Supplementary Information for:

Possible Absence of Critical Thickness and Size Effect in

Ultrathin Perovskite Ferroelectric Films

Peng Gao^{1,2,3,4}*, Zhangyuan Zhang^{1,5}, Mingqiang Li^{1,4}, Ryo Ishikawa⁶, Bin Feng⁶, Heng-Jui Liu⁷, Yen-Lin Huang⁸, Naoya Shibata⁶, Xiumei Ma¹, Shulin Chen¹, Jingmin Zhang¹, Kaihui Liu^{2,3,4}, En-Ge Wang^{2,9}, Dapeng Yu^{1,2,10}, Lei Liao⁵*, Ying-Hao Chu^{8,11}, Yuichi Ikuhara^{6,12,13}*,

¹Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China

²Collaborative Innovation Centre of Quantum Matter, Beijing 100871, China

³Centre for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

⁴Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

⁵Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

⁶Institute of Engineering Innovation, The University of Tokyo, Tokyo 113–8656, Japan.

⁷Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC.

⁸Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC.

⁹International Centre for Quantum Materials, Peking University, Beijing 100871, China.

¹⁰Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China.

¹¹Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC

¹²Nanostructures Research Laboratory, Japan Fine Ceramic Centre, Nagoya 456-8587, Japan

¹³WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

*e-mail: <u>p-gao@pku.edu.cn; liaolei@whu.edu.cn; ikuhara@sigma.t.u-tokyo.ac.jp</u>.

Supplementary Figure 1 | A region with thickness about 18–20 unit cells. (a) The annular bright filed (ABF) image. Scale bar: 1 nm. (b) Calculated displacements of A (Sr or Pb) respective to O and B (Ti or Zr/Ti) respective to O. The error bar is the standard deviation (s.d.). (c) Calculated total polarization. The error bar is the s.d. (d) Calculated lattice *c* from cation sublattice. The error bar is the s.d. These measured structural parameters of PZT thin film are basically in agreement with the previous X-ray study of PbZr_{0.2}Ti_{0.8}O₃ powder ¹.

Supplementary Figure 2 | A region with thickness of 8.5 unit cells. (a) The ABF image. Scale bar: 0.5 nm. (b) Calculated displacements of A (Sr or Pb) respective to O and B (Ti or Zr/Ti) respective to O. The error bar is the s.d. (c) Calculated total polarization. The error bar is the s.d. (d) Calculated lattice c from cation sublattice. The error bar is the s.d.

Supplementary Figure 3 | A region with thickness of 6.5 unit cells. Calculated

lattice c from cation sublattice. The error bar is the s.d.

Supplementary Figure 4 | A region with thickness of 4 unit cells. Calculated lattice

c from cation sublattice. The error bar is the s.d.

Supplementary Figure 5 | A region with thickness of 2.5 unit cells. (a) The ABF image. Scale bar: 0.5 nm. (b) Calculated displacements of A (Sr or Pb) respective to O and B (Ti or Zr/Ti) respective to O. The error bar is the s.d. (c) Calculated total polarization. The error bar is the s.d. (d) Calculated lattice c from cation sublattice. The error bar is the s.d.

Supplementary Figure 6 | A region with thickness of 1.5 unit cells. Calculated

lattice c from cation sublattice. The error bar is the s.d.

Supplementary Figure 7 | $PbZr_{0.2}Ti_{0.8}O_3$ thin film on $SrTiO_3$ substrate with $SrRuO_3$ bottom electrode. (a) Elemental mapping. (b) High angle annular dark field (HAADF) image. Scale bar: 1 nm.

Supplementary Figure 8 | Robust Pb-O bond in the ultrathin $PbZr_{0.2}Ti_{0.8}O_3$ film on $SrRuO_3/SrTiO_3$. Displacements of Pb respective to O and Zr/Ti respective to O are plotted as a function of the thickness. The error bars are the s.d.

Supplementary Figure 9 | The atomic terrace in the thin regions in $PbZr_{0.2}Ti_{0.8}O_3$

films. The typical width of a terrace is from 10 to 30 unit cells. Scale bar: 2 nm.

Supplementary Figure 10 | The switchable nature of polarization. (a) In a relative thick region, both upward and downward domains are present in $PbZr_{0.2}Ti_{0.8}O_3$ films on SrTiO₃ substrate, indicating the switchable nature. The domain wall position is highlighted by the dashed line. Scale bar: 0.5 nm. (b) Upward polarization in $PbZr_{0.2}Ti_{0.8}O_3/SrTiO_3$ heterostructure. Scale bar: 0.5 nm. (c) Downward polarization in $PbZr_{0.2}Ti_{0.8}O_3/SrTiO_3$ heterostructure. Scale bar: 0.5 nm.

Supplementary Reference

1 Joseph, J. *et al.* Structural investigations on $Pb(Zr_xT_{1-x})O_3$ solid solutions using the X-ray Rietveld method. *J. Mater. Sci.* **35**, 1571-1575 (2000).