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Abstract 
 

Background: With the advancement of second generation sequencing techniques, our 

ability to detect and quantify RNA editing on a global scale has been vastly improved. As 

a result, RNA editing is now being studied under a growing number of biological 

conditions so that its biochemical mechanisms and functional roles can be further 

understood. However, a major barrier that prevents RNA editing from being a routine 

RNA-seq analysis, similar to gene expression and splicing analysis for example, is the 

lack of user-friendly and effective computational tools. 

 

Findings: Based on years of experience of analyzing RNA editing using diverse RNA-

seq datasets, we have developed a software tool RED-ML: RNA Editing Detection based 

on Machine learning (pronounced as “red ML”). The input to RED-ML can be as simple 

as a single BAM file, while it can also take advantage of matched genomic variant 

information when available. The output not only contains detected RNA editing sites, but 

also a confidence score to facilitate downstream filtering. We have carefully designed 

validation experiments and performed extensive comparison and analysis to show the 

efficiency and effectiveness of RED-ML under different conditions, and it can accurately 

detect novel RNA editing sites without relying on curated RNA editing databases. We 

have also made this tool freely available via GitHub <https://github.com/BGIRED/RED-

ML>. 

 

Conclusions: We have developed a highly accurate, speedy and general-purpose tool for 

RNA editing detection using RNA-seq data. With the availability of RED-ML, it is now 

possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe 

this can greatly benefit the RNA editing research community and has profound impact to 

accelerate our understanding of this intriguing post-transcriptional modification process. 

 

Keywords: RNA editing, A-to-I editing, RNA-seq, post-transcriptional modification, 

machine learning 
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Introduction 
 

RNA editing provides a dynamic and flexible means to alter the sequence of RNA 

transcripts during development and in a cell-type specific manner. Since discovered 

almost 30 years ago [1, 2], the biological importance of RNA editing, in particular 

adenosine to inosine (A-to-I) editing which is the most prevalent type in animals, has 

been well established [3-8]. Being a layer of post-transcriptional modification, it could 

increase the proteomic diversity of mRNA transcripts, affect transcript stability and 

localization, interact with other primary RNA processing steps such as splicing and 

polyadenylation, impact the biogenesis and functions of small RNAs such as microRNA 

(miRNA) and long noncoding RNA (lncRNA) and regulate gene expression. When mis-

regulated, it contributes to various diseases [9, 10], including neurological disorders [11, 

12] and cancer [13-16]. However, in spite of some well-studied examples, there is still 

much to be learned about the regulation and function of RNA editing in general.  

 

In the last few years, large-scale, genome-wide analyses of RNA editing finally became 

feasible with the availability of high throughput RNA sequencing [17, 18]. Even so, 

technical limitations and computational challenges have made this task difficult, 

especially at the beginning [19]. Several groups have since developed techniques to 

overcome many of the early difficulties with considerable success [20-24]. Nonetheless, 

the detection and quantification of RNA editing are still mostly restricted to a few 

specialized labs, partly due to the high demand of domain specific knowledge and skills 

to apply these methods effectively, as well as various usability issues of previous 

methods. A common theme of many previous RNA editing detection (RED) methods, 

including our own [17, 25], is to apply a series of carefully tuned filters to combat 

different types of errors affecting RED, such as sequencing artifacts, mapping errors, 

contamination from genomic variants etc, in addition to the possible use of a second read 

alignment program [26]. While highly effective, these hard filters are difficult to adjust, 

tend to work well only under specific conditions, and cannot be easily modified to 

achieve different trade-offs between sensitivity and specificity. 

 

Envisioning that deep, high-throughput RNA sequencing will keep acting as a driving 

force of RNA editing research, we have developed a fast, high performance and user-

friendly RED tool based on machine learning (ML) to better serve the community and 

advance the field. Our new tool RED-ML (RNA Editing Detection based on Machine 

Learning) can perform genome-wide RED based on human RNA-seq data alone, can take 

advantage of matching DNA-seq data if available, and integrates well with other common 

RNA-seq data analysis steps. By adopting ML principles [27], our new method can 

automatically and optimally combine different sources of information to detect RNA 

editing sites with adjustable confidence levels in a robust manner, and comes as a 

computationally efficient, all-in-one software package. To facilitate training and testing 

of our ML model, we have also carefully designed high-throughput RED validation 

experiments. In the remainder of this paper, we will first describe the design and 

components of our method, followed by comparisons and detailed analyses to verify its 
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high performance, before concluding the paper with a discussion on further 

improvements and future directions. 

 

 

Methods 
 

A flow chart of our RED pipeline using RED-ML is shown in Fig. 1a. The input to RED-

ML is a sorted BAM file. Based on this sorted BAM file, RED-ML will extract candidate 

RNA editing sites and their corresponding features, with optional filtering if individual 

genotype information is available, then apply a logistic regression (LR) classifier to 

detect true RNA editing sites with an associated confidence score. Below we provide 

further details about the features used by RED-ML and the construction of the LR 

classifier. 

