Two-step ATP-driven opening of cohesin head

Íñigo Marcos-Alcalde, Jesús I. Mendieta-Moreno, Beatriz Puisac, María Concepción Gil-Rodríguez, María Hernández-Marcos, Diego Soler-Polo, Feliciano J. Ramos, José Ortega, Juan Pié, Jesús Mendieta, Paulino Gómez-Puertas

Supplementary Information

Containing Supplementary Figures 1-9 and Supplementary Videos 1-3.

Supplementary Figure 1 | Points of interest in the energy profile of the ATP hydrolysis at AS1 in the presence of Rad21-Cter. Points of interest (1-6) of the MEPSA minimum energy path are indicated on the energy surface and the energy profile representation. A reference structure is shown for each. Frames 1 to 3 illustrate the initial water stabilization via hydrogen bonding with Smc1A-N34 (1), which is subsequently swapped for hydrogen bonding with the γ -phosphate (3), through an intermediate transition state (2). After the highest free-energy barrier associated with the planar configuration in the main transition state (4) is overcome, a small free-energy barrier associated with catalytic water deprotonation by Smc1A-E1157 can be observed (5). The product structure (6) is reached when the leaving inorganic phosphate group (Pi) is formed and when Smc1A-E1157 transfers the catalytic water proton to the leaving group. The proton (*) initially transferred from the catalytic water to Smc1A-E1157 in (5) is labelled to illustrate the rotation of the Smc1A-E1157 residue prior to transfer of the proton to the inorganic phosphate (6).

Supplementary Figure 2 | Points of interest in the energy profile of the ATP hydrolysis at AS1 in the absence of Rad21-Cter. Points of interest (1-6) of the MEPSA minimum energy path are indicated on the energy surface and the energy profile representation. A reference structure is shown for each. Frames 1 to 3 illustrate the initial water placement, from the initial location (1) to the stabilization via hydrogen bonding with the γ -phosphate (3), through the intermediate transition state (2). Note the location of Smc1A-N34, far from the water position. Structures from the main transition state (4), catalytic water deprotonation event (5) and product (6) are also displayed. The proton (*) transferred from the catalytic water to Smc1A-E1157 in (5) is labelled.

Supplementary Figure 3 | Position of catalytic water molecules in the active centres. (a) Evolution of the distance between the oxygen atom of the catalytic water in AS1 and the C γ atom of the Smc1A-N34 residue (distance Smc1A-N34 - wat-O) in presence (cyan) and absence (red) of Rad21-Cter. The arrow indicates the position of the two snapshots selected as initial structure for QM/MM MD simulations. (b) Evolution of the distance between the oxygen atom of the catalytic water in AS1 and the C δ atom of the catalytic Smc1A-E1157 residue (distance Smc1A-E1157 - wat-O) in presence (cyan) and absence (red) of Rad21-Cter. (c) Evolution of the distance between the oxygen atom of the catalytic water in AS2 and the C δ atom of the catalytic Smc3-E1144 residue (distance Smc3-E114 - wat-O) prior (red) and after (cyan) ATP hydrolysis at AS1. The movement of the Smc3-E1144 residue, coordinated to the reallocation of Smc1A-K1120 in AS2, can be visualized in Supplementary video 2.

Supplementary Figure 4 | Root mean square deviation (rmsd) values of Smc1A-head and Smc3-head domains. rmsd values measured over the unrestricted 120 ns MD trajectory of the cohesin head complex in presence (cyan) and absence (red) of the Rad21-Cter domain.

Supplementary Figure 5 | Points of interest in the energy profile of the ATP hydrolysis at AS2 in its active form (AS1-ADP/AS2-ATP). Points of interest (1-7) of the free-energy profile are indicated and a reference structure is shown for each one. The energy profile can be divided into 3 steps: the first (panels 1 to 3), is characterized by the entrance of the catalytic water molecule in the active site; the second (panels 3 to 5), corresponds to the stabilization of the catalytic water molecule prior to the transition state by triple hydrogen bonding with Smc3-E1144, Smc1A-K1120 and γ -phosphate; the final one (panels 6 and 7) correlates to the transition state, thus leading to the product structure. The leaving inorganic phosphate group is formed and Smc3-E1144 transfers the catalytic water proton (*) to the leaving group.

Supplementary Figure 6 | Accumulated work (kcal mol⁻¹) along the independent trajectories over the separation between the centres of mass of the Smc1A-head and Smc3-head domains. Points from all five SMD trajectories for the AS1-ATP/AS2-ATP condition (red) and for AS1-ADP/AS2-ADP condition (cyan) are shown. The arrow indicates the distance in which the residues in both sides of the two active centres are completely detached.

