon-
stration environments available which either enable full interactivity or are pre-compiled to
display code and results. A popular tool for interactive development and deployment of
Python code is Jupyter, and thus was the tool used here. The popularity of this tool hope-
fully increases the average user's familiarity with the interface, lowering the barrier to entry
for interacting with SIC:ndmg. If a developer is more familiar with another programming lan-
guage, there is no particular reasonwhy onewould select Jupyter over an equivalent package
in R, such as R Notebook.

Virtualization Developing and distributing virtualized environments containing all neces-
sary code products guarantees consistent dependencies and application setup, and therefore
minimizes user effort to obtain expected performance. These virtual environments should be
able to be deployed on any operating system and have minimal hardware-dependent code.
A key desiderata is that the virtualization system minimizes unnecessary overhead for the
application. Though it does not affect run-time performance, a repository of public machine
images is an attractive feature for this model as it enables sharing configurations. Docker [27]
was chosen because it satisfies these practical requirements, and the accessibility of Docker
Hubenables images tobequickly foundanddeployed. Virtualmachines such as those created
in Virtual Box [19] or VMware [20] provide lots of range in terms of operating systems which
can be launched and allow native access to the machine through a GUI. However, though
these are great features, they are unnecessary for this application. An additional attractive
feature of Docker is that translating a README file (which enumerates dependencies or in-
stallation instructions) to a Dockerfile forces developers to improve their documentation and
increases the useability of their tool. Though this is certainly extra work for the developer,
the process requires only knowledge of the documented Docker schema and the editing of
plain-text files, which we believe to be a relatively low cost to the developer.

Deployment Deployment platforms allow users to define a specific set of instructions that
can be launched on a single machine or multiple machines simultaneously. In physical hard-
ware configurations, a cluster's scheduler would play this role; in the cloud, such tools are
able to take advantage of computing resources across different locations and services, and
enable scaling with the amount of processing required. Middleware such as Kubernetes [21],
Tutum2, or Nextflow [24] can enable a user to distribute their jobs across a cluster existing in
different computing environments (i.e. separate clouds). When using a single cloud, such as
Amazon or Google, native applications support managing resources efficiently. In the case
of SIC:ndmg, we elected to deploy entirely in Amazon's cloud; therefore, we used Amazon's
Batch to launch the pipeline distributed across multiple computing nodes, and Amazon's ECS
to deploy a distributed and scalable SIC service. Tools such as CBRAIN [23], LONI [11], and

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://neurodata.io


6 NeuroData

MyBinder [22] also enable distributed deployment of code, but are more specialized in the
requirements of the tools and services that can be launched and are thus more restrictive.

Computing Cloud computing services enable users to launch customized machines with
specific hardware configurations and specifications, making them versatile for different va-
rieties and scales of analyses. The more general the hardware that can be used, the more
accessible the tool is for a user to adapt and use in their own environment. Selecting the
commercial cloud for deployment as opposed to data center resources enables greater ac-
cessibility and transparency to users, is more scalable, and enables parallel jobs to be run
in completely isolated resources. Cloud deployments also provide consistent performance
across nodes, and have a much lower start-up cost than utilizing local computing resources.
Since there were no specific hardware requirements in this application, and there existed pre-
vious in-house experience with the service, Amazon's EC2 was selected in this usecase. The
benefit of using EC2 is that deploying code at different scales and locations is trivially ex-
tendable, so implementations can be easily taken from prototype to deployment. Amazon's
cloud enables launching computing resources based on AMIs with preinstalled dependencies,
increasing the flexibility of the processes which can be launched.

Further details of our specific implementation and methods are provided in Appendix A.

3 Results

We demonstrate a working example of SIC, SIC:ndmg. The ndmg pipeline [28] is an open-
source, scalable pipeline for human structural connectome estimation from diffusion and
structuralMR images (collectively referred tohereafter as ''multimodalMRI'', orM3RI for brevity).
The result is a portable and easily extensible tool for scalable connectome generation. A live
demonstration is presented that enables reader interaction with the pipeline at the cost of a
simple URL click, and data products of the tool are presented in both the context of `repro-
ducibility' and `extensibility.' This tool enables quantitative structural analyses of the human
brain to be performed on populations of M3RI scans, and can lead to discoveries of the rela-
tionship between brain connectivity and neurological disease.

3.1 Neuroscience as a Service

The analysis transforms ''raw'' M3RI data into graphs. Kiar et al., (in preparation) describes the
pipeline in detail; here we provide a brief overview. The pipeline (Figure 2) consists of four
main steps: registration, tensor calculation, tractography, and graph generation. Note that
the choices below are made for expediency and simplicity; other choices might be beneficial
depending on context. Table 2 summarizes the duration and cost of each step for a given
dataset processed and stored in the cloud.

Registration in ndmg is performed in several stages using FSL [29]. First, the diffusion im-
age is self-aligned and noise-corrected using the eddy_correct function. Second, the trans-
form is computed which aligns the B0 volume of the diffusion image to the structural scan
using epi_reg. Third, the transform between the structural image and a reference atlas is
computed with flirt. Finally, the transforms are combined and applied to the self-aligned
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Multi-Modal MRI 
Data Collection

ndm g pipel ine

Registration Tensor Calculation Fiber Tractography Graph Generation

Diffusion

Structural

Figure 2: Structure of the ndmg pipeline connectome estimation. Taking as input dif-
fusion and T1 weighted MRI, ndmg first aligns the diffusion data to a reference atlas by
means of the T1 image. Tensors are then computed from the aligned diffusion volume.
Fiber streamlines are generated by performing tractography on the tensors. Finally, the
fibers are mapped between regions of interest (ROIs) which then become nodes in the
graph.

diffusion image. The tensor calculation and tractography steps are performed with the DiPy
package [30]. A simple tensor model fits a 6-component tensor to the image, and deter-
ministic tractography with the EuDx algorithm is run, producing a set of streamlines. Graph
generation takes as input the fiber streamlines, and maps them to regions of interest (ROIs)
defined by a pre-built parcellation (such as those packaged with FSL or generated with brain
segmentation algorithms) and returns an ROI-wise connectome. An edge is added to the
graph for each pair of nodes along a given fiber. The final step is computing (multivariate)
graph statistics on the estimated connectomes. The statistics computed are [31]: number

Table 2: Approximate cost and time breakdown per subject of the ndmg pipeline run-
ning in Amazon EC2 with data stored in S3 and computation with m4.largemachines at
spot pricing of $0.0135 per hour (Accessed on 2017/01/04). The values were obtained
by processing data from theNKI1 dataset with 40 sessions. The reader should note that
Amazon S3 data I/O is not free, as it may appear, but is simply inexpensive for data this
size.

Operation Time per session (min) Cost per session (1/100 USD)

data storage -- 1.048/month
data I/O -- 0.000
Total -- 1.048/month
registration 25 0.563
tensor calculation 2 0.045
fiber tractography 5 0.112
graph generation 30 0.675
Total 62 1.395
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of non-zero edges, degree distribution, eigen sequence, locality-statistic 1, edge weight dis-
tribution, clustering coefficient, and betweenness centrality. These statistics provide insight
into the structure of the brain graphs, and provide a low-dimensional feature by which the
graphs for different scans can be compared to one another. To provide a preliminary quality
control step, we plot the graph statistics [31] for each graph (Figure 4).

3.2 Live Demonstration

Ademonstration of SIC:ndmg is available at http://scienceinthe.cloud/. This SIC instance
is deployed via ECS on an Amazon micro-instance which is very affordable, so it can stay on-
line indefinitely with little cost or maintenance ($100/year). This instance is running a Jupyter
server which contains the demonstration notebook, sic_ndmg.ipynb. Launching the note-
book pulls up an interface which resembles that of Figure 3A.

Demonstration Notebook Produced Connectome Summary Statistics
A B C

Figure 3: States of the demonstration notebook in the cloud. A) A Jupyter notebook
displaying descriptions and code snippets to be run for both connectome estimation
and summary statistic computation. B) After running connectome generation, an ad-
jacencymatrix will appear to provide a visualization. C) Summary statistic computation
calculates several graph features and plots them in amultipanel figure. The demonstra-
tion notebook is running version v0.0.39 of ndmg.

For demonstration purposes, a downsampled subject is used in this notebook which re-
duces analysis time from∼1 hr/subject/core to∼3 min/subject/core. The ndmg pipeline has
two levels of analysis: graph generation and summary statistic computation. Graph genera-
tion is the process of turning diffusion and structural MR images into a connectome (i.e. brain
graph), and the summary statistic computation produces a graph of several graph features on
each produced connectome and plots them together. Running through the notebook (Fig-
ure 3A) chronologically will produce the brain graph, display the graph (Figure 3B), compute
summary statistics (Figure 3C), and then plot the statistics.

3.3 Reproducible Results

In addition to the live demonstration, SIC:ndmg was used to process the NKI1 [32] dataset
consisting of 40 M3R scans. Instructions on setting up a cluster and running this analysis
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9 NeuroData

Figure 4: Running SIC:ndmg on the NKI1 dataset produces plots of graph statistics.
Shown in order from left to right starting in the top row are betweenness centrality dis-
tribution, clustering coefficient distribution, degree distribution, edge weight distribu-
tion, eigen sequence, number of non-zero edges, and the locality statistic-1 distribution
of the graphs. The displayed summary statistics were computed on the graphs gener-
ated with the Desikan parcellation, using the bids/ndmg:v0.0.41-2 Docker image.

can be found in Appendix A. The NKI1 dataset is made publicly available through CORR [32],
but has been organized in accordance to the BIDS [16] specification and re-hosted on our
public S3 bucket, mrneurodata. The dataset consists ofMPRAGE, DWI, and fMRI scans, where
each subject has been scanned at least twice for each modality. More information about the
subjects in this dataset and the scanningparameters used canbe foundon theCORRwebsite3.

Running theDocker-hosted scientific containerbids/ndmg:v0.0.41-2on theNKI1dataset
produced Figure 4, costing under $1, as is summarized in Table 2. Table 3 summarizes the pa-
rameters used as inputs to SIC:ndmg to generate the graphs. Figure 4 provides insight into the
variance of the dataset through a variety of different metrics. According to published work
on these summary statistics [31], this dataset and pipeline combination produces expected
results. A key benefit of this visualization is that it has high information density, showing us
distributions for a variety of features for a large number of graphs, as opposed to more com-
mon 1-dimensional features [33]. This figure was produced by the parameters summarized
in Table 4.

The demonstration in the previous section executed the exact same pipeline that was used
to generate Figure 4. The sole difference between execution of the demonstration and this
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Table 3: Command line arguments for connectome generation

Parameter Value

data input directory /data/raw
data output directory /data/connectome
analysis level participant
bucket name mrneurodata
path on bucket NKI24

implementation -- aside from the data being processed -- is the specific Docker container
being used. The reason for this difference is that the demonstration is required to run as a
web service, so additional packages and setup are required.

Table 4: Command line arguments for summary statistic computation.

Parameter Value

data input directory /data/connectome/graphs
data output directory /data/qc
analysis level group

3.4 Extensible Results

A crucial property of SIC is the simplicity it affords users to perform extensible science. Ex-
tensibility in this context can occur on several levels, including changing or adding (i) data,
(ii) analyses, or (ii) visualizations. Figure 5 shows an example of such extensibility. A different
dataset, the KKI2009 dataset [34], was processed using modified code, plotting the degree
distribution on a log scale, with an additional plot added for cumulative variance analysis. The
container used for this analysis on Docker hub is bids/ndmg:v0.0.41-2. Further details and
instructions about how to extend SIC:ndmg specifically are available in Appendix B.

4 Discussion

Though the exemplar application used to demonstrate the value of SIC was the one-click
ndmg pipeline, the framework is not restricted to this tool, or even one-click tools at all. For
instance, a recent manuscript presented the notion of BIDS Apps [35]: containerized neu-
roimaging applications which operate on data stored in the BIDS data structure. These apps4

enable complex workflows to be executed, often taking in configuration files to allow for com-
plicated parameter sets to be delivered more conveniently than via the command line. Such
containers are a terrific usecase for SIC, and can be seamlessly interchanged with one an-
other in a given deployment. SIC can use tools such as FreeSurfer or ANTs in certain process-
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Figure 5: Analyses performed with code developed under the SIC framework are easily
extensible. The extensions made between this plot and Figure 4 are a) using a different
dataset, in this case KKI2009, b) adjusting existing plotting code in order to improve
visualization of vertex degree in a log scale, and c) adding cumulative variance analysis
of the graph. Thedisplayed summary statisticswere computedon thegraphs generated
with the Desikan parcellation, using the bids/ndmg:v0.0.41-2 Docker image.

ing steps with no software changes. Developing pipelines within the SIC framework enhances
their reproducibility and the extensibility of publications using them, potentially increasing
their scientific impact.

The SIC framework does not need to be confined to monolithic tools and containers. With
further work, this concept can be integrated into a platform inwhich users are able to launch a
variety of analyses on a variety of datasets. The self-documenting and reproducible web-calls
which launch cloud containers performing computational tasks have potential to drastically
improve the feedback loop between a scientist and their peers. This enables analyses to be
easily replicated and refined, thus expediting scientific discovery. Tools such as Binder [22]
accomplish this beautifully for Python, but the benefits of SIC are that this model can be ap-
plied not only to any containerizable application, but big data as well.

The distinct advantage of using Docker for virtualization as opposed to virtual machines
is the lack of both computational and data overhead. Though virtual machines can be used
for pipeline deployment, they are based upon hard drive files which can bloat the host sys-
tem. Virtual machines also require computational overhead to distribute processes to the
host system, which Docker interfaces with directly. In many applications, virtual machines
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are a wise or even necessary tool of choice, though when the sole objective is the execution
of a pipeline followed by termination of the environment, the benefits of minimal overhead
often outweigh those of the additional features which may be available through virtual ma-
chines. Tools which aid in the deployment of virtualized environments such as Vagrant can be
paired with amethod of virtualization, whether Docker or otherwise, and they provide further
documentation describing the process for launching an environment containing a given tool
for execution.

The selections made in SIC:ndmg regarding the six technological components highlighted
above were chosen based on what the authors perceived to be most widely used and sup-
ported in the active online community. Other tools enumerated in Table 1 provide alterna-
tive features which can make SIC instances appear and run quite differently when developed
separately, but ultimately provide a comparable experience for the user. For instance, the
decision to store data independently from a public repository (such as NITRC [36], LONI’s
IDA [37], LORIS [38], or ndstore [39]) leaves the onus of data organization on the developer
rather than the repository, but in either case the user is able to access the data they need.
This decision in particular was made so that the developer would have complete control over
their data and implementation. However, hosting data within an environment such as those
listed would have the advantage of enabling use of the infrastructure already built to support
these platforms, such as performing meta-analyses and tracking provenance of the data it-
self, and is an exciting avenue for future work. While functionality for deploying in parallel
to the cloud was developed with Amazon's Batch directly for interfacing with their cloud, al-
ternative deployment tools such as Kubernetes are attractive options, because they provide
clear visualizations of running processes and process versions andwould enable SIC to deploy
pipelines acrossmultiple computing clouds or clusters. Deploymentsmaking use of local dat-
acenters as opposed to the cloud are identical in execution to those in the cloud, once Docker
(or the virtualization engine of choice) is installed on the shared resources and a scheduling
framework is available.

This manuscript proposes a model for extensible and accessible development that did
not strain those who have already been developing or using reproducible tools, but rather
enhanced their ability to do so. Domain knowledge, such as that of Docker, is not uniform
across disciplines, and this may discourage developers from complying with this methodol-
ogy. However, it is our belief that the proposed framework does not require additional devel-
opment beyond what already goes into creating and using a reproducible tool. For instance,
in the case of Docker, a Dockerfile simply documents the instructions which are to be exe-
cuted upon booting a brand-new computer and installing a given tool and its dependencies.
Documenting this process is essential for developers, andmany tools contain a README file de-
scribing the installation process. Once a Docker container exists, the process of re-executing
and testing these instructions often requires far fewer keystrokes and ambiguity in the in-
structions is eliminated. There are certainly start-up costs when transitioning to new tools
such as virtualization platforms, but it is our view that the gained transparency and portabil-
ity within SIC greatly outweighs the costs.

In summary, the SIC framework presents a standard of reliability and extensibility for sci-
entific data distribution and analysis. SIC is an important building block towards a global sci-
entific community, regardless of scientific discipline, and provides a practical implementation
of the idiom that science is done by ''standing on the shoulders of giants.''
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Appendix A Reproduction Instructions

Outlined here are the required steps to reproduce both the analysis of data in the cloud, as
well as the live demonstration notebook server. In the command blocks which follow, all com-
mands preceded by a $ should be executed. Commands which are executed in a single line
but were too long to fit on the page end with \ and are carried over to lines which have been
indented. Below, the assumption is that the commands are being executed on a Unix-based
machine with access to a terminal. If one is working with a Windows operating system, in-
stalling a GNU environment such as Cygwin8 will enable the user to have a similar experience.

A.1 Processing Data in the Cloud

Through use of the AWS Batch tool, a scalable computing cluster is able to be launched in
the cloud and jobs can be submitted to it for analysis via the command line. The process
which must be followed is: create a computing environment, create a job-submitting queue,
create a job definition, and finally, submit jobs to the cluster. We discuss how to accomplish
each of these steps, and provide the scripts which were used for the deployment presented in
this manuscript. One prerequisite for the instructions that follow is that the data in question
for processing is made available at a public read- and write-able S3 bucket in the BIDS data
format.