 

Features used by RED-ML 

 

There are three broad classes of features used by RED-ML, based on insights obtained 

from previous hard filtering approaches, our own experience of tuning these filters, and 

current understanding of RNA editing mechanism. The first class is basic read features, 

including the number of supporting reads of a candidate site and the putative editing 

frequency. The second class of features is related to possible sequencing artifacts and 

misalignments, including mapping qualities of the supporting reads, the relative position 

of the candidate site in the mapped reads, indication of strand bias, whether the candidate 

site falls into simple repeat regions etc. The third class is based on known properties of 

RNA editing, such as the editing type (whether it is A-to-I), whether the candidate site is 

in an Alu region and its sequence context. Note that while the first two classes of features 

could be directly used in hard filtering, the third class cannot since it is inappropriate to 

make hard decisions based on them, i.e., they cannot be used as criteria to directly filter 

out non-RNA editing sites. However, they still provide valuable information to ML based 

approaches where different sources of evidence can be combined to make soft decisions. 

In total, we extracted 28 features for every possible editing site, and full details of each 

feature are provided in Table S4. 

 

Validating RNA editing sties 

 

To construct a classifier by supervised machine learning, it is imperative to have a high 

quality, adequate-sized training set on RNA editing. Unfortunately, the lack of a gold 

standard dataset is a well-known challenge in the field [19]. Here, we overcame this 

difficulty with a two-step strategy: first, we overlapped results of three previously 

developed RED methods on the same male Han Chinese individual RNA-seq and DNA-

seq data [17], abbreviated as the YH dataset hereafter; second, we designed high-

throughput experiments to validate RNA editing with high accuracy. 

 

The three computational methods considered include the original one developed with the 

publication of the data by Peng et al [17], a second method developed by a different lab 

shortly after by Ramaswami et al [20], and an adapted and optimized version of RES-
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scanner [25] on the YH dataset (details in SM). Roughly speaking, the method by Peng et 

al tends to be very accurate at the price of reduced sensitivity; the method by Ramaswami 

et al substantially improved sensitivity but could be less accurate, while our own hard 

filters attempt to strike a balance between accuracy and sensitivity (Fig. S2 showing the 

Venn diagram, details in SM). Overall, due to the many differences among the three 

methods and independent validation experiments carried out in the first two, it is very 

likely that the overlap of these three, which is shown in Fig. S2, consists of genuine RNA 

editing sites. 

 

To further validate these predicted RNA editing sites, we carried out high-throughput Ion 

Proton sequencing[28] (details in SM) using the same YH sample. Although both Ion 

Proton sequencing and Illumima Hiseq are referred to as second generation sequencing 

platforms, they differ in many key aspects, including the underlying chemistry, base 

calling method as well as read alignment strategies. We took advantage of these 

differences to perform independent, high-throughput validation of the RNA-editing sites 

detected by Hiseq. In contrast, other validation methods that have been used in the 

literature, such as Sanger sequencing and mass spectrometry (MS), are of low-throughout 

and limited sensitivity, and not able to generate a dataset of reasonable size and diversity 

that can be used to train a ML classifier. To confirm the effectiveness of our high-

throughput Ion Proton validation method, we checked whether the sites predicted by 

Peng et al could be confidently detected. As shown in Fig. S1, most of the predicted sites 

with adequate Ion Proton sequencing coverage are detected (details in SM), with 

increasing validation rate as the sequencing coverage increases. Since sites predicted by 

Peng at al tend to be highly accurate, this further justifies the soundness of our Ion Proton 

validation approach. Based on the trend shown in Fig. S1, we picked a coverage 

threshold of 20 when evaluating the performance of RED-ML in the Results section. 

 

Building a ML classifier 

 

In order to build a high quality classifier based on ML principles, we carefully 

constructed the positive and negative training sets as follows. The positive set contains 

the overlap of three hard-filtering based RED methods (2,960 sites) that are further 

validated by Ion Proton sequencing with a minimum coverage of 15, which results in 

1,334 sites (the slightly reduced coverage threshold is to obtain a large enough positive 

set). In addition, we also selected sites detected by both Peng et al and Ramaswami et al, 

but not our own method, that are validated by Ion Proton sequencing (Fig. S2). This gives 

us an additional 141 validated RNA editing sites and results in a total of 1,475 data points 

in the positive set. To construct the negative set, we first selected seven highly 

informative features used by our hard filtering method that are also shared by RED-ML, 

and randomly sampled 150 sites each that failed the corresponding hard filtering criterion, 

which results in 1,050 data points. We also sampled 300 sites that were aligned by 

TopHat2 but filtered out by BWA, and not validated by Ion Proton sequencing. We 

further randomly sampled 1,200 SNPs from dbSNP 138 so that the classifier can be 

trained to distinguish between typical SNPs and RNA editing sites. Finally, we added 

those RNA editing sites that are detected by only one or two of the three methods but not 

validated by Ion Proton sequencing even when the coverage is adequate (20x or more), 
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which results in an additional 375 data points. This gives us 2,925 negative samples 

overall and a total of 4,400 data points in the training set (full details in SM). 