		+	
SMC1A_HUMAN	1109	DGINYNCVAPGKRFRPMDNLSGGEKTVAALALLFA	1143
SMC1B HUMAN	1105	EGISYNCVAPGKRFMPMDNLSGGEKCVAALALLFA	1139
SMC1A MOUSE	1109	DGINYNCVAPGKRFRPMDNLSGGEKTVAALALLFA	1143
SMC1A BOVIN	1109	DGINYNCVAPGKRFRPMDNLSGGEKTVAALALLFA	1143
SMC1A XENLA	1109	DGINYNCVAPGKRFRPMDNLSGGEKTVAALALLFA	1143
SMC1_YEAST	1110	AGIKYHATPPLKRFKDMEYLSGGEKTVAALALLFA	1144
SMC3 HUMAN	1094	T <mark>GV</mark> GIRVSFTGKQGEMREMQQ <mark>LSGGQ</mark> KSLVALALIFA	1130
SMC3 MOUSE	1094	TGVGIRVSFTGKQGEMREMQQLSGGQKSLVALALIFA	1130
SMC3 BOVIN	1095	TGVGIRVSFTGKQGEMREMQQ <mark>LSGGQK</mark> SLVALALIFA	1131
SMC3 XENLA	1086	T <mark>GV</mark> GIRVSFTGKQAEMREMQQ <mark>LSGGQK</mark> SLVALALIFA	1122
SMC3_YEAST	1105	TGVSISVSFNSKQNEQLHVEQLSGGQKTVCAIALILA	1141
SMC2 HUMAN	1066	DGLEFKVALGNTWKENLTELSGGQRSLVALSLILS	1100
SMC2 MOUSE	1066	DGLEFKVALGNTWKENLTELSGGQRSLVALSLILS	1100
SMC2 BOVIN	1066	DGLEFKVALGNTWKENLTELSGGQRSLVALSLILS	1100
SMC2 XENLA	1067	DGLEFKVALGNTWKENLTELSGGQRSLVALSLILA	1101
SMC2_YEAST	1065	QGLEVKVKLGNIWKESLIELSGGQRSLIALSLIMA	1099
SMC4_HUMAN	1172	EGIMFSVRPPKKSWKKIFNLSGGEKTLSSLALVFA	1206
SMC4_MOUSE	1170	EGIMFSVRPPKKSWKKIFNLSGGEKTLSSLALVFA	1204
SMC4_BOVIN	1172	EGITFSVRPPKKSWKKIFNLSGGEKTLSSLALVFA	1206
SMC4 XENLA	1166	EGIMFSVRPPKKSWKKIFNLSGGEKTLSSLALVFA	1200
SMC4 YEAST	1304	EGVTFSVMPPKKSWRNITNLSGGEKTLSSLALVFA	1338

Supplementary Figure 7 | Multiple sequence alignment of several proteins homologous to human Smc1A in the area surrounding residue K1120. The sequences represented are: human Smc1A (SMC1A_HUMAN), Smc1B (SMC1B_HUMAN), Smc3 (SMC3_HUMAN), Smc2 (SMC2_HUMAN) and Smc4 (SMC4_HUMAN); *Mus musculus* Smc1A (SMC1A_MOUSE), Smc3 (SMC3_MOUSE), Smc2 (SMC2_MOUSE) and Smc4 (SMC4_MOUSE); *Bos taurus* Smc1A (SMC1A_BOVIN), Smc3 (SMC3_BOVIN), Smc2 (SMC2_BOVIN) and Smc4 (SMC4_BOVIN); *Xenopus laevis* Smc1A (SMC1A_XENLA), Smc3 (SMC3_XENLA), Smc2 (SMC2_XENLA) and Smc4 (SMC4_YEAST), and Smc4 (SMC4_YEAST). The residues are coloured according to conservation (BLOSUM62 score). The position of human Smc1A-K1120 is indicated by an arrow.

SMC1_YEAST SMC1_CAEEL SMC1A_BOVIN SMC1A_MOUSE SMC1A_HUMAN	1 13 1 1 1	MGRLVGLELSNFKSYRGVIKVGFGESNFTSIIGPNGSGKSNMMDAISFV KGTLHTLEIENFKSYKGKHTIGP-FTRFTAIIGPNGSGKSNLMDAISFV MGFLKLLEIENFKSYKGRQIIGE-FQRFTAIIGPNGSGKSNLMDAISFV MGFLKLLEIENFKSYKGRQIIGF-FQRFTAIIGPNGSGKSNLMDAISFV	'LGVRSNHLRSNILKDLIYRGVUNDENSDDYDNEGAASSNP ''LGEKFSSLRVRKYADLIHGAPINKPVA	SSAYVAFYQKSNKLVELMRIISSNGDISYKIDGKTV KKCRVTMYKYSBCGKVRAFTRGVNNGTSEHLLDGQTV NRAFVSMVYSEEGAEDRTFARVIVGGSSEYKINNKVV NRAFVSMVYSEEGAEDRTFARVIVGGSSEYKINNKVV NRAFVSMVYSEEGAEDRTFARVIVGGSSEYKINNKVV	SYKÖYSIFLENENILIKAKNFLVFQGDVEQIAAQSEVELSR ISAAYSQEMESINIFIKARNFLVFQGAVESIAMKNFKERTAI ULHEYSEELEKLGILIKARNFLVFQGAVESIAMKNFKERTAI ULHEYSEELEKLGILIKARNFLVFQGAVESIAMKNFKERTAI	FEEVSGRIQVKREVEDLKEKI 189 FEELSRSHEFQAEVERLKVM 187 FEELSRSGELAQEVDKRKKEM 175 FEELSRSGELAQEVDKRKKEM 175
SMC1_YEAST SMC1_CAEEL SMC1A_BOVIN SMC1A_MOUSE SMC1A_HUMAN	1053 1079 1059 1059 1059	FLKIKKKRKELFEKTFDYVSDHLDAIYRELTKNPNSNVELAGGNASLTI FEKVKTDRYRRFQDFFDPVANTIDDIYKQLSRNTSAQAFLGA FEQIKKERFDRFNACFESVATNIDEIYKALSRNSSAQAFLGF FEQIKKERFDRFNACFESVATNIDEIYKALSRNSSAQAFLGF FEQIKKERFDRFNACFESVATNIDEIYKALSRNSSAQAFLGF	EDEDEPFNAGIKYHATPPLKRFKDMEYLSGGEKTVAALAL DNMEEPYLDGIQYNCVAPGKRFRPMDNLSGGEKTVAALAL ENPEEPYLDGINYNCVAPGKRFRPMDNLSGGEKTVAALAL YENPEEPYLDGINYNCVAPGKRFRPMDNLSGGEKTVAALAL ENPEEPYLDGINYNCVAPