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 15 

Abstract 16 

Background: Predicting peptides binding affinity with human leukocyte antigen (HLA) is a crucial 17 

step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods 18 

work reasonably well in predicting peptide binding affinity with HLA-A*0201, HLA-A*0101, and 19 

HLA-B*0702 in terms of sensitivity and specificity. However, it is unknown whether these methods 20 

can also predict well with other HLA alleles that are present in majority of human populations.  21 

Result: Here we present a Position Score Specific Matrix (PSSM) based software called PSSMHCpan 22 

to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I 23 

alleles. By analyzing 10 cross-validations on training database of 87 HLA alleles and an independent 24 
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dataset with NetMHC-4.0, NetMHCpan-3.0, PickPocket, and PSSMHCpan, we found that 25 

PSSMHCpan is substantially better than the other three methods with accuracy ACC of 0.92 and 26 

sensitivity of 0.87, as compared to 0.85, 0.85, 0.72 in 10 cross-validations and 0.73, 0.79, 0.75 in the 27 

independent dataset evaluation. In addition, PSSMHCpan is more than 763 times faster than other three 28 

methods to predict neoantigens from a breast tumor sample. Finally we built a neoantigen prediction 29 

pipeline and identified 117,017 neoantigens from 467 cancer samples of diverse cancers from TCGA. 30 

Conclusion: PSSMHCpan is superior to currently available methods in predicting peptide binding 31 

affinity with a broad coverage of HLA class I alleles. 32 

Key words: Antitumor vaccine, peptide-HLA binding affinity, PSSMHCpan, neoantigen. 33 

 34 

Background 35 

Cancer immunotherapy has been proved to be a promising strategy that enhances the strengths of the 36 

immune system of cancer patients to fight cancer in recent years. This strategy exploits the fact that 37 

surface of cancer cells have a variety of tumor antigens (i.e. peptides of 8-13 residues in lengths) 38 

coming from various kinds of mutated proteins cleaved by the proteasomes intracellular. These 39 

peptides are bound to HLA class I allelic specific molecules, forming peptide-HLA complexes which 40 

are presented to T cell receptors (TCRs). If TCRs can recognize the complexes on the surface of cancer 41 

cells, cytotoxic T lymphocytes (CTLs) will destroy cancer cells. Cancer cells are highly heterogeneous 42 

in terms of morphological, phonotypical and genetic profiles. Cancer cells of different tumors and 43 

within the same tumor could present hundreds of different types of peptides. The immune system of 44 

cancer patients could only recognize small populations of cancer cells. In order to enhance the power of 45 

the CTLs to recognize and eradicate as many cancer cells as possible, one strategy is to vaccinate 46 

cancer patients with complex antitumor peptides. The first step to develop powerful antitumor vaccines 47 

is to predict peptide binding affinity with HLA class I allele.  48 
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In order to predict peptide binding affinity with HLA class I allele, four types of methods have been 49 

developed, including structure based methods, machine learning based methods, PSSM based methods 50 

[1] and combined methods. The structure based methods predict peptide binding affinity by calculating 51 

the minimum free energy of peptide-HLA complex [2], which allows us to understand the peptide-HLA 52 

binding affinity at the structure level. However, the predicting speed of this types of methods is 53 

extremely slow, and inaccurate due to limited number of available crystal structures [3]. The machine 54 

learning based methods predict peptide binding affinity by learning a function that maps a given 55 

peptide to binding affinity based on available known bound peptides (binders). These methods can 56 

accurately predict peptides with specific HLA alleles of HLA-A*0201, HLA-A*0101, and 57 

HLA-B*0702 [4, 5]. Hence, they are widely used in many studies [6-8]. Thus far, many methods of 58 

machine learning have been developed, including support vector machine based method MHC2PRED 59 

[9], hidden markov model based method S-HMM [10], artificial neural network based method 60 