 

We tried several popular ML techniques to build classifiers for RNA editing detection 

and settled on logistic regression due to its simplicity, efficiency of implementation and 

relatively good performance (further discussions later). The LR classifier was trained and 

tested using the scikit-learn Python package (version 0.17.1), with a slightly higher 

weight (2.0) given to positive points to minimize the F0.5 score, which is defined as 

𝐹0.5 = (1 + 0.52) ∙
precision∙recall

(0.52∙precision)+recall
 . Five fold cross validation and grid search were 

carried out to pick between L1 and L2 regularization and an appropriate regularization 

coefficient to avoid overfitting. A LR classifier with weak L2 regularization was selected 

as the final architecture. The final LR classifier was trained on the full set of 4,401 data 

points using the best hyper-parameters picked by cross validation and grid search. 

 

 

Results 
 

The set of 4,400 data points just described would be very challenging for hard filtering 

based approaches. To test the performance of our ML based approach, we randomly 

partitioned these data points into training (80%) and test (the remaining 20%) sets. 

Performance on test data, which is not used when training the model, is shown in Fig. 2a 

& 2b, where an area under curve (AUC) of 0.98 for the receiver operating characteristic 

(ROC) curve and an AUC of 0.94 for the precision-recall curve were obtained, 

demonstrating the good performance of our LR classifier on this task. A key advantage of 

our ML based method is that it also outputs a confidence score of detection, which could 

be interpreted as the probability of a candidate site being a true RNA editing site. 

Therefore, this score provides a turning knob to adjust between sensitivity and specificity 

to suit different research goals, which is missing in hard filtering based approaches. As a 

test, we have applied our trained LR classifier on the full YH dataset and adjusted this 

threshold between the default 0.5 and the highly confident 0.9, and the Ion Proton 

validation rate increases monotonically as expected (Fig. 2c).  

 

We further took advantage of such an ability to do pair-wise comparison with the other 

three methods used in building our model. For the method of Peng et al and RES-scanner, 

we adjusted the threshold of RED-ML to roughly match the total number of detected 

RNA editing sites and compared the validation rates by Ion Proton sequencing. For the 

method of Ramaswami et al, we adjusted the threshold to match the number of detected 

RNA editing sites in non Alu regions only, since Ramaswami et al applied a very loose 

filter in the Alu region and included many low frequency sites that are not able to be 

detected by RED-ML (more details in SM). These results are shown in Fig. 2d, 2e & 2f, 

where RED-ML clearly outperforms the other three methods by detecting slightly more 

RNA editing sites while achieving higher Ion Proton validation rates at the same time. 

For example, when detecting ~140,000 RNA editing sites similar to RES-scanner (with a 

threshold of 0.68), the validation rate of RED-ML is 0.88 while RES-scanner is 0.82. 

When using the default threshold of 0.5, the validation rate of RED-ML only dropped 
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slightly to 0.86, still higher than that of RES-scanner, but it can detect ~27,000 more 

RNA editing sites (Table S5.1). 

 

It should be emphasized that evaluating RED-ML on the YH dataset is not truly unbiased, 

since a very small portion of the YH dataset has been used in training our model. 

Moreover, other methods have been more or less tuned on the YH dataset as well. Most 

importantly, however, is that a critical goal of adopting ML principles for RED is to build 

a tool that can generalize well, i.e., by learning the intrinsic, underlying characteristics of 

RNA editing, it can reach high performance beyond a specific dataset, experimental setup 

or tissue type etc. To fully test the real world performance of RED-ML, we carried out 

independent RNA-seq experiments on two prostate tumor samples (CH24T and CH62T) 

and a HeLa sample to detect RNA editing with RED-ML, and further performed Ion 

Proton validation experiments on these samples. RED-ML detected ~30,000-50,000 RNA 

editing sites using the default threshold of 0.5 (Fig. 3a, with full details in Tables S5.1 

and S11) and achieved Ion Proton validation rates of 0.9 or higher in these three samples 

(Fig. 3b). We also applied RES-scanner as a high performance baseline to compare 

against, which has been demonstrated to be superior among existing RED methods [25]. 

Once again, RED-ML substantially outperforms RES-scanner on these three datasets (Fig. 

3 a&b), by detecting more RNA editing sites and simultaneously achieving higher 

validation rates. This clearly demonstrates the advantage of our new ML based approach, 

which can generalize well beyond the data used to train the model. We have also 

performed mass spectrometry (MS) validation experiments on some detected sites in the 

prostate tumor samples, randomly selected across a wide range of RNA editing levels 

(15%-90%) with a slight bias towards sites in non-Alu regions (Table S6) and achieved 

an overall validation rate of 87.5% (35/40, Fig. 3c). As before, the detection threshold 

can be further adjusted to detect fewer but more confident sites, and it achieved even 

higher validation rates (Fig. 3d).  

 

RED-ML didn’t use information from existing RNA editing databases when detecting 

editing sites, which enables it to detect novel, sample-specific sites. This is a valuable 

asset in many applications, especially disease studies. To investigate whether it suffers 

from lower accuracy by not using curated databases, we carried out the following 

analysis. We first checked the overlap of RED-ML detected sites in CH24T, CH62T and 

Hela samples with those in two curated RNA editing databases (DARNED and RADAR) 

and plotted the results as Venn diagrams (Fig. 4 a, b & c). Significant portions of RED-

ML detected sites are in neither of the existing databases (46.5%, 60.1% and 60.4% for 

CH24T, CH62T and Hela samples respectively), probably because these are not normal 

tissues. We then partitioned the detected RNA editing sites into three categories: (1) both: 

existed in both DARNED and RADAR; (2) one: existed in only one of DARNED and 

RADAR but not both; (3) none: existed in none of the two databases, and checked the 

validation rates of these three categories across three samples. As shown in Fig. 4d, there 

are no significant differences on the validation rates among the categories in all three 

samples, which demonstrate that RED-ML performed quite consistently independent of 

existing RNA editing databases. In order to study the effect of genomic variants on RED, 

we compared the sites detected by RED-ML (without using genomic variant information) 

with the genomic variants detected by DNA sequencing on the same sample (Fig. 4e). 
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Even in the highly challenging tumor samples, where there exist both somatic SNVs and 

SNPs, the percentage of genomic variants in RED-ML detected RNA editing sites is quite 

low (no more than 1%), which confirms the high specificity of RED-ML in detecting 

RNA editing sites.  

 

Running the RED-ML pipeline from a sorted BAM file only takes a single command, and 

it runs quite fast for typical RNA-seq experiments, usually no more than an overnight job. 

For example, using a single thread on a Linux machine with a quad-core AMD Opteron 

2.4GHz processor, it takes 5-8 hours for CH24T, CH62T and Hela samples and ~16 

hours for the much larger YH dataset (Table S7.1), with no more than 5GB RAM usage. 

Most of the computation time was on variant pileup, while the ML step is extremely fast 

(~10 minutes for all samples). Comparing to our previously published RES-scanner, the 

improvement on speed is very substantial, achieving ~6x-10x speedup (Table S7.2). This 

is mainly due to the removal of a time-consuming realignment step by BLAT, as well as 

some optimization of variant pileup. 

 

 

Discussions 
 

In conclusion, a highly effective and widely applicable RED tool based on ML has been 

developed. We have also adopted careful software design to make this tool easy to use 

and it comes as an all-in-one software package. In addition, by adopting ML principles in 

building our model, further improvement can be easily made when improved knowledge 

of RNA editing becomes available. For example, when more accurate, large-scale RNA 

editing validation results are available, we can retrain our model with a better training set. 

When more characteristics of the RNA editing mechanism are discovered, we can design 

more features to reflect our improved knowledge. 

 

One limitation of RED-ML is that it only detects RNA editing sites with relatively high 

editing levels. The lowest level in our training set is 0.1, and RED-ML rarely detects sites 

with levels lower than 0.1 in reality. This limitation is mostly by design since we aim to 

detect functional RNA editing sites, which are unlikely to be of very low frequency, and 

it also helps to reduce the impact of sequencing errors and artifacts. However, if the 

accuracy in sequencing experiments and alignment tools could be substantially improved, 

such a limitation can be readily lifted when building our model. The speed of RED-ML 

can also be further improved if multithreading is supported in the variant pileup and 

feature extraction stage, and we plan to do so in the future. Meanwhile, a user could 

process the BAM files of each chromosome in parallel to speed up the pipeline.  

 

Although RED-ML can accept BAM files produced by different alignment tools, the 

current version has been specifically optimized for BWA and TopHat2 due to the 

construction of model, and we find that the choice of alignment tools and the associated 

parameters could have a large impact on RED. To help users with proper alignment 

strategies, we have detailed some recommendations in the SM. We have also tested some 

alignment tools other than those used in building our model. For example, when we tried 

the BAM file produced by STAR [29] on the CH24T dataset, we detected many RNA 
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editing sites but with low validation rate (~0.34, details in SM). When we tried the BAM 

file produced by HISAT2 [30], which could be considered as the successor of TopHat2, 

the result is much better (validation rate ~0.85, A-to-I ~0.93, details in SM), probably due 

to its similarity to TopHat2. Since designing accurate RNA-seq alignment strategies, 

especially in the context of SNP and RNA editing detection, is still an open research 

problem [24], we plan to incorporate more popular alignment tools when building future 

versions of RED-ML. 

