

Supplementary Fig. 1. Characteristics of transcription elongation by YonO. a. YonO forms a saltstable EC. Immobilized ECs were washed with transcription buffer with or without a high salt concentration before NTP addition. b. An 8 bp RNA-DNA hybrid is a prerequisite for stability of EC formed by YonO. The scheme of the reaction is shown next to the gel and sequences of the oligonucleotides are as shown in Table S1. Minor extension at time 0 is due to misincorporation during the RNA labelling with α -[³²P]GMP. c. YonO and msRNAP facilitate disengagement of RNA from the template DNA behind the EC. The ECs were chased with NTPs to the end of template. Note that the complexes do not dissociate from the template. RNase H was added to the beads fraction. The scheme of the reaction is shown next to the gel. d. Mn²⁺ has little effect on the specificity of YonO towards template, transcript, or dNTPs (compare to Figure 1d). e. YonO is more error prone than *E. coli* msRNAP (see also Figure 1f). f. YonO cannot hydrolyze phosphodiester bonds of the transcript even at higher pH and prolonged incubation. The apparent rates of the reactions are shown below the gel. g. YonO can perform processive pyrophosphorolysis.

y <u>otŊyotM L,K ↓ ↓ H,G FE</u> ,D,C	votB sspC vosX	yojW W V yosU yosT	yosS R yosQ	
nrdEB	nrdl,yosL K J	yosH yosG F E yosD	yosC B A yorZY X	N V
mtbP yorT yorS yorR Q.P.O	N yorM	yorL	уог	rK
vorJ vorl vorl	yorG yorF	yorE yorD yorC yorB	yorA yo	ρqΖ
<u>voq</u> Y X voqW ligB voqU T	yoqS yoqR P yoqO N	M yoqL K yoqJ		oqD
	S yopR	yopQ yopP		орК
yopJ yopl yopH GF E yoyH I yop	D yopC yopE	³ yopA y	onX yonV	
yoyJ YonU yonT yonS yonR yo	nP yonO	yonN	yo <mark>nK yonJ</mark>	
yonI yonH yonG yonF	yonE	yonD yo	onC yonB yonA	/omZ Y
yomX_yomW_yomVyomUyou/	yomT S yomR	Q P yomO N yo	mM yozP yomL you	uB
yomK yomJ	yoml		yomH	
yomG yom	F yomE	yomD bl	A bhlA B bdbB	yolJ
bdbA sunT sunA şu			/okL yokK yokJ	
yoyK2	yokG yokF	yokE yokD	yokC yokB	yokA

Supplementary Fig. 2. YonO transcribes the late genes of SP β phage. The map of the SP β prophage genome. In red are the late genes transcribed by YonO. A black arrow shows the predicted TSS of the YonO transcribed genes.

Supplementary Fig. 3. Uncropped western blot shown in Fig. 2a. Left are the images of the membranes with size markers visible. Right are the Western images.

C	1		Table	1.	T tat a	f a	1	alastidas		4h:a	
Տար	յրյ	lementary	rable	1:	LISU 0	1 0	ngonu	cieotides	usea m	uns	study.

Primer Name	Sequence $(5' \rightarrow 3')$	Purpose
YonO pET28 Fwd	CATATGGCTAGCTTGAAAGGAAAAAAAGACGG	Cloning <i>yonO</i> into pET-28a
YonO pET28	GTAGTTCTCGAGCTAACGGTGGTTAATTC	expression
Rev		vector
YonO Asp \rightarrow	GATATCCAAGCTGCTGCAGTTTAACAATAACGGGAATAAGGC	Introducing asp
Asn Fwd	CTTAATTATTTCTGA	to asn
YonO Asp \rightarrow	TCAGAAATAATTAAGGCCTTATTCCCGTTATTGTTAAACTGCA	substitutions
Asn Rev	GCAGCTTGGATATC	into yonO pET-
		28a plasmid
$\Delta yonO$ A	CTGACTACCTTTCAAGGCTGAGATG	Construction of
fragment Fwd		$\Delta yonO$ MazF
ΔνοηΟ Α	CAAGGCACTTTTAAATTCTCCCCTTATTAC	cassette for
fragment Rev		generation of
AvonO B	GGAGAATTTAAAAGTGCCTTGAGCCTTAC	marker-free
fragment Fwd		$\Delta vonO$ strain
Avon O B		
fragment Rev		
AvonO MozE		
Cassette Fwd		
AvonO MazE	CGACAGCGGAATTGACTCAAGC	
cassette Rev		
AvonO C	TTGAGTCAATTCCGCTGTCGTTTGAGTCAGAAAAGCTTTATG	
fragment Fwd		
ΔvonO C	GATTCCATAAGCAAGAGTTAGTGCTTC	
fragment Rev		
$\Delta vonO$ check	CCTTAGTTAAAGACAAGTTGC	Confirmation of
Fwd		$\Delta vonO$ deletion
ΔvonO check	GTAAGACTGTGATGGGATTCAC	
Rev		
P _{YonO} primer	GAATATTAGTGGAGATTCCTCTCC	In vivo primer
extension Fwd		extension to
P _{Vor} O Primer	CTACATAAAAAACTTGAGTAGCAAAGG	identify YonO
extension Rev		transcription
		start site
P _{veg} primer	GAACATAATTGAGGAATCATAGAATTTTG	In vivo primer
extension Fwd		extension of the
P _{veg} primer	CGAACGCTCAATCGTTTTTCG	Pveg promoter
extension Rev		transcription
		start site

Supplementary Table 2. Oligonucleotides used for elongation complex assembly. The oligonucleotides are shown according to their orientation and annealing in the assembled elongation complex. Red colouring denotes the position of the ³²P label.

Oligonucleotide Sequences		Related Figure
NT-DNA 5' ACTTACAGCCATCGAGAGGGACACGGCGAATAGCCA	3′	1b, S1a, S1c, S1g
RNA 5' AAUAAUCGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5 ′	
NT-DNA 5' ACTTACAGCCATCGAGAGGGACACGGCGAATAGCCA	3′	1c, 1e, S1e
RNA 5' AAUAAUCGAGAGGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
NT-DNA 5' ACTTACAGCCATCGAGAGGGTCACGGCGAATAGCCA	3′	1g, S1f
RNA 5' AAUAAUCGAGAGGGA 3'		_
T-DNA 3' TGAATGTCGGTAGCTCTCCCAGTGCCGCTTATCGGT	5′	
RNA 5' AAUAAUCGAGAGG 3'		1d, S1d
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
RNA 5' CCAAAACCUC 3'		
T-RNA 3' UUUUUUUGGAGAGCUAAUAA 5'		
DNA 5' CCAAAACCTC 3'		
T-RNA 3' UUUUUUUGGAGAGCUAAUAA 5'		
DNA 5' AATAATCGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
Hybrid Length: 5		S1b
RNA 5' AAUAAGGCAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
Hybrid Length: 6		
RNA 5' AAUAAUGGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
Hybrid Length: 7		
RNA 5' AAUACGCGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
Hybrid Length: 8		
RNA 5' AAUACUCGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
Hvbrid Length: 9		
RNA 5' AAUAAUCGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
Hybrid Length: 10		1
RNA 5' AAGCAUCGAGAGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCTGTGCCGCTTATCGGT	5′	
	-	
NT-DNA 5' ACTTACAGCCATCGAGAGGGGCCACGGCGAATAGCCA	3′	1f
RNA 5' AAUAAUCGAGAGGG 3'		
T-DNA 3' TGAATGTCGGTAGCTCTCCCGGTGCCGCTTATCGGT	5′	