A.1.1 Setting up an AWS Batch cluster

Following the AWS Batch9 Getting Started tutorial, one can create a cloud computing cluster
for themselves, establish a job-accepting queue, define jobs, and submit jobs to the queue,
all within the web console. Though these operations can be done via the command line as
well, they will only need to be performed once so it is not significantly advantageous to script
these steps.

At eachof these steps there are several decisionswhichmust bemade regarding the size of
the cluster, the number of cores, what container image to use in your job definition, andmore.
The definitions used to setup the ndmg pipeline and cluster can be found in the SIC Github
repository10.

A.1.2 Launching jobs on the cluster

Once the cluster is live and a job definition for the ndmg pipeline has been created, jobs can
start being submitted to the queue. When submitting a job to the cluster, one must first take
the existing task definition for the process they are trying to run, and then override relevant
portions of this definition for the desired usecase. For instance, if one wishes to run a single
subject from the NKI1 dataset stored on our public S3 bucket, they may create a job submis-
sion which summarizes this11. This step can be done either from within the console or via the
command line. In order to use the command line interface, one must first install the Amazon
CLI tool and configure it with their user credentials to ensure that processes launched via the
command line and web console are linked.
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If one wishes to launch many jobs at once, the ndmg package contains a script which
accepts an S3 bucket, a path to the dataset on that bucket, and will then launch all of the
subjects within that dataset on the previously created cluster. Currently, this functionality
does not exist within the Docker container version of ndmg, as it requires supplying authen-
tication information to Amazon. However, passing this information to the Docker container
safely and securely is a feature which the developers hope to eventually make available. To
use this script, one must have installed the ndmg package in Python, and then may type the
following line from a terminal window:

$ ndmg_cloud --bucket s3_bucket_name --bids_dir \
path_on_bucket

Aswell as receiving output to the terminal, opening the Batchweb console to view that the
jobs have been launched can serve as confirmation that this is completed. Once the process-
ing is complete, the outputs will be pushed back to the provided S3 bucket and the results
can be analyzed.

A.2 Launching Demonstration Notebook Service

The interactive SIC:ndmg notebook can be a valuable way to experience the ndmg pipeline
and walk through the steps it takes, from generating graphs to plotting them and producing
summary statistics. This interactive notebook is contained within its own Docker container,
and automagically launches the service upon creating an instance of the container. We will
walk through the brief process of launching this container on your local machine so that you
may interact with it or change it yourself.

A.2.1 Setting up Your Machine

The only required setup for running locally is to install Docker. Docker has installation helpers
for all operating systems available on their website12. Once Docker is installed, it is important
to make sure that the port 8888 is open for Docker. In the case of Mac OS X and Linux, this
should be the case automatically, but for Windows it currently must be opened through the
networking options of VirtualBox.

A.2.2 Launching the Docker container

The user can launch the service with a single command from a terminal with access to Docker.
This terminal is the standard terminal on Linux or Mac OS X, and can be the Powershell or
provided terminal when installing Docker. The following command launches this service:

$ git clone https://github.com/neurodata/sic ~/sic
$ cd ~/sic/code/jupyter
$ docker build -t neurodata/sic .
$ docker run -d -p 8888:8888 neurodata/sic

You can interact with the demo via a web browser. Navigate to localhost:8888 in the
browser of your choosing to see this service live.
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Appendix B Extension Instructions

As this is a living and breathing project undergoing development, changes are being made
regularly. The reproduction instructions given in Appendix A will reproduce the exact results
presented within this manuscript. There are several ways described below which enable stay-
ing up-to-date with the project and performing one's own analyses using this tool.

B.1 Updating the ndmg Container

In order to achieve state-of-the-art performance from the ndmg pipeline, the version of the
container being used should be updated to the latest release. In the job definition created
above, specifying that the container image being used is bids/ndmg:latest as opposed to
bids/ndmg:v0.0.41-1, for instance, will ensure that the most recent version of the code is
being used.

B.2 Using Your Data

The ndmg pipeline processes data according to the BIDS data specification. To use the tool
with an alternate dataset, it first needs to be organized according to this specification. This
can be validated using the BIDS Validator13. Once the data are organized, they can either
be uploaded to an S3 bucket and processed with a command similar to that in Section A.1.2
(updating the bucket name and path to data on the bucket), or kept locally with the bucket
and remote_path values omitted, if one wishes to run the pipeline locally.

B.3 Changing the Parameters

All of the code for this project is open-source and resides in a Github repository14. To test
the pipeline with different sets of parameters, it can be cloned and the source code can be
modified directly. The repository can be cloned to the HOME directory with the following.

$ git clone https://github.com/neurodata/ndmg ~/ndmg

Once adjustments have beenmade and the newpipeline is ready to be tested, the package
can be re-installed by executing the setup.py file contained within the repository.

$ cd ~/ndmg
$ python setup.py install

B.4 Changing the Functions

Much like changing parameters, once the repository is cloned it is possible to swap out algo-
rithms or implementations for various parts of the pipeline. Examples of tools which could
be replaced include registration or tractography. Again, once this is completed, the pipeline
must be re-installed prior to execution.
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Notes
1https://www.nitrc.org/forum/forum.php?forum_id=3664
2https://cloud.docker.com
3http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
4Enumerated here: http://bids-apps.neuroimaging.io/apps/
5http://brainx.io
6https://neurographics.net/2016/07/28/oden-2016/
7https://goo.gl/DDMcMG
8https://www.cygwin.com/
9https://aws.amazon.com/batch/
10https://github.com/neurodata/sic/tree/master/code/ec2/batch/json_files
11https://github.com/neurodata/sic/blob/master/code/ec2/batch/json_files/job.json
12https://www.docker.com/products/overview
13http://incf.github.io/bids-validator/
14https://github.com/neurodata/ndmg
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Abstract 
Modern technologies are enabling scientists to collect extraordinary amounts of complex and 
sophisticated data across a huge range of scales like never before. With this onslaught of data, 
we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of 
standardized sharing mechanisms and practices often make reproducing or extending scientific 
results very difficult. With the creation of data organization structures and tools which drastically 
improve code portability, we now have the opportunity to design such a framework for 
communicating extensible scientific discoveries. Our proposed solution leverages these existing 
technologies and standards, and provides an accessible and extensible model for reproducible 
research, called ''science in the cloud'' (SIC). Exploiting scientific containers, cloud computing, 
and cloud data services, we show the capability to compute in the cloud and run a web service 
that enables intimate interaction with the tools and data presented. We hope this model will 
inspire the community to produce reproducible and, importantly, extensible results which will 
enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, 
replicated, and extended. 
 

1 Introduction 
Neuroscience is currently in a golden age of data and computation. Through recent technological 
advances [1], experimentalists can now amass large amounts of high quality data across 
essentially all experimental paradigms and spatiotemporal scales; such data are ripe to reveal the 
principles of brain function and structure. In fact, many public datasets and open-access data 
hosting repositories are going online [2; 3]. 
 
Concurrent with this onslaught of data is a desire to run analyses, not just on data collected in a 
single lab, but also on other publicly available datasets. Various tools have been developed by 
the community which solve a wide variety of computational challenges on all types of data, 
enabling difficult scientific questions to be answered. With the ability to perform analyses often 
dependent only upon access to data and code resources, neuroscience is now more accessible, 
with a lower barrier to entry. 
 
However, there is no tool or framework that enables research to be performed and 
communicated in a way that lends itself to easy extensibility, much less reproducibility. Currently, 
re-performing and extending published analyses whether through data or code is often un- 
bearably difficult: (i) data may be closed-access; (ii) data may be organized in an ad hoc fashion; 
(iii) the code may be closed-source or undocumented; (iv) code may have been run with 
undocumented parameters and dependencies; (v) analyses may have been run with code 
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compiled for specific hardware. These properties make validating and extending scientific claims 
challenging. 
 
A focus on reproducibility is already commonplace in a variety of disciplines. In genomics, 
Bioboxes [4] provide a framework for reproducible and interchangeable analysis containers, and 
tools are exploiting scalable computing solutions and being published with reproduction 
instructions (see: [5; 6]). Commentaries on reproducible research provide suggestions to 
researchers on how to tackle the challenges that are present in their scientific settings [7; 8]. 
While these works have accelerated reproducibility and extensibility in their fields, the methods 
proposed do not scale to the cloud or enable real-time interactivity, and have yet to be 
thoroughly applied to the burgeoning field of computational neuroscience. 
 