 

The current version of RED-ML is designed for human RED since we used various 

features specific to human RNA editing as well as human data when building our ML 

model. With the increased RNA editing data available in other species as well as the 

growing interest of studying them, we could build future versions to support more species, 

as our previous method RES-scanner did. As a test, we have run RED-ML on ant BAM 

files from RNA-seq data in Li et al [31] by disabling all human related features. The 

result doesn’t seem to be good qualitatively. For example, the percentage of A-to-I 

editing is only ~60% (details in SM), and it shows that more work needs to be done to 

make RED-ML work well on other species. 

 

A simple ML technique, namely logistic regression (LR), has been adopted in the current 

version of RED-ML. We also tried other methods, including decision trees, random 

forests and SVMs, but the gain in performance by more sophisticated techniques is very 

minor (data not shown). As a result, LR was picked since it runs very fast and can be 

easily incorporated into our existing RNA-seq pipeline. However, when the need is 

warrantied, more sophisticated ML techniques, including deep learning [32], could be 

applied. ML may play a particularly large role when the accumulation of data and 

knowledge on RNA editing reaches such a stage that computational models of RNA 

editing could be assembled to simulate the process, such as what has been successfully 

accomplished for RNA splicing [33], or even building joint models with other RNA 

processing steps, and we believe this is a promising direction of future RNA editing 

research. 
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Availability and requirements 
Project name: RED-ML 

Project home page: https://github.com/BGIRED/RED-ML 

Operating system(s): Linux_x86_64 

Programming language: Perl & C++ 

Other requirements: SAMtools package and the following Perl modules: FindBin, 

Getopt::Long, File::Basename. 

License: GNU General Public License version 3.0 (GPLv3) 

Any restrictions to use by non-academics: None 

 

Availability of Supporting Data 

Data further supporting this work can be found in the GigaScience repository, GigaDB 

[34]. More information can also be found in the project homepage [35]. 
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Figure Captions 
 

Fig. 1 Flow charts of our RED-ML pipeline: (a) overview of the entire pipeline; (b) 

schematic of the ML component in RED-ML. 

 

Fig. 2 Evaluating RED-ML on the YH dataset. (a) & (b) ROC and precision-recall curves 

on the test set when building the LR classifier. Both curves were plotted to show a more 
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comprehensive picture of RED-ML performance on this biased dataset, where the 

number of negative examples is about twice of the positive ones, and they are obtained by 

varying the detection threshold in small steps. (c) The effect of varying the detection 

threshold: the Ion Proton validation rate increases monotonically as more stringent 

classification thresholds are chosen. (d)-(f) Adjusting the detection threshold to compare 

RED-ML with the methods of Peng et al, Ramaswami et al and RES-scanner: the 

thresholds used are 0.96, 0.5 and 0.68, respectively. 

 

Fig. 3 Evaluating RED-ML on two prostate tumor samples (CH24T and CH62T) and a 

Hela sample: (a) number of detected RNA editing sites and (b) Ion Proton validate rates 

by RED-ML (using the default detection threshold of 0.5) and RES-scanner in the three 

samples; (c) MS validation of some RNA editing sites detected by RED-ML and RES-

scanner in CH24T and CH62T; (d) the effect of varying the detection threshold in CH24T.  

 

Fig. 4 Further analysis of the RED-ML detected sites. (a)-(c): The overlap of detected 

sites with two curated RNA editing databases (DARNED and RADAR) in CH24T, 

CH62T and Hela samples were shown as Venn diagrams. (d) Ion Proton validation rates 

for different classes of sites (defined in the main text) in the three samples. The number 

of validated sites in each class is also indicated on the top of each bar. (e) The percentage 

of genomic variants in detected RNA editing sites as quantified by matching DNA 

sequencing data. 
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Dear Dr. Zauner, 

 

Thank you for giving us the opportunity to resubmit our manuscript! Based on the 

reviewers’ comments and your suggestions, and also in light of our recently published 

RES-scanner paper (Wang et al, GigaScience 2016), we have made substantial changes to 

our original submission. This has resulted in a much improved manuscript and we believe 

that we have fully addressed all concerns from the reviewers. The major changes are 

summarized below: 

 

1. Since our previous in-house hard filter is an adapted and optimized version of RES-

scanner on the YH dataset, we now simply refer to it as RES-scanner when describing 

our model (with detailed differences provided in the SM). We feel that this has added 

transparency and consistency to our Method section.  

 

2. Based on the experience gained from trying different alignment strategies in RES-

scanner, we now recommend BWA as the default alignment tool. We have updated all 

figures based on this improved alignment strategy and it has resulted in considerably 

better performance than before. RED-ML can detect more RNA editing sites with 

similarly high validation rates in all samples comparing to the previous submission. 

Moreover, the performance advantage of RED-ML with respect to other hard filtering 

based methods, including RES-scanner, also becomes more evident. RED-ML can still 

work well with TopHat2 and we have put the previous results in SM. We have also added 

more thorough discussion on different alignment strategies in the Discussion section. 

 

3. In terms of comparing with other methods, we have made full comparisons with RES-

scanner in all cases and shown that RED-ML has much improved accuracy and speed. 

Since it has already been demonstrated that RES-scanner is superior to other existing 

RED methods, we believe this fully addressed the request of adding more comparisons 

from the reviewers. 

 

4. The second reviewer suggested that we could use simulation to stress test our model 

and see when it would fail. Although we have carried out various simulations when 

building our model, we didn’t include them in the manuscript since they didn’t help much 

in evaluating the real world performance of RED-ML in our opinion (details in the 

response to reviewers below). However, we do agree with the reviewer that it would be 

helpful to stress test our method and show its limitation. In order to do so, we have added 

the analyses to run RED-ML with very different alignment strategies and on the ant 

RNA-seq data, a species very different from human, and included these results in the 

Discussion section. 

 

5. We have also made various improvements on the RED-ML software and it is fully 

open source now. Details are in SM and the GitHub page. 
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There are also many minor changes to improve the quality of the manuscript, such as 

precise reference to test data, better explanations of our ML philosophy and validation 

procedure, detailed in our point-to-point response to the reviewers below and in the 

revised manuscript. In summary, we are highly confident that the revised manuscript 

meets the requirement of being published in GigaScience. We are looking forward to a 

speedy response from you as last time. Thank you very much! 

 

Yours sincerely, 

 

Leo 

 

Leo J Lee, PhD 

BGI-shenzhen & University of Toronto 

Email: ljlee@psi.toronto.edu 

Phone: +1 4168865650, +86 13148700528 
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Below is a point-to-point response to the reviewers’ comments. 

 

----------------------------------------------------------------------------------------------------------- 

 

 

Reviewer reports: 

  

Reviewer #1, Anton Feenstra: The authors present a manuscript on a machine learning 

approach to detecting rna editing events in (NGS) sequencing data. The manuscript is 

concise, generally clear, and the results appear convincing. 

 

We thank the positive comments from this reviewer! 

  

I have, however, a few concerns. 

  

My main concern is the very high accuracy the authors report for their method. An AUC 

of around 95% in ROC or P/R plot is exceptional; achieving this high accuracy suggests 

the problem is actually fairly simple. It is therefore surprising that this result was not 

reached earlier in the roughly 15 years since the start of studying rna editing events in 

(NGS) sequencing data. This point warrants a deeper discussion than is currently 

presented in the manuscript.  

 

We thank the reviewer for pointing this out! Indeed, the very high accuracy shown by the 

ROC and P-R plots does not represent the true performance of RED-ML. It only shows 

the test error when building our LR classifier on the 4,400 data points, and confirms the 

adequacy of adopting a relative simple machine learning technique for this task. We have 

clarified this in our revised manuscript. That’s also why we carried out independent 

RNA-seq experiments with Ion Proton sequencing validation to evaluate the real world 

performance of RED-ML on CH24T, CH62T and Hela and show that it can generalize 

well beyond the specific dataset used to build the model. 

 

In addition, to support this discussion, ROC and P-R plots and corresponding AUC for 

the other methods (Peng, Ramaswami, and their 'in-house hard filtering') should also be 

presented in the manuscript.  

 

One main advantage of RED-ML is that it also produces a confidence score when 

detecting RNA editing sites, which can be varied to obtain ROC and P-R plots. Hard 

filtering based methods don’t have such a desirable property. Therefore, there are no 

easy ways to obtain full ROC and P-R plots for them. 

 

Similarly, validation results as presented in Fig 3 for the new method, should also be 

presented for the other three methods. 

 

We have added full comparison to our recently published hard filtering based method 

RES-scanner to show the advantage of RED-ML. Since RES-scanner has already been 



demonstrated to be superior to other hard filtering based RED methods (Wang et al, 

GigaScience 2016), we believe there is no need to compare with them again. 

  

Lesser concerns, approximately in decreasing order of importance: 

- in Results, 'unseen test data' is mentioned in relation to Fig 2. It should be 

specified which test set this refers to specifically. 

 

- The unseen test data is 20% of the 4,400 data points that was randomly sampled 

and not used in training. We have clarified this in our revised manuscript. 

 

- the latent variable used for producing the ROC and P-R plots (e.g. in Fig 2) is not 

defined in methods or results, nor in the captions. 

 

- We are sorry about this oversight! The latent variable is the confidence score, and 

this has been added to the figure caption. 

 

- in Discussion, the new method is described as 'user-friendly and easy to use'. I 

believe this statement is insufficiently substantiated in the results presented. 

 

- We thank the reviewer for the critical view! What we meant was that comparing 

to most previous RED methods, we provided an all-in-one software package that 

could be conveniently invoked as a single command from the command line. We 

have made this clear and also tuned down this statement a bit in the revised 

manuscript. 

 

- the first paragraph of Methods is somewhat opaque: 

In the revised manuscript, we have omitted the exact details of BAM file 

processing since it is not the focus of RED-ML, and the tool can also accept any 

sorted BAM files provided by a user. Exact details of our recommended steps are 

provided in SM, and there are further discussions about different read alignment 

strategies at the end of the revised manuscript. 

 

- what exactly should be done to obtain 'a post-processed and sorted BAM file' (a 

suitable literature reference might suffice)? 

As stated previously, this has been removed from the revised manuscript and 

details of the recommended steps to process BAM files are provided in SM. 

Briefly, for Tophat2, Picard was used to sort BAM files and to remove PCR 

duplicate reads, then base quality score recalibration was carried out by GATK. 

For BWA, SAMtools was used to sort BAM files and to remove PCR duplicate 

reads.  

 

- the RASER tool is highlighted as having special properties relating to SNP and 

RNA editing detection. It should be explained what this tool exels at, and how 

that is achieved. 



- We have removed this sentence in our revised manuscript to avoid confusion. This 

is a claim made by the author of RASER, not our own. Some discussions on 

different alignment tools are provided in the Discussion section. 

 

- the reference to 'best practices' is unclear, and is not helped by stating it 'includes' 

some steps, with a literature reference. Are (all) other steps of 'best practices' 

included in this reference? This should be made clear. 

- This has been removed in our revised manuscript while exact details are briefly 

mentioned above and also provided in SM. 

 

- in the second paragraph of Methods, the relevance of Alu regions in the context of 

RED should be explained. Also, it should be explained why 'hard decisions' 

cannot be made on the 'third class' of features (which include the Alu regions). 

- We wish to incorporate the knowledge that RNA editing happens preferably in Alu 

regions, so we include this feature in RED-ML. However, such a feature alone 

(and others in the “third class”) cannot be used to directly filter out non RNA 

editing sites, which is what we meant by “it is inappropriate to make hard 

decisions based on them”. Although it is possible to design different hard filters 

based on whether a potential RNA editing site resides in Alu repeat regions or not, 

as done by Ramaswami et al, this is clearly a very inefficient approach. The 

number of hard filter classes would grow exponentially as the number of third 

class features grows. Therefore, making use of them under the ML framework is a 

much more principled approach. 

 

- in the 'Building a ML classifier' section, the construction of the training set is not 

very clear. In particular, it should be explained why the additional 141 positives 

(by Peng & Ramaswami, but not their method, and validated) are needed, 

particularly since it only increases the positive set by 10%. It should also be 

explained why sites that do not pass the hard filtering criteria are a good 

component of the negative set; these are probably the most obvious ones that 

would not need to be predicted anyway. 

- Besides the overview provided in the main text, full details of constructing the 

training set are provided in SM. Our ML based method is designed to be an 

improvement of our previous hard filtering based method. It needs to first learn 

what the hard filtering method can already achieve, which is why some samples of 

data points not passing the hard filtering criteria should be included in the 

negative set. Moreover, the additional 141 data points are the true editing sites 

that the hard filtering method was not able to detect, and it is important to include 

them (although the size is relatively small) so that RED-ML can learn to perform 

better than the hard filtering method. Likewise, it is also important to include the 

375 data points that has been misclassified by our hard filter in the negative set. 

 

- the 'YH' label for the dataset from ref 17 is not introduced, which is somewhat 

confusing. Was this dataset labeled such by the authors of 17? 

- We are sorry about the oversight! The YH dataset is the same as the male Han 

Chinese individual RNA-seq and DNA-seq data in the reference (it has been 



traditionally called the YH dataset within BGI). We have made this clear in the 

revised manuscript. 

 

- in the caption of Fig 2 the phrase 'on a test fold' does not make sense to me. 

- This is the same as the 20% of 4,400 data points used as the test data. We have 

clarified this in the main text as well as the figure caption in the revised 

manuscript. 

  

Typos: 

- "Since sites predicted by Peng et al [17] tends..." --> please correct to "... tend ..." 

(remove plural 's') 

- We thank the careful reviewer for pointing this out and we have corrected it. 

  

  

Reviewer #2, Fabrizio Costa: The authors present a tool for RNA editing events 

detection. The tool is based on a logisitc regression classifier over 28 features and trained 

over 1300 positives and 3000 negative examples. 

  

The work would benefit from a clearer (if not formal) definition of the task at hand and a 

better introduction to defend the importance of the problem. 

 

The task we are trying to accomplish is genome-wide RNA editing detection from RNA-

seq. We have added a sentence to clarify this in the last paragraph of Introduction. The 

importance of this task can be summarized as: 1) The biological importance of RNA 

editing has been well established in the literature; 2) RNA-seq is the first, and so far the 

only, experimental technique to profile RNA editing on a genome-wide scale; 3) 

Detecting RNA editing sites from RNA-seq is a very challenging computational problem 

(e.g., as thoroughly discussed in Bass et al, Nature Biotechnolgy 2012) and good tools 

are seriously lacking. We feel that we have adequately supported the above three 

statements in our Introduction. If the reviewer has specific concerns, we will be glad to 

address them further. 

 

The definition of the validation procedure that uses proton sequencing and the agreement 

with a competitive tool needs to be better detailed and justified. 

 

We thank the reviewer for pointing this out. As Ion Proton sequencing may not be 

familiar to many readers, in the revised manuscript we have added the following 

sentences to briefly introduce it and justify our validation method, besides adding an 

appropriate reference. 

“Although both Ion Proton sequencing and Illumima Hiseq are referred to as second 

generation sequencing platforms, they differ in many key aspects, including the 

underlying chemistry, base calling method as well as read alignment strategies. We took 

advantage of these differences to perform independent, high-throughput validation of the 

RNA-editing sites detected by Hiseq.” 

We have also provided more details in SM for further clarification. As to competitive 

tools, we guess the reviewer meant competitive, experimental validation methods. Since 



previous validation methods in the literature are all of low throughput, such as Sanger 

sequencing and mass spectrometry, we don’t have a competitive method to properly 

compare against. In fact, the design of such a high throughput validation procedure is an 

important novel contribution of this work. 

 

The work would benefit from having a section devoted to studying an artificial case 

where the modeling hypothesis could be manipulated (e.g. the frequency of the editing 

events) to show under which circumstances the method would start failing or not being 

reliable any more.   

 

We thank the reviewer for the suggestion! We have indeed carried out various 

simulations when building our model, such as varying the editing frequency and read 

coverage. However, we decided not to include them in the manuscript since these 

simulations are not able to faithfully mimic the effect of RNA editing on RNA-seq. In fact, 

there are no well accepted methods to simulate RNA editing due to the lack of 

understanding of this process, unlike gene expression analysis for example, and that is 

why no RNA editing detection methods have been tested on meaningful simulations 

before. As a result, our own simulations didn’t contribute much to evaluating the real 

world performance of RED-ML either. They are most useful as debugging tools instead. 

But we do agree with the reviewer that it is helpful to see when the method starts to fail, 

and we have carried out two experiments to stress test our method. First we tried a very 

different alignment strategy based on STAR, which has not been used when building the 

training set. On the CH24T dataset, a total of 246,879 RNA editing sites were detected, 

but the validation rate is very low (0.34), so there are probably many false positives. 

Second although our method was built to do RED for human, we tested it on RNA-seq 

data from a very different species — ant (data from Li et al, Nature Communications 

2014). A total of 15,354 RNA editing sites were identified, but the proportion of A-to-I 

editing was only 0.605. These experiments demonstrate that RED-ML don’t work very 

well in situations that are vastly different from the training set. These results are also 

further discussed in the Discussion section of the revised manuscript. 

 

The definition of the test set is unclear and hence it is hard to assess how representative 

the performance estimate really is. 

 

We thank the reviewer for this critical comment and we have made efforts to clarify the 

test data used in our revised manuscript. Roughly speaking, there are two types of test 

data used in our work. The first is the test data defined under the classical ML framework. 

In our revised manuscript, we have made it clear that it is 880 (20% of 4,400) randomly 

sampled data points that are not used in training. The very good results shown in Fig. 

1a&1b are mostly aimed to justify the use of a relatively simple LR classifier after careful 

feature engineering. The second and more important type of test data comes from 

independent RNA-seq and validation experiments on CH24, CH64 and Hela. We believe 

these data sets can give realistic estimates on the performance of RED-ML. 

 



The work would benefit from better detailing the features used. Moreover it would be 

informative for the readers to have an assessment of the features quality (i.e. via a feature 

selection procedure). 

 

We have provided details of all features in Table S4. To give readers more insights into 

our feature set, we added the feature importance analysis as shown in Fig. S3 and Table 

S4. This is achieved by first normalizing the magnitude of each feature to be no more 

than 1 in the training set and then comparing the absolute values of the weights for each 

feature. Feature selection is not so relevant here since we only have 28 manually 

designed features in total and overfitting has been carefully controlled for. 

 

The software although available on GitHub is not open as it includes some executables 

without their respective source code. 

 

Thanks for the suggestion! We have now made our software completely open source on 

GitHub. 

 

 