NetMHC [11, 12], and pan-specific method NetMHCpan [13-15]. However, machine learning methods 61 

cannot accurately predict peptide binding affinity with a broad range of HLA class I allelic coverage. 62 

Further, they are inefficient in predicting peptides from a large amount of sequencing data. The PSSM 63 

based methods predict peptide binding affinity by building a matrix from multiple peptides alignment 64 

results that represent the motif information (i.e. the binding anchor). These methods have a faster 65 

predicting speed because linear computational complexity of PSSM is much lower than nonlinear 66 

computational complexity of structure and machine learning based methods. Based on the mechanism 67 

of PSSM, several software have been developed such as PickPocket [16], SVMHC [17] and nHLAPred 68 

[18]. However the accuracy of current software is less than machine learning based methods [16]. 69 

Recently, in order to predict peptide-HLA binding affinity more accurately, scientists from several 70 
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groups combined different methods to develop new software including NetMHCcons [19], IEDB [20] 71 

and HLaffy [21]. Although these combined methods indeed have shown a better predictive 72 

performance as compared to individual methods, their predictive accuracy are still not satisfactory, 73 

especially in clinical applications [22]. In order to develop more effective immunotherapy, it is 74 

necessary to develop better software that can more accurately and efficiently predict peptide binding 75 

affinity with a broad coverage of HLA class I alleles. 76 

Here, we present a novel software called PSSMHCpan. We designed this software based on the 77 

PSSM mechanism and using a more comprehensive training database containing 63,099 peptide-HLA 78 

pairs to allele-specifically predict peptide binding affinity with HLA class I allele. In order to predict 79 

peptide binding affinity with a broad coverage of HLA class I alleles, we induce a simple but powerful 80 

pan-specific prediction approach based on the similarity of HLA protein sequences. We show that 81 

PSSMHCpan can predict peptide binding affinity with a broad HLA class I allelic coverage of at least 82 

87 types more accurately and efficiently than other available methods in 10 cross-validations and 83 

independent dataset evaluation. Based on PSSMHCpan, we built a prediction pipeline to identify 84 

neoantigens in 467 TCGA tumor samples across 10 types of cancers. 85 

 86 

Methods 87 

PSSM is represented as a motif of multiple sequence alignment result [23]. The basic principle of 88 

PSSMHCpan is that peptides that bind to a specific HLA allele possess the motif information that can 89 

be studied by PSSM. We propose the PSSMHCpan in two novel aspects. Firstly, we construct a 90 

comprehensive training database to build allele-specific PSSMs for predicting peptide binding affinity 91 

with characterized HLA class I allele (with binders in training database). Secondly, we use the 92 
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similarity of HLA sequences to induce a simple but powerful pan-specific prediction approach based 93 

on our hypothesis below to predict peptide binding affinity with uncharacterized HLA class I allele 94 

(without binder in training database). It is well known that peptides on the cell surface are bound to the 95 

floor of the peptide-binding groove that is in the central region of the α1/α2 heterodimer (a molecule 96 

composed of two non-identical subunits) of HLA protein sequences [24]. By analyzing the sequences 97 

of HLA proteins, we noticed that HLA protein sequences are highly similar among different HLA 98 

alleles (Figure 1), and that peptides bound to similar HLA alleles have similar binding affinity 99 

according to predictive value of IC50. Thereby, we hypothesize that since different HLA protein 100 

sequences are similar, the peptide binding affinity with different HLA alleles should be similar too. 101 

Based on this hypothesis and the PSSM mechanism, we design the software PSSMHCpan as following 102 

three steps: PSSM construction, allele-specific prediction, and pan-specific prediction. The flowchart of 103 