The notion of a universally web-viewable laboratory [9] is also growing in popularity, and many 
initiatives have been successful in contributing to this vision. In plant biology, CyVerse [10] 
provides infrastructure for tools, data, and education. In neuroscience, platforms such as LONI's 
Pipeline [11] and neuGRID [12] alleviate the burden of managing captive computing resources 
and integrating them with datastores, while NeuroDebian [13] provides quick and easy access to 
a variety of neuroimaging tools. Leveraging the NeuroDebian platform, NITRC has encouraged a 
transition to the cloud by releasing an Amazon Machine Image (AMI)1 preloaded with commonly 
used packages. In parallel, many groups have strived to breach the frontier through such efforts 
as developing sophisticated resource estimation-based deployment strategies [14], and these 
have shown the great potential for a cloud-based approach to neuroimaging [15]. Each of these 
projects has made valuable contributions to the progress towards accessibility and portability of 
neuroscience research. 
 
<Figure 1> 

Figure 1: Framework for science in the cloud illustrating the six necessary components for SIC. 
Cloud data storage enables universal access to data products. Data organization structures 
enable consistent tools and user interactions across datasets. Interactive demonstrations 
allow users to participate in live scientific analyses. Virtualization enables tools to be deployed 
reliably and consistently. Deployment tools organize re- sources provided by computing 
platforms, and enable users to run analyses at scale. Together, these tools create a framework 
for discovery that is optimized for extensible science. 

 
We propose a solution to these gaps in the form of a framework which leverages publicly 
documented and deployable cloud instances with specific pipelines installed and configured to 
extend published findings: an implementation we simply term ''science in the cloud,'' or, SIC 
(Latin for “thus was it written”). SIC instances have several fundamental components, as 
summarized in Figure 1. To address data access, we put data in the cloud. To address data 
organization, we utilize recently proposed data standards. To address closed source and 
undocumented code, we generate open-source code and interactive demonstrations. To address 
software and hardware dependencies, we utilize virtualization, automated deployment, and 
cloud computing. SIC puts these pieces together to create a computing instance launched in the 
cloud, designed not only for generating reproducible research, but also enabling easily accessible 
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and extensible science for everyone. SIC is designed to minimize the bottlenecks between 
publication and novel discoveries; leveraging the experience of the community, we propose a 
solution for transitioning to a universal, and “future-proof,” deployment of software to the cloud. 
We introduce and document an example use case of SIC with the ndmg pipeline, thus entitled 
SIC:ndmg. We have developed a capability which enables users to launch a cloud instance and 
run a container which performs an analysis of a cohort of structural and diffusion magnetic 
resonance imaging scans by (i) downloading the required data from a public repository in the 
cloud, (ii) fully processing each subject's data to estimate a connectome for each subject's 
associated graph statistics, and, optionally, (iii) plot quality control figures of various multivariate 
graph statistics. 
 

2 Methods 
There are six key decisions which must be made when following SIC: data storage, data 
organization, interactive demonstrations, virtualization, deployment, and computing. The 
selection made for each of these components will have a significant impact on available 
selections for the others. The final product will be a highly interdependent network of tools and 
data. Table 1 shows a summary of the selections made for each of the criteria enumerated in the 
previous section with rationales for the decisions. In general, the tools selected were those which 
provided the most command-line/Application Programming Interface (API) support for their 
service and had the most complete documentation or online support community, enabling setup 
with relative ease. 
 
Cloud Data Storage There are several options when storing data in a publicly accessible 
location, such as a cloud storage service or public repositories. Depending on the nature of the 
data being stored, different concerns (such as privacy) must be satisfied. For instance, sensitive 
data (i.e. not anonymized/de-identified) requires authentication for access, whereas de-
identified data does not. It is our recommendation to host de-identified data in the cloud and 
store linking metadata privately on HIPPA (or equivalent) compliant organization datastores. 
Researchers who may not wish to release their data prior to publication are encouraged to store 
their data with secure protocols. The datastore should also be accessible through an API, or 
another interface enabling developers to access the data programmatically. Depending on the 
desired organization, autonomy is also a valuable feature, affording the developer full control on 
how the data is stored, as opposed to working within the confines of an existing infrastructure. 
The type of virtualization (described below) used may also influence the types of shared 
datastores which will be natively compatible with the application. Considering the above, 
Amazon's S3 service was used in this SIC implementation because it satisfied all of these 
requirements. While Google's Cloud Engine or Microsoft Azure also satisfy these requirements, 
the decision to use S3 was made based upon our existing domain knowledge and familiarity with 
each of these systems. 
 
Data Organization The newly publicly-available data then needs to be organized in 
accordance with a data specification which enables users to navigate the repository successfully. 
Such standards include both file formats, which can be interpreted by programs, as well as folder 
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organizations, which enable grouping of data by subject, observation, type, etc. Depending on 
the modality of data being used, there are different structures which can be adopted. In the case 
of MRI, the BIDS [16] specification is a well-documented and community-developed standard 
which is intuitive and allows data to be both easily read- able by humans and navigated by 
programs. Organizations such as ''Neurodata without Borders'' [17] would serve as additional 
options for physiology data, but are unsuitable for this application. Formats such as MINC [18] 
focus heavily on metadata management but less on file hierarchy, making them useful though 
not fully sufficient for this application. Though some standards may consider securely handling 
identifying information, we recommend only storing de-identified data publicly to avoid possible 
security risks. 
 
<Table 1> 

Table 1: There are six key components which must be selected for SIC. Bold indicates the 
selections made here, with their positive and negative qualities compared to some 
alternatives. 

 
Interactive Demonstrations  To encourage use of data and the tools used to analyze it, 
interactive demonstrations that enable users to visualize and work with some subset of the data 
are extremely valuable. Various programming languages have different types of demonstration 
environments available which either enable full interactivity or are pre-compiled to display code 
and results. A popular tool for interactive development and deployment of Python code is 
Jupyter, and thus was the tool used here. The popularity of this tool hopefully increases the 
average user's familiarity with the interface, lowering the barrier to entry for interacting with 
SIC:ndmg. If a developer is more familiar with another programming language, there is no 
particular reason why one would select Jupyter over an equivalent package in R, such as R 
Notebook. 
 
Virtualization  Developing and distributing virtualized environments containing all neces- sary 
code products guarantees consistent dependencies and application setup, and therefore 
minimizes user effort to obtain expected performance. These virtual environments should be 
able to be deployed on any operating system and have minimal hardware-dependent code. A key 
desiderata is that the virtualization system minimizes unnecessary overhead for the application. 
Though it does not affect run-time performance, a repository of public machine images is an 
attractive feature for this model as it enables sharing configurations. Docker [27] was chosen 
because it satisfies these practical requirements, and the accessibility of Docker Hub enables 
images to be quickly found and deployed. Virtual machines such as those created in Virtual Box 
[19] or VMware [20] provide lots of range in terms of operating systems which can be launched 
and allow native access to the machine through a GUI. However, though these are great features, 
they are unnecessary for this application. An additional attractive feature of Docker is that 
translating a README file (which enumerates dependencies or installation instructions) to a 
Dockerfile forces developers to improve their documentation and increases the useability of their 
tool. Though this is certainly extra work for the developer, the process requires only knowledge 
of the documented Docker schema and the editing of plain-text files, which we believe to be a 
relatively low cost to the developer. 
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Deployment  Deployment platforms allow users to define a specific set of instructions that can 
be launched on a single machine or multiple machines simultaneously. In physical hard- ware 
configurations, a cluster's scheduler would play this role; in the cloud, such tools are able to take 
advantage of computing resources across different locations and services, and enable scaling 
with the amount of processing required. Middleware such as Kubernetes [21], Tutum2, or 
Nextflow [24] can enable a user to distribute their jobs across a cluster existing in different 
computing environments (i.e. separate clouds). When using a single cloud, such as Amazon or 
Google, native applications support managing resources efficiently. In the case of SIC:ndmg, we 
elected to deploy entirely in Amazon's cloud; therefore, we used Amazon's Batch to launch the 
pipeline distributed across multiple computing nodes, and Amazon's ECS to deploy a distributed 
and scalable SIC service. Tools such as CBRAIN [23], LONI [11], and MyBinder [22] also enable 
distributed deployment of code, but are more specialized in the requirements of the tools and 
services that can be launched and are thus more restrictive. 
 
Computing  Cloud computing services enable users to launch customized machines with 
specific hardware configurations and specifications, making them versatile for different varieties 
and scales of analyses. The more general the hardware that can be used, the more accessible the 
tool is for a user to adapt and use in their own environment. Selecting the commercial cloud for 
deployment as opposed to data center resources enables greater accessibility and transparency 
to users, is more scalable, and enables parallel jobs to be run in completely isolated resources. 
Cloud deployments also provide consistent performance across nodes, and have a much lower 
start-up cost than utilizing local computing resources. Since there were no specific hardware 
requirements in this application, and there existed previous in-house experience with the service, 
Amazon's EC2 was selected in this usecase. The benefit of using EC2 is that deploying code at 
different scales and locations is trivially extendable, so implementations can be easily taken from 
prototype to deployment. Amazon's cloud enables launching computing resources based on 
AMIs with preinstalled dependencies, increasing the flexibility of the processes which can be 
launched. 
 