PSSMHCpan is shown in Figure 2. 104 

 105 

PSSM construction 106 

We define PSSM as a matrix of M rows (Amino acid; M=20) and N columns (Length; N=8~25). Each 107 

element 𝑃𝑎𝑖  in the matrix is the likelihood of a given character (amino acid) at its position. We 108 

calculate the element 𝑃𝑎𝑖  through the following function,  109 

𝑃𝑎𝑖 = 𝑙𝑜𝑔
𝐹𝑎𝑖 + 𝜔

𝐵𝐺𝑎

 110 

Where Fai denotes the frequency of amino acid a at position i ; BGa denotes the background 111 

frequency of amino acid a from UniProt database [25]; and 𝜔 is a random value (ranging from 0 to 1) 112 

generated from Dirichlet distribution [26]. 113 

 114 
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Allele-specific prediction 115 

To qualitatively predict peptide binding affinity with characterized HLA allele, we define a 116 

binder_score as a sum of the corresponding values of each amino acid of a given peptide at each 117 

position in the corresponding allele-specific PSSM.  118 

binder_score =
∑ Pai

N
i=1

𝑁
 119 

We consider a peptide with binder_score > 0 as a binder. The higher binder_score that a peptide has, 120 

the higher binding affinity this peptide would have.  121 

We convert a binding affinity score (binder_score) into an IC50 value as follows:  122 

IC50 = 50000
𝑀𝑎𝑥−binder_𝑠𝑐𝑜𝑟𝑒

𝑀𝑎𝑥−𝑀𝑖𝑛⁄
 123 

Where Max and Min denote the maximum and the minimum binder_score, respectively. We 124 

consider a peptide with IC50 < 500nM as a binder and a peptide with IC50 < 50nM as a strong binder. 125 

 126 

Pan-specific prediction 127 

Firstly, we construct a library of HLA similar weight (Button panel in Figure 2) that contains pairs of 128 

characterized and uncharacterized HLA alleles, and each pair has a weight value. We determine a pair 129 

of characterized and uncharacterized HLA alleles by using the BLOSUM62 [27] based BLAST 130 

alignment results of HLA protein sequences, and assign the alignment score as the weight value. We 131 

also extracted the nearest distance of HLA alleles from NetMHCpan-3.0 [15] as a pair of characterized 132 

and uncharacterized HLA alleles and assigned a constant as the weight value.  133 

Secondly, we qualitatively predict the binding affinity of a given peptide with uncharacterized HLA 134 

allele with an IC50un value which is calculated as below: 135 

𝐼𝐶50𝑢𝑛 =
∑ wi ∗ IC50i

S
i=1

∑ wi
S
i=1

 136 
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Where S denotes the sum of characterized HLA alleles that pair up the specific uncharacterized 137 

HLA allele according to the library of HLA similar weight. 𝑤𝑖  and 𝐼𝐶50𝑖 denote the weight value 138 

and the allele-specific prediction result of peptide binding affinity with HLA allele i. We also consider a 139 

peptide with IC50un < 500nM as a binder, and a peptide with IC50un < 50nM as a strong binder. 140 

 141 

Data Description  142 

We collected our training database of HLA class I binders from the following resources: the Immune 143 

Epitope Database and Analysis Resource (IEDB) [28], IEDB benchmark [29], SYFPEITHI [30], 144 

MHCBN [31], and in-house experimental epitopes. After removing duplications, we obtained 64,677 145 

peptide-HLA pairs that cover 162 HLA alleles (Table 1). We only selected HLA alleles that consist of 146 

at least 10 binders with a fixed length. Finally, we built 241 PSSMs for allele-specific prediction of 147 

peptide binding affinity with 123 HLA class I alleles (Additional file 1: Table S1). 148 

Table 1 Summary of training database. 149 

Database IEDB IEDB 

benchmark 

SYFPEITHI MHCBN Combined Training 

database 

HLA alleles 166 95 109 103 162 123 

Binders 54,272 40,930 3,329 4,070 64,677 63,099 

We collected 64 uncharacterized HLA class I alleles that cannot be predicted with NetMHC-4.0 but 150 

can be predicted with NetMHCpan-3.0. We extracted 2064 binders that bind to the 64 uncharacterized 151 

HLA alleles from our training database as a dataset for pan-specific evaluation. 152 

To construct a library of HLA weight similarity, we collected 657,397 pairs of characterized and  153 

uncharacterized HLA class I alleles from 13,957 HLA protein sequences in IMGT/HLA (Release 154 

3.23.0) [32], and 2800 pairs from the nearest distance of HLA alleles in NetMHCpan-3.0, respectively. 155 
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After removing duplications, we retained 657,930 pairs for pan-specific prediction of peptide binding 156 

affinity with 4,778 HLA class I alleles (Additional file 1: Table S1). 157 

We also collected an independent dataset of binders from the Peptide Database of Cancer Immunity 158 

[33]. Then we selected 285 binders that cover 38 HLA alleles of HLA-A, HLA-B, HLA-C, including 159 

35 from tumor antigens resulting from mutations, 91 from shared tumor-specific antigens, 63 from 160 

differentiation antigens and 96 from antigens overexpressed in tumors. After removing duplications, we 161 

retained 273 binders for validation. 162 

To detect pan-cancer neoantigens, we obtained somatic mutations of 467 TCGA cancer samples 163 

across 10 cancer types (Table 2) from GDC data portal (https://gdc-portal.nci.nih.gov/) and the RSEM 164 

gene expression data of these tumors and their corresponding normal samples from FireBrowse 165 

(http://firebrowse.org/). We also obtained the tumor RNASeq aligned bam files from dbGAP.  166 

 167 

Table 2 Summary of 467 cancer samples from TCGA cohort. 168 

Cancer type Patient # Cancer type Patient # 

BLCA 19 LIHC 47 

BRCA 93 LUAD 57 

COAD 16 PRAD 43 

HNSC 39 STAD 28 

KIRC 67 THCA 58 

 169 

Analyses 170 

Evaluation of peptide binding affinity prediction with a broad HLA class I allelic coverage 171 
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In order to evaluate the allele-specific prediction accuracy of PSSMHCpan with a broad HLA class I 172 

allelic coverage, we performed 10 cross-validations on training data of 87 HLA class I alleles that 173 

contain at least 12 binders. We generated non-binders randomly with the same number of binders, and 174 

performed allele-specific prediction of peptide-HLA binding affinity using our PSSMHCpan, and the 175 

two well-known and currently considered as the best software for peptide-HLA binding affinity 176 

prediction NetMHC-4.0 and NetMHCpan-3.0 [4], and with the latest reported PSSM based software 177 

PickPocket, respectively. We found that the performance of the four software appeared similar in terms 178 

of the average area under receiver operating characteristic curve (AUC) with the HLA alleles of 179 

HLA-A*0101, HLA-A*0201, and HLA-B*0702 (Additional file 1: Table S2). However, in terms of the 180 

prediction accuracy ACC (ACC =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
, where TP, FP, TN and FN, represent true-positive, 181 

false-positive, true-negative and false-negative) under the cutoff at 500nM, PSSMHCpan is larger than 182 

NetMHC-4.0, NetMHCpan-3.0 and PickPocket (Table 3), suggesting that the PSSMHCpan delivers 183 

more accurate than the other three software in predicting peptide binding affinity with the HLA alleles 184 

of HLA-A*0101, HLA-A*0201, and HLA-B*0702 at 500nM. We also noticed that although the overall 185 

AUC of PSSMHCpan is slightly larger than that of any of the software with the rest HLA class I alleles 186 

(ranging from 1% to 2%; Figure 3a), the ACC of PSSMHCpan is much larger than those of other three 187 

software (ranging from 7% to 20%). By comparing the ACC of each HLA allele with a fixed peptide 188 

length among the four software, we found that the median ACC of PSSMHCpan is significantly larger 189 

than other three software (P <0.01, Paired T test; Figure 3b). 190 

 191 

Table 3 Assessments (ACC values) of four software to predict peptide binding affinity with three HLA 192 

alleles.  193 

 A*0101 

9mer 

A*0201 

9mer 

B*0702 

9mer 

A*0101 

10mer 

A*0201 

10mer 

B*0702 

10mer 

PSSMHCpan 0.96 0.88 0.91 0.96 0.92 0.96 

NetMHC-4.0 0.86 0.86 0.87 0.86 0.88 0.90 

NetMHCpan-3.0 0.85 0.86 0.87 0.83 0.87 0.88 

PickPocket 0.65 0.88 0.85 0.53 0.89 0.81 

 194 
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Considering a one-time 10 cross-validation of randomly selection and non-binders construction 195 

might produce biased results, we repeated another five times of 10 cross-validations, and found that 196 

(Table 4) the standard deviations (SD) of AUCs are ≤ 0.0005, indicating no bias in the 10 197 

cross-validation. 198 

Table 4 The AUC and SD values in 5 times 10 cross-validations. 199 

Time PSSMHCpan NetMHC-4.0 NetMHCpan-3.0 PickPocket 

1 0.9693 0.9623 0.965 0.9494 

2 0.9703 0.9633 0.9661 0.9507 

3 0.9703 0.9633 0.9661 0.9506 

4 0.9699 0.9632 0.966 0.9505 

5 0.9699 0.9633 0.9657 0.9506 

SD 0.0004 0.0004 0.0005 0.0005 

 200 

To evaluate our pan-specific prediction, we retrained PSSMs without binders from the dataset for 201 

pan-specific evaluation. And then we predicted binders from the dataset for pan-specific evaluation and 202 

2,064 randomly constructed non-binders by PSSMHCpan. Although the AUC of PSSMHCpan (0.93) is 203 

slightly lower than those of NetMHCpan-3.0 and PickPocket (0.96; Figure 3c; Additional file 1: Table 204 

S3), the ACC of PSSMHCpan (0.86) is much larger than those two software (0.75 and 0.73). By 205 

comparing the allele-specific prediction and pan-specific prediction of 3,408 correctly predicted 206 

peptides from the dataset for pan-specific evaluation, we found a high correlation between 207 

allele-specific and pan-specific prediction (Pearson’ rho=0.89, P<0.01; Figure 3d), suggesting that our 208 

PSSMHCpan can quantitatively predict peptide-HLA binding affinity with profound accuracy. 209 

We compared the performance of our PSSMHCpan with the latest software HLaffy developed by 210 

Mukherjee et al (2016) using the same peptides from the MHCBN. We removed all the binders from 211 

MHCBN in our training database and retrained our PSSMs with the rest of binders. Because the 212 

number of non-binders is much smaller than that of the binders in MHCBN, we only used binders to 213 

evaluate and calculated the prediction accuracy by sensitivity (Sen =
𝑇𝑃

TP+FP
). We found that our 214 

PSSMHCpan correctly detected 1309 binders, while HLaffy correctly detected 1179 binders (Table 5).  215 

Table 5 Assessments of PSSMHCpan and HLaffy. The prediction of HLaffy was performed on 216 

webserver (http://proline.biochem.iisc.ernet.in/HLaffy/). 217 

Allele PSSMHCpan HLaffy 

HLA-A*0201 100.00% 91.99% 

HLA-A*0203 100.00% 93.22% 
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HLA-A*0206 100.00% 93.44% 

HLA-A*0301 100.00% 83.93% 

HLA-A*1101 100.00% 96.00% 

HLA-A*2402 100.00% 76.60% 

HLA-A*3301 100.00% 83.33% 

HLA-A*6801 100.00% 94.12% 

HLA-A*6802 95.45% 72.73% 

HLA-B*0702 100.00% 87.88% 

HLA-B*3501 99.16% 89.08% 

HLA-B*5301 100.00% 91.84% 

HLA-B*5401 100.00% 88.10% 

All 99.85% 89.93% 

 218 

Evaluation of peptide binding affinity prediction with an independent dataset 219 

Considering cross validation might overestimate prediction accuracy, we reevaluated PSSMHCpan, 220 

NetMHC-4.0, NetMHCpan-3.0 and PickPocket with an independent dataset containing 273 221 

non-duplicated experimental binders from the Peptide Database of Cancer Immunity. If a peptide binds 222 

to any 4-digital HLA allele that belong to the given 2-digital HLA allele with a predicting binding 223 

affinity IC50 less than 500nM, we considered as binder. Totally, 245 of 273 (90%) binders were 224 

identified with the four software. Of the 245 binders identified, PSSMHCpan, NetMHC-4.0, 225 

NetMHCpan-3.0 and PickPocket identified 237, 199, 216, and 204, respectively (Figure 4; Additional 226 

file 1: Table S4), again indicating that PSSMHCpan can predict more binders than either NetMHC-4.0, 227 

NetMHCpan-3.0, or PickPocket can.  228 

 229 

Evaluation of the software efficiency  230 

As whole genome sequencing (WGS) and whole exome sequencing (WES) of cancer genome data are 231 

rapidly increasing, there is an urgent need to develop software that can quickly identify neoantigens 232 

from cancer genome data. To compare the efficiency of PSSMHCpan, NetMHC-4.0, NetMHCpan-3.0 233 
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and PickPocket (Table 6), we first calculated the predicting speed of 10-cross validation on training 234 

database with 87 HLA class I alleles and found that PSSMHCpan is much faster than other three. We 235 

then used each software to independently predict binding affinity of the same set of 661,263 peptides 236 

generated from a breast tumor sample containing 3062 somatic mutations and 6 HLA class I alleles. We 237 

found that it took about 6 seconds for PSSMHCpan to complete the analysis. In contrast, NetMHC-4.0, 238 

took 3.61 hours, NetMHCpan-3.0 took 28.63 hours, and PickPocket took 1.34 hours to complete the 239 

analysis. In general, PSSMHCpan are not only more accuracy but also faster than other methods. 240 

Table 6 The predicting speed (CPU time) of the four software. The fastest ones were marked in bold. 241 

Methods 10-cross validations Breast tumour neoantigens prediction 

PSSMHCpan 18.40s 6.34s 

NetMHC-4.0 1056.83s 13001.57s 

NetMHCpan-3.0 5371.16s 103060.24s 

PickPocket 282.83s 4839.63s 

CPU time was measured by second (s). 242 

 243 

Pan-cancer neoantigens 244 

To identify neoantigens that can be used as candidate markers to develop antitumor vaccine, we 245 

develop a neoantigen prediction pipeline to determine what types of mutated peptides in cancer cells 246 

could be brought to the cell surface by HLAs based on somatic small mutations (SSMs). In order to 247 

maximize prediction accuracy, we include PSSMHCpan, NetMHC-4.0, NetMHCpan-3.0 and 248 

PickPocket into our pipeline to detect neoantigens in TCGA tumor samples as following (Figure 5a). 249 

We first annotate missense SSMs including single nucleotide variants (SNVs), insertions and deletions 250 
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(InDels) with ANNOVAR [34] to create a list of tumor-specific peptides (8-13) with an in-house script. 251 

After HLA alleles are predicted with Seq2HLA [35], we predict neoantigens with PSSMHCpan, 252 

NetMHC-4.0, NetMHCpan-3.0 and PickPocket, respectively. Finally, we select a list of neoantigens 253 

that meet the following conditions: 1) Predicting as binders (IC50<500nM) by at least 2 software and 254 

taking the median value of IC50 as final result; 2) The IC50 value of a given SNV-derived neoantigen 255 

must be smaller than that of its corresponding wile type (WT) peptide [36]. Using this pipeline, we 256 

analyzed the neoantigens across 10 cancer types from TCGA cohort.  257 

Totally we identified 117,017 neoantigens from 467 TCGA cancer samples. We calculated the 258 

number of neoantigens per SSM in different types of cancer and observed that STAD, PRAD and 259 

BRCA had the highest neoantigens with 2.54, 1.52 and 1.43 per SNV, respectively (Figure 5b), whereas 260 

the highest neoantigens per InDel were 2.76, 2.59 and 2.34 in PRAD, STAD and KIRC, respectively 261 

(Figure 5c). We also compared the neoantigen loads (number of neoantigens per sample) across 10 262 

cancer types and found that STAD, COAD and BLCA tumors had the highest neoantigen loads with 263 

median values of 302, 182 and 163, while the THCA tumors had a lowest median neoantigen load of 30 264 

(Figure 5d).  265 

On average we identified 251 neoantigens in each tumor. We then investigated whether the 266 

expression level of HLA class I would be increased in cancer cells to bind neoantigens. Indeed, by 267 

looking at the mRNA expression in 467 TCGA tumor samples and their paired normal tissues, we 268 

found that the expression of HLA class I was markedly elevated in most tumors (Figure 5e). Since the 269 

amount of neoantigens differs substantially among different tumors, we examined whether the number 270 

of neoantigens was correlated with HLA class I expression level in each tumor. However, we did not 271 

find a correlation between the number of neoantigens and the HLA class I expression levels in tumors 272 
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(Pearson’ rho=-0.05, P=0.33). 273 

 274 

Discussion 275 

Designing antitumor vaccine requires predicting peptide-HLA binding affinity with high accuracy. In 276 

this article, we have presented a novel software PSSMHCpan that allows us to predict peptide binding 277 

affinity with a broad coverage of HLA class I alleles. By comparing our PSSMHCpan with the most 278 

popular machine learning based methods NetMHC-4.0, NetMHCpan-3.0 and the most recently 279 

published PSSM based method PickPocket, we demonstrated that overall our PSSMHCpan is 280 

substantially better than the other three in predicting peptide-HLA binding affinity, in terms of accuracy 281 

and efficiency. 282 

In recent years, PSSM based methods to predict peptide-HLA binding affinity were gradually 283 

replaced by machine learning based methods that are believed to have reliable accuracy and larger data 284 

prediction capability [3]. However, by comparing our PSSMHCpan with machine learning based 285 

methods NetMHC-4.0 and NetMHCpan-3.0, we show that our PSSMHCpan exhibits a higher 286 

predicting accuracy than NetMHC-4.0 and NetMHCpan-3.0, respectively. In terms of data prediction 287 

capability, PSSMHCpan can allele-specifically and pan-specifically predict peptides that bind to 241 288 

and 4778 HLA class I alleles, while NetMHC-4.0 and NetMHCpan-3.0 can only predict 89 and 2924  289 

HLA class I alleles, respectively. Furthermore, the PSSMHCpan displays much higher prediction 290 

efficiency as compared to NetMHC-4.0 and NetMHCpan-3.0 (Table 6). 291 

We noticed that the size of training database appeared to directly affect the prediction accuracy. A 292 

larger training database could improve the prediction accuracy of PSSMHCpan. For instance, the 293 

PSSMHCpan prediction accuracy ACC in predicting 9mer peptides bind to HLA-A*0101 and 294 
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HLA-B*5703 are 0.96 and 0.70. We found that in our training database, there are 813 binders for 295 

HLA-A*0101 and only 25 binders for HLA-B*5703, respectively. We believed that in order to improve 296 

the prediction accuracy, it is necessary to increase the size of training database. 297 

Based on the evaluation results (Figure 4), we recognized that none of the available software is 298 

perfect and that in order to maximize the prediction accuracy, it is necessary to use multiple software. 299 

We then included PSSMHCpan, NetMHC-4.0, NetMHCpan-3.0 and PickPocket to build a neoantigen 300 

prediction pipeline that allowed us to detect 117,017 neoantigens in 467 TCGA tumor samples across 301 

10 types of cancer. We believe that in order to provide actionable neoantigens that can be used in 302 

cancer immunotherapy, it requires more efforts to validate the function and immunogenicity of the 303 

predicted neoantigens experimentally. 304 

In conclusion, our PSSMHCpan can predict peptide binding affinity with a broad coverage of HLA 305 

class I alleles more accurately and efficiently compared with currently most popular peptide binding 306 

affinity prediction software. Our PSSMHCpan can not only help develop personalized antitumor 307 

vaccines, but also has great potentials in other aspects of cancer immunotherapy including designing 308 

dendritic cell (DC) vaccines, inducing DC-CTL, TCR-T, and assessing the PD-1/CTLA4 prognosis.  309 

 310 

Availability and requirements 311 

 Project name: PSSMHCpan 312 

 Project home page: https://github.com/BGI2016/PSSMHCpan 313 

 Operating system: Platform independent 314 

 Programming language: Perl 315 

 Other requirements: ActivePerl 5.8 316 
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 License: OSI 317 

 318 

Availability of supporting data and materials 319 

The supporting data from this study will be hosted in the additional files and PSSMHCpan home page. 320 

 321 

Additional file 322 

Additional file 1: Supplementary tables for supporting the analysis part 323 

Table S1 is the list of HLA class I alleles for allele-specific and pan-specific prediction. Table S2 is 324 

10-cross validations results of alleles-specific prediction. Table S3 is the pan-specific prediction results. 325 

Table S4 is prediction results the independent dataset.  326 
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 438 

FIGURE LEGENDS 439 

Figure 1 Heat map of HLA protein sequence similarity. The larger the Z-Score, the more similar of the 440 

pair HLA protein sequences. It showed high similarity between different types of HLA alleles within 441 

the same gene locus. 442 

Figure 2 Method of PSSMHCpan. The three mainly steps are shown in grey background.  443 

Figure 3 Evaluation on broad HLA allelic coverage. (a) The allele-specific prediction evaluation 444 

results showed by ROC curse of PSSMHCpan, NetMHC-4.0, NetMHCpan-3.0 and PickPocket. This 445 

result was except 9mer and 10mer of HLA-A*0101, HLA-A*0201 and HLA-B*0702. The ACC, 446 

sensitivity and specificity at cutoff of 500nM were also shown. (b) The boxplot of individual ACC of 447 

particular HLA allele with fixed peptide length. Comparison between PSSMHCpan and other three 448 

methods were performed by using paired T test. “*” denotes P<0.05 and “**” denotes P<0.01. (c) The 449 

evaluation results showed by ROC curse of PSSMHCpan in pan-specific prediction, NetMHCpan-3.0 450 

and PickPocket. The ACC, sensitivity and specificity at cutoff of 500nM were also shown. (d) 451 

Correlation analysis of peptide-HLA binding affinity result of IC50 value in log2 between 452 

allele-specific prediction and pan-specific prediction.  453 

Figure 4 The evaluation result of the independent dataset. We denoted IC50<500nM was positive 454 

prediction. 455 

Figure 5 Pan-cancer neoantigens. (a) The flow-char of neoantigen prediction pipeline. Software with 456 
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parameters using in the pipeline are shown in dashed procedure. (b) The distribution of neoantigens 457 

generated from each SNV across diverse cancers. (c) The distribution of neoantigens generated from 458 

each InDel across diverse cancers. (d) The distribution of neoantigen loads across 10 cancer types. The 459 

cancer types are sorted by median value of neoantigen loads. (e) The expression of HLA class I in 460 

tumor and corresponding normal samples. 461 
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