Further details of our specific implementation and methods are provided in Appendix A. 
 

3 Results 
We demonstrate a working example of SIC, SIC:ndmg. The ndmg pipeline [28] is an open-source, 
scalable pipeline for human structural connectome estimation from diffusion and structural MR 
images (collectively referred to hereafter as ''multimodal MRI'', or M3RI for brevity). The result 
is a portable and easily extensible tool for scalable connectome generation. A live demonstration 
is presented that enables reader interaction with the pipeline at the cost of a simple URL click, 
and data products of the tool are presented in both the context of ‘reproducibility’ and 
‘extensibility.’ This tool enables quantitative structural analyses of the human brain to be 
performed on populations of M3RI scans, and can lead to discoveries of the relationship between 
brain connectivity and neurological disease. 
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3.1 Neuroscience as a Service 
The analysis transforms ''raw'' M3RI data into graphs. Kiar et al., (in preparation) describes the 
pipeline in detail; here we provide a brief overview. The pipeline (Figure 2) consists of four main 
steps: registration, tensor calculation, tractography, and graph generation. Note that the choices 
below are made for expediency and simplicity; other choices might be beneficial depending on 
context. Table 2 summarizes the duration and cost of each step for a given dataset processed 
and stored in the cloud. 
 
Registration in ndmg is performed in several stages using FSL [29]. First, the diffusion image is 
self-aligned and noise-corrected using the eddy_correct function. Second, the transform is 
computed which aligns the B0 volume of the diffusion image to the structural scan using epi_reg. 
Third, the transform between the structural image and a reference atlas is computed with flirt. 
Finally, the transforms are combined and applied to the self-aligned diffusion image. The tensor 
calculation and tractography steps are performed with the DiPy package [30]. A simple tensor 
model fits a 6-component tensor to the image, and deterministic tractography with the EuDx 
algorithm is run, producing a set of streamlines. Graph generation takes as input the fiber 
streamlines, and maps them to regions of interest (ROIs) defined by a pre-built parcellation (such 
as those packaged with FSL or generated with brain segmentation algorithms) and returns an 
ROI-wise connectome. An edge is added to the graph for each pair of nodes along a given fiber. 
The final step is computing (multivariate) graph statistics on the estimated connectomes. The 
statistics computed are [31]: number of non-zero edges, degree distribution, eigen sequence, 
locality-statistic 1, edge weight distribution, clustering coefficient, and betweenness centrality. 
These statistics provide insight into the structure of the brain graphs, and provide a low-
dimensional feature by which the graphs for different scans can be compared to one another. To 
provide a preliminary quality control step, we plot the graph statistics [31] for each graph (Figure 
4). 
 
<Figure 2> 

Figure 2: Structure of the ndmg pipeline connectome estimation. Taking as input diffusion 
and T1 weighted MRI, ndmg first aligns the diffusion data to a reference atlas by means of 
the T1 image. Tensors are then computed from the aligned diffusion volume. Fiber 
streamlines are generated by performing tractography on the tensors. Finally, the fibers are 
mapped between regions of interest (ROIs) which then become nodes in the graph. 

 
<Table 2> 

Table 2: Approximate cost and time breakdown per subject of the ndmg pipeline running in 
Amazon EC2 with data stored in S3 and computation with m4.large machines at spot pricing 
of $0.0135 per hour (Accessed on 2017/01/04). The values were obtained by processing data 
from the NKI1 dataset with 40 sessions. The reader should note that Amazon S3 data I/O is 
not free, as it may appear, but is simply inexpensive for data this size. 
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3.2 Live Demonstration 
A demonstration of SIC:ndmg is available at http://scienceinthe.cloud/. This SIC instance is 
deployed via ECS on an Amazon micro-instance which is very affordable, so it can stay online 
indefinitely with little cost or maintenance ($100/year). This instance is running a Jupyter server 
which contains the demonstration notebook, sic_ndmg.ipynb. Launching the notebook pulls up 
an interface which resembles that of Figure 3A. 
 
<Figure 3> 

Figure 3: States of the demonstration notebook in the cloud. A) A Jupyter notebook 
displaying descriptions and code snippets to be run for both connectome estimation and 
summary statistic computation. B) After running connectome generation, an adjacency 
matrix will appear to provide a visualization. C) Summary statistic computation calculates 
several graph features and plots them in a multipanel figure. The demonstration notebook 
is running version v0.0.39 of ndmg. 

 
For demonstration purposes, a downsampled subject is used in this notebook which reduces 

analysis time from ∼1 hr/subject/core to ∼3 min/subject/core. The ndmg pipeline has two levels 
of analysis: graph generation and summary statistic computation. Graph generation is the 
process of turning diffusion and structural MR images into a connectome (i.e. brain graph), and 
the summary statistic computation produces a graph of several graph features on each produced 
connectome and plots them together. Running through the notebook (Figure 3A) chronologically 
will produce the brain graph, display the graph (Figure 3B), compute summary statistics (Figure 
3C), and then plot the statistics. 
 

3.3 Reproducible Results 
In addition to the live demonstration, SIC:ndmg was used to process the NKI1 [32] dataset 
consisting of 40 M3R scans. Instructions on setting up a cluster and running this analysis can be 
found in Appendix A. The NKI1 dataset is made publicly available through CORR [32], but has 
been organized in accordance to the BIDS [16] specification and re-hosted on our public S3 
bucket, mrneurodata. The dataset consists of MPRAGE, DWI, and fMRI scans, where each subject 
has been scanned at least twice for each modality. More information about the subjects in this 
dataset and the scanning parameters used can be found on the CORR website3. 
 
< Figure 4 > 

Figure 4: Running SIC:ndmg on the NKI1 dataset produces plots of graph statistics. Shown in 
order from left to right starting in the top row are betweenness centrality distribution, 
clustering coefficient distribution, degree distribution, edge weight distribution, eigen 
sequence, number of non-zero edges, and the locality statistic-1 distribution of the graphs. 
The displayed summary statistics were computed on the graphs generated with the Desikan 
parcellation, using the bids/ndmg:v0.0.41-2 Docker image. 

 
Running the Docker-hosted scientific container bids/ndmg:v0.0.41-2 on the NKI1 dataset 
produced Figure 4, costing under $1, as is summarized in Table 2. Table 3 summarizes the 
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parameters used as inputs to SIC:ndmg to generate the graphs. Figure 4 provides insight into the 
variance of the dataset through a variety of different metrics. According to published work on 
these summary statistics [31], this dataset and pipeline combination produces expected results. 
A key benefit of this visualization is that it has high information density, showing us distributions 
for a variety of features for a large number of graphs, as opposed to more common 1-dimensional 
features [33]. This figure was produced by the parameters summarized in Table 4. 
 
The demonstration in the previous section executed the exact same pipeline that was used to 
generate Figure 4. The sole difference between execution of the demonstration and this 
implementation -- aside from the data being processed -- is the specific Docker container being 
used. The reason for this difference is that the demonstration is required to run as a web service, 
so additional packages and setup are required. 
 
< Table 3 > 

Table 3: Command line arguments for connectome generation 
 
< Table 4 > 

Table 4: Command line arguments for summary statistic computation. 
 

3.4 Extensible Results 
A crucial property of SIC is the simplicity it affords users to perform extensible science. Ex- 
tensibility in this context can occur on several levels, including changing or adding (i) data, (ii) 
analyses, or (ii) visualizations. Figure 5 shows an example of such extensibility. A different 
dataset, the KKI2009 dataset [34], was processed using modified code, plotting the degree 
distribution on a log scale, with an additional plot added for cumulative variance analysis. The 
container used for this analysis on Docker hub is bids/ndmg:v0.0.41-2. Further details and 
instructions about how to extend SIC:ndmg specifically are available in Appendix B. 
 

4 Discussion 
Though the exemplar application used to demonstrate the value of SIC was the one-click ndmg 
pipeline, the framework is not restricted to this tool, or even one-click tools at all. For instance, 
a recent manuscript presented the notion of BIDS Apps [35]: containerized neuroimaging 
applications which operate on data stored in the BIDS data structure. These apps4 enable 
complex workflows to be executed, often taking in configuration files to allow for complicated 
parameter sets to be delivered more conveniently than via the command line. Such containers 
are a terrific usecase for SIC, and can be seamlessly interchanged with one another in a given 
deployment. SIC can use tools such as FreeSurfer or ANTs in certain processing steps with no 
software changes. Developing pipelines within the SIC framework enhances their reproducibility 
and the extensibility of publications using them, potentially increasing their scientific impact. 
 
< Figure 5 > 

Figure 5: Analyses performed with code developed under the SIC framework are easily 
extensible. The extensions made between this plot and Figure 4 are a) using a different 
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dataset, in this case KKI2009, b) adjusting existing plotting code in order to improve 
visualization of vertex degree in a log scale, and c) adding cumulative variance analysis of the 
graph. The displayed summary statistics were computed on the graphs generated with the 
Desikan parcellation, using the bids/ndmg:v0.0.41-2 Docker image. 

 
The SIC framework does not need to be confined to monolithic tools and containers. With further 
work, this concept can be integrated into a platform in which users are able to launch a variety 
of analyses on a variety of datasets. The self-documenting and reproducible web-calls which 
launch cloud containers performing computational tasks have potential to drastically improve 
the feedback loop between a scientist and their peers. This enables analyses to be easily 
replicated and refined, thus expediting scientific discovery. Tools such as Binder [22] accomplish 
this beautifully for Python, but the benefits of SIC are that this model can be applied not only to 
any containerizable application, but big data as well. 
 
The distinct advantage of using Docker for virtualization as opposed to virtual machines is the 
lack of both computational and data overhead. Though virtual machines can be used for pipeline 
deployment, they are based upon hard drive files which can bloat the host system. Virtual 
machines also require computational overhead to distribute processes to the host system, which 
Docker interfaces with directly. In many applications, virtual machines are a wise or even 
necessary tool of choice, though when the sole objective is the execution of a pipeline followed 
by termination of the environment, the benefits of minimal overhead often outweigh those of 
the additional features which may be available through virtual machines. Tools which aid in the 
deployment of virtualized environments such as Vagrant can be paired with a method of 
virtualization, whether Docker or otherwise, and they provide further documentation describing 
the process for launching an environment containing a given tool for execution. 
 
The selections made in SIC:ndmg regarding the six technological components highlighted above 
were chosen based on what the authors perceived to be most widely used and supported in the 
active online community. Other tools enumerated in Table 1 provide alternative features which 
can make SIC instances appear and run quite differently when developed separately, but 
ultimately provide a comparable experience for the user. For instance, the decision to store data 
independently from a public repository (such as NITRC [36], LONI’s IDA [37], LORIS [38], or 
ndstore [39]) leaves the onus of data organization on the developer rather than the repository, 
but in either case the user is able to access the data they need. This decision in particular was 
made so that the developer would have complete control over their data and implementation. 
However, hosting data within an environment such as those listed would have the advantage of 
enabling use of the infrastructure already built to support these platforms, such as performing 
meta-analyses and tracking provenance of the data itself, and is an exciting avenue for future 
work. While functionality for deploying in parallel to the cloud was developed with Amazon's 
Batch directly for interfacing with their cloud, alternative deployment tools such as Kubernetes 
are attractive options, because they provide clear visualizations of running processes and process 
versions and would enable SIC to deploy pipelines across multiple computing clouds or clusters. 
Deployments making use of local datacenters as opposed to the cloud are identical in execution 
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to those in the cloud, once Docker (or the virtualization engine of choice) is installed on the 
shared resources and a scheduling framework is available. 
 
This manuscript proposes a model for extensible and accessible development that did not strain 
those who have already been developing or using reproducible tools, but rather enhanced their 
ability to do so. Domain knowledge, such as that of Docker, is not uniform across disciplines, and 
this may discourage developers from complying with this methodology. However, it is our belief 
that the proposed framework does not require additional development beyond what already 
goes into creating and using a reproducible tool. For instance, in the case of Docker, a Dockerfile 
simply documents the instructions which are to be executed upon booting a brand-new 
computer and installing a given tool and its dependencies. Documenting this process is essential 
for developers, and many tools contain a README file describing the installation process. Once a 
Docker container exists, the process of re-executing and testing these instructions often requires 
far fewer keystrokes and ambiguity in the instructions is eliminated. There are certainly start-up 
costs when transitioning to new tools such as virtualization platforms, but it is our view that the 
gained transparency and portability within SIC greatly outweighs the costs. 
 
In summary, the SIC framework presents a standard of reliability and extensibility for scientific 
data distribution and analysis. SIC is an important building block towards a global scientific 
community, regardless of scientific discipline, and provides a practical implementation of the 
idiom that science is done by ''standing on the shoulders of giants.'' 
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Appendix A Reproduction Instructions 
Outlined here are the required steps to reproduce both the analysis of data in the cloud, as well 
as the live demonstration notebook server. In the command blocks which follow, all commands 
preceded by a $ should be executed. Commands which are executed in a single line but were 
too long to fit on the page end with \ and are carried over to lines which have been indented. 
Below, the assumption is that the commands are being executed on a Unix-based machine with 
access to a terminal. If one is working with a Windows operating system, installing a GNU 
environment such as Cygwin8 will enable the user to have a similar experience. 
 

A.1 Processing Data in the Cloud 
Through use of the AWS Batch tool, a scalable computing cluster is able to be launched in the 
cloud and jobs can be submitted to it for analysis via the command line. The process which 
must be followed is: create a computing environment, create a job-submitting queue, create a 
job definition, and finally, submit jobs to the cluster. We discuss how to accomplish each of 
these steps, and provide the scripts which were used for the deployment presented in this 
manuscript. One prerequisite for the instructions that follow is that the data in question for 
processing is made available at a public read- and write-able S3 bucket in the BIDS data format. 
 

A.1.1 Setting up an AWS Batch cluster 
Following the AWS Batch9 Getting Started tutorial, one can create a cloud computing cluster for 
themselves, establish a job-accepting queue, define jobs, and submit jobs to the queue, all 
within the web console. Though these operations can be done via the command line as well, 
they will only need to be performed once so it is not significantly advantageous to script these 
steps. 
 
At each of these steps there are several decisions which must be made regarding the size of the 
cluster, the number of cores, what container image to use in your job definition, and more. The 
definitions used to setup the ndmg pipeline and cluster can be found in the SIC Github 
repository10. 
 

A.1.2 Launching jobs on the cluster 
Once the cluster is live and a job definition for the ndmg pipeline has been created, jobs can 
start being submitted to the queue. When submitting a job to the cluster, one must first take 
the existing task definition for the process they are trying to run, and then override relevant 
portions of this definition for the desired usecase. For instance, if one wishes to run a single 
subject from the NKI1 dataset stored on our public S3 bucket, they may create a job submission 
which summarizes this11. This step can be done either from within the console or via the 
command line. In order to use the command line interface, one must first install the Amazon 
CLI tool and configure it with their user credentials to ensure that processes launched via the 
command line and web console are linked. 
 
If one wishes to launch many jobs at once, the ndmg package contains a script which accepts an 
S3 bucket, a path to the dataset on that bucket, and will then launch all of the subjects within 
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that dataset on the previously created cluster. Currently, this functionality does not exist within 
the Docker container version of ndmg, as it requires supplying authentication information to 
Amazon. However, passing this information to the Docker container safely and securely is a 
feature which the developers hope to eventually make available. To use this script, one must 
have installed the ndmg package in Python, and then may type the following line from a 
terminal window: 
 

$ ndmg_cloud --bucket s3_bucket_name --bids_dir \ 
path_on_bucket 

 
As well as receiving output to the terminal, opening the Batch web console to view that the 
jobs have been launched can serve as confirmation that this is completed. Once the processing 
is complete, the outputs will be pushed back to the provided S3 bucket and the results can be 
analyzed. 
 

A.2 Launching Demonstration Notebook Service 
The interactive SIC:ndmg notebook can be a valuable way to experience the ndmg pipeline and 
walk through the steps it takes, from generating graphs to plotting them and producing 
summary statistics. This interactive notebook is contained within its own Docker container, and 
automagically launches the service upon creating an instance of the container. We will walk 
through the brief process of launching this container on your local machine so that you may 
interact with it or change it yourself. 
 

A.2.1 Setting up Your Machine 
The only required setup for running locally is to install Docker. Docker has installation helpers 
for all operating systems available on their website12. Once Docker is installed, it is important to 
make sure that the port 8888 is open for Docker. In the case of Mac OS X and Linux, this should 
be the case automatically, but for Windows it currently must be opened through the 
networking options of VirtualBox. 
 

A.2.2 Launching the Docker container 
The user can launch the service with a single command from a terminal with access to Docker. 
This terminal is the standard terminal on Linux or Mac OS X, and can be the Powershell or 
provided terminal when installing Docker. The following command launches this service: 
 

$ git clone https://github.com/neurodata/sic ~/sic 
$ cd ~/sic/code/jupyter 
$ docker build -t neurodata/sic . 
$ docker run -d -p 8888:8888 neurodata/sic 

 
You can interact with the demo via a web browser. Navigate to localhost:8888 in the browser of 
your choosing to see this service live. 
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Appendix B Extension Instructions 
As this is a living and breathing project undergoing development, changes are being made 
regularly. The reproduction instructions given in Appendix A will reproduce the exact results 
presented within this manuscript. There are several ways described below which enable staying 
up-to-date with the project and performing one's own analyses using this tool. 
 

B.1 Updating the ndmg Container 
In order to achieve state-of-the-art performance from the ndmg pipeline, the version of the 
container being used should be updated to the latest release. In the job definition created 
above, specifying that the container image being used is bids/ndmg:latest as opposed to 
bids/ndmg:v0.0.41-1, for instance, will ensure that the most recent version of the code is being 
used. 
 

B.2 Using Your Data 
The ndmg pipeline processes data according to the BIDS data specification. To use the tool with 
an alternate dataset, it first needs to be organized according to this specification. This can be 
validated using the BIDS Validator13. Once the data are organized, they can either be uploaded 
to an S3 bucket and processed with a command similar to that in Section A.1.2 (updating the 
bucket name and path to data on the bucket), or kept locally with the bucket and remote_path 
values omitted, if one wishes to run the pipeline locally. 
 

B.3 Changing the Parameters 
All of the code for this project is open-source and resides in a Github repository14. To test the 
pipeline with different sets of parameters, it can be cloned and the source code can be 
modified directly. The repository can be cloned to the HOME directory with the following. 
 

$ git clone https://github.com/neurodata/ndmg ~/ndmg 
 
Once adjustments have been made and the new pipeline is ready to be tested, the package can 
be re-installed by executing the setup.py file contained within the repository. 
 

$ cd ~/ndmg 
$ python setup.py install 

 

B.4 Changing the Functions 
Much like changing parameters, once the repository is cloned it is possible to swap out 
algorithms or implementations for various parts of the pipeline. Examples of tools which could 
be replaced include registration or tractography. Again, once this is completed, the pipeline 
must be re-installed prior to execution. 
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Notes 
1https://www.nitrc.org/forum/forum.php?forum_id=3664 
2https://cloud.docker.com 
3http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html 
4Enumerated here: http://bids-apps.neuroimaging.io/apps/ 
5http://brainx.io 
6https://neurographics.net/2016/07/28/oden-2016/ 
7https://goo.gl/DDMcMG 
8https://www.cygwin.com/ 
9https://aws.amazon.com/batch/ 
10https://github.com/neurodata/sic/tree/master/code/ec2/batch/json_files 
11https://github.com/neurodata/sic/blob/master/code/ec2/batch/json_files/job.json 
12https://www.docker.com/products/overview 
13http://incf.github.io/bids-validator/ 
14https://github.com/neurodata/ndmg 
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SIC: response to reviewers
We thank all of our reviewers and the editor for their helpful feedback and insightful com-

ments. Below, we respond to each of the comments (italicized) with a description of changes
(regular text) and, where appropriate, exerpts from the updated manuscript (in red). We are
grateful to have the opportunity to resubmit the new and improved version of ourmanuscript.

Reviewer #1

• Its obvious a lot of effort has gone into the work described in the manuscript so my
comments relate to the future of SIC. I think that a collection of neuroscience data anal-
yses presented using the SIC framework would be a fantastic community resource. To
this end, I amwondering how the authors will promote their work so it is adoptedwithin
the neuroscience science community. I couldn't find a web site showing the work in the
manuscript which might be a useful thing to have. Perhaps http://scienceinthe.cloud
could summarise the SIC framework?

Thank you for the very kind review and suggestion. Towards adoption, we are work-
ing closely with the developers of BIDS and BIDS Apps, for which more detail has been
added to the discussion, on building a framework for one-click neuroscience analysis
using a variety of tools. Regarding the website, this is a great idea, and we will certainly
transform the scienceinthe.cloud web page to be a landing page for this paper once it
is accepted for publication, with a link pointing to the current demo.

• Another barrier to adoption is that the SIC framework requires expertise in Cloud stor-
age and computing, and virtualisation software in order to share neuroscience data
analyses. I am wondering if a set of Software Carpentry-like lessons (http://software-
carpentry.org/lessons) on these topics geared towards SIC might be worth thinking
about developing in the future which could then be used as teachingmaterials in train-
ing workshops?

This is a very goodpoint, andwe certainly agree that there exists a barrier to entry. Much
like Software Carpentry workshops you linked, we will be running in-person workshops
at the OHBM Conference in the Data Science room this year in Vancouver, and partici-
pating in several other hackathons across the globe.

• Fix typo on page 9 on the first line of the Discussion section: "The the…"

Thank you, this has been corrected.

Reviewer #2

• Lack of a fair literature review. The way the authors present it, it appears they are
the first to have attempted this. For example, what is the relevance between what the
authors present and: <sources redacted to save space>. I personally find relevance to
the abovemethods at least in terms ofmotivation (albeit somemay have used different
methods). Obviously the last two were authored by my team a few years back, on
the basis of a different Python based backbone that is now defunct (PiCloud). But the
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second one (last in the list), it went even beyond that: it considered optimization of
resources (type of Amazon instance) with a machine learning method that predicted
resource needs for non-linear registration in a pipeline of atlas based segmentation.

This is a great point, and we agree that the papers provided as well as others we have
found by looking deeper are solving similar problems in this space. We have added the
below to our introduction which highlights the contribution of these and other works:

The notion of a universally web-viewable laboratory [9] is also growing in popularity, and
many initiatives have been successful in contributing to this vision. In plant biology,
CyVerse [10] provides infrastructure for tools, data, and education. In neuroscience
platforms such as LONI's Pipeline [11] and neuGRID [12] alleviate the burden of manag-
ing captive computing resources and integrating themwith datastores, while NeuroDe-
bian [13] provides quick and easy access to a variety of neuroimaging tools. Leveraging
the NeuroDebian platform, NITRC has encouraged a transition to the cloud by releas-
ing an AMI preloaded with commonly used packages. In parallel, many groups have
strived to breach the frontier through such efforts as developing sophisticated resource
estimation-based deployment strategies [14], and these have shown the great potential
for a cloud-based approach to neuroimaging [15]. Eachof these projects hasmade valu-
able contributions to the progress towards accessibility and portability of neuroscience
research.

• I am really fond of the approach of the authors as it adopts newer technologies (con-
tainers etc) that can perhapsmake such systems future-proof. I should note that some
of the technologies are used also by other systems on different applications. For exam-
ple, there is US based initiative called CyVerse (iPlant) which the authors could explore
as well.

Thank you for the kind remark. We have taken the time to explore some more alterna-
tives of tools which we believe address pieces of our goal, and have added citations and
descriptions to them where appropriate throughout the document. CyVerse, in partic-
ular, is mentioned in the introduction paragraph shown above.

• lack of discussion on how the current approach can be extended to use other tools
such as freesurfer, ants etc. as i am sure you are aware, the same neuroimaging tools
don't work for everyone. while i agree with the idea of having standardized pipelines,
the ability to evolve said pipelines (as forks) can help the system evolve and (even) be
maintained. can you please expand on this.

This is a terrific point, and we certainly acknowledge that not all tools are suitable for
each task, and this approach must be accessible to a wide range of tools. The following
paragraph was added to the discussion section of our manuscript.

Though the exemplar application used to demonstrate the value of SICwas the one-click
ndmg pipeline, the framework is not restricted to this tool, or even one-click tools at all.
For instance, a recent manuscript presented the notion of BIDS Apps [35]: container-
ized neuroimaging applications which operate on data stored in the BIDS data structure.
These apps enable complex workflows to be executed, often taking in configuration
files to allow for complicated parameter sets to be delivered more conveniently than
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via the command line. Such containers are a terrific usecase for SIC, and can be seam-
lessly interchanged with one another in a given deployment. SIC can use tools such as
FreeSurfer or ANTs in certain processing steps with no software changes. Developing
pipelines within the SIC framework enhances their reproducibility and the extensibility
of publications using them, potentially increasing their scientific impact.

• While the authors have cost estimates spread throughout the paper, I believe further
discussion is necessary. It would help the readers to understand for a typically sized
study how much does it cost to upload data, store them for X days/months, download
them, and for computation. Based on our experience what was costly to store was the
registration non-linear warps on the cloud and we had to keep special scripts to keep
clean our data store. Thus, perhaps it is advisable that the authors to include for the
pipeline in Fig 2, who much time did each step take, how much did it cost, etc. (maybe
a table)?

We have added such a table to the results section, shown below, which summarizes the
cost breakdown for using a typical MR dataset in this application.
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• Unfortunately, from at least how I understand the code, it appears that to do the same
pipeline for the NKI1 dataset (40 scans) the process is linear (ie one scan after the
others). This is enforced by the comment of the authors in the discussion, related to
Kubernetes, "would help enable SIC to scalewell whenworkingwith big-data or running
many parallel jobs." If this is true, the SIC framework loses on of the greatest aspects of
cloud computing: that of scalability. The authors should comment on this, particularly
as this would make a proper fit for the GigaScience journal.

Thank you for pointing out this clarification and feature which is worth emphasizing in
our paper. As a result of this comment, we have worked onmaking parallel deployment
much easier through development with AWS Batch and ECS. We havemodified the lan-
guage in the discussion, and updated the relevant row of Table 1. We've updated the
sentence which raised this question to be the following.

While functionality for deploying in parallel to the cloud was developed with Amazon's
Batch directly for interfacing with their cloud, alternative deployment tools such as Ku-
bernetes are attractive options, because they provide clear visualizations of running
processes and process versions and would enable SIC to deploy pipelines across multi-
ple computing clouds or clusters.

• First line of discussion, there is a double the.

Thank you, it has been corrected.

Reviewer #3

• In my vision, the main difficult to address the proposed pipeline, is the inherent com-
plexity. For instance, while the authors propose the use of Docker containers to cre-
ate easily setup scripts and data loading, in a real scenario there are two main criti-
cisms: 1) the complexity of creating the Docker container by the research groups, for
instance, considering the data scientists associated to the MRI problem may not have
that knowledge; 2) to run the containers, it is still needed some technology background.
Thus, the methodology and guidelines should be considered to approach the problem,
and the strengths and weakness should be presented in discussion.

Thank you for this comment, as it raises a very good point. There is certainly a trade-off
between complexity for the developers and as ease of use for the users. We've ad-
dressed this point by highlighting the necessary steps to produce a reproducible tool
in general, and then explain the gains once turning that into a Docker contained tool,
while acknowledging the cost. The paragraph below was added to the discussion.

This manuscript proposes a model for extensible and accessible development that did
not strain those who have already been developing or using reproducible tools, but
rather enhanced their ability to do so. Domain knowledge, such as that of Docker, is
not uniform across disciplines, and thismay discourage developers fromcomplyingwith
this methodology. However, it is our belief that the proposed framework does not re-
quire additional development beyondwhat already goes into creating and using a repro-
ducible tool. For instance, in the case of Docker, a Dockerfile simply documents the in-
structions which are to be executed upon booting a brand-new computer and installing
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a given tool and its dependencies. Documenting this process is essential for develop-
ers, and many tools contain a README file describing the installation process. Once a
Docker container exists, the process of re-executing and testing these instructions of-
ten requires far fewer keystrokes and ambiguity in the instructions is eliminated. There
are certainly start-up costs when transitioning to new tools such as virtualization plat-
forms, but it is our view that the gained transparency and portability within SIC greatly
outweighs the costs.

• Data Storage: what kind of protocols should be considered? Only HTTP? If we consid-
ered to virtualize the machines, the users might want to have different access points
and applied mount for instance, via NFS or CIFS. Moreover, could be another API used
as for instance mount the Storage as a Volume?

Protocols such as HTTP or volume mounting are considerations which must be made
when selecting an option for data storage, and that one's data should influence this.
We've updated the bulk of the Data Storage paragraph in the Methods section to the
following.

Depending on the nature of the data being stored, different concerns (such as privacy)
must be satisfied. For instance, sensitive data (i.e. not anonymized/de-identified) re-
quires authentication for access, whereas de-identified data does not. It is our recom-
mendation to host de-identified data in the cloud and store linking metadata privately
on HIPPA (or equivalent) compliant organization datastores. Researchers who may not
wish to release their data prior to publication are encouraged to store their data with
secure protocols. The datastore should also be accessible through an API, or another
interface enabling developers to access the data programmatically. Depending on the
desired organization, autonomy is also a valuable feature, affording the developer full
control on how the data is stored, as opposed to working within the confines of an exist-
ing infrastructure. The type of virtualization (described below) used may also influence
the types of shared datastores which will be natively compatible with the application.

• Cloud environments: do you consider to use API middleware to solve the problem of
different providers There are libraries that allow to run machines from multiple clouds.

Middleware can certainly be valuable when operating across multiple compute clouds,
though it is often not necessary when working within a single cloud as providers have
tools developed to interface with their service directly. We've updated the Deployment
paragraph in the Methods section accordingly.

Middleware such as Kubernetes [21], Tutum, or Nextflow [24] can enable a user to dis-
tribute their jobs across a cluster existing in different computing environments (i.e. sep-
arate clouds). When using a single cloud, such as Amazon or Google, native applications
support managing resources efficiently. In the case of SIC:ndmg, we elected to deploy
entirely in Amazon's cloud; therefore, we used Amazon's Batch to launch the pipeline
distributed acrossmultiple computing nodes, and Amazon's ECS to deploy a distributed
and scalable SIC service.

• Docker: is proposed to run in AWS EC2 in the case study. But what are the differences
between run in a local datacenter?
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Thank you for this relevant question - we have added the following sentence in the dis-
cussion which addresses how to run in local datacenters (i.e. shared resources).

Deployments making use of local datacenters as opposed to the cloud are identical in
execution to those in the cloud, once Docker (or the virtualization engine of choice) is
installed on the shared resources and a scheduling framework is available.

• Moreover, AWS has already a service dedicated to Docker containers. Could you con-
sider to use this kind of tools in your approach?

Thank you for this great suggestion -weare nowusing two suchAmazon services: Batch
for distributed deployment of pipelines, and ECS for scalable deployment of web ser-
vices. We have updated Table 1 (below) and the Discussion (inserted above) to reflect
this.
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• On theother hand, therearealready tools like Totumthatmay facilitate thedeployment
of Docker containers. Could be a pre-installedmachine help to deploy new containers?

This is absolutely correct, and suchmachines are nowused in our deployment. Wemen-
tion Tutum (alternatively, Docker Cloud) as an example, and have updated the Deploy-
ment paragraph in the Methods section as in inserted above to address this comment.

• Open standards for data: what are the standards and how they are used? It should be
clarified in the manuscript.

Weapologize for a lack of clarity, andwe have updated theData Organization paragraph
of the Methods section and believe the following exerpt addresses this.

The newly publicly-available data then needs to be organized in accordance with a data
specification which enables users to navigate the repository successfully. Such stan-
dards include both file formats, which can be interpreted by programs, as well as folder
organizations, which enable grouping of data by subject, observation, type, etc. De-
pending on the modality of data being used, there are different structures which can
be adopted. In the case of MRI, the BIDS [16] specification is a well-documented and
community-developed standardwhich is intuitive andallowsdata tobeboth easily read-
able by humans and navigated by programs. Organizations such as ''Neurodata without
Borders'' [17] would serve as additional options for physiology data, but are unsuitable
for this application. Formats such as MINC [18] focus heavily on metadata manage-
ment but less on file hierarchy, making them useful though not fully sufficient for this
application.

• Did you consider several levels of security? For instance, only allow the reviewers to
access the container - online available?

In the paragraph shown above in response to the Data Storage question, based on this
suggestion we now address the question of security, stating that the use of secure pro-
tocols enables researchers to not share their data publicly while still operating within
the proposed framework.

• What are the differences of this architecture comparingwith only publishing a README
with instructions? Easy for end-user, complex for developer/researcher.

We addressed this valid concern about difficulty when responding to the earlier com-
plexity question. We acknowledge there is a learning-curve cost which must be con-
sidered when switching from one method of documentation to another, but believe the
benefit of removed ambiguity outweighs this cost.

• Docker vs Vagrant? Could be a virtual machine do the same? What are the differences
for the proposed pipeline? This kind of technical details should be addressed in the
discussion, because in the end, themanuscript is placed as a technical research paper.

Thank you for bringing this up - Vagrant can be valuable when used alongside Docker,
and we have added the following sentences to the discussion to clarify this.

The distinct advantage of using Docker for virtualization as opposed to virtual machines
is the lack of both computational and data overhead. Though virtual machines can be
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used for pipeline deployment, they are based upon hard drive files which can bloat the
host system. Virtual machines also require computational overhead to distribute pro-
cesses to the host system, which Docker interfaces with directly. In many applications,
virtual machines are a wise or even necessary tool of choice, though when the sole
objective is the execution of a pipeline followed by termination of the environment, the
benefits ofminimal overhead often outweigh those of the additional featureswhichmay
be available through virtual machines. Tools which aid in the deployment of virtualized
environments such as Vagrant can be paired with a method of virtualization, whether
Docker or otherwise, and they provide further documentation describing the process
for launching an environment containing a given tool for execution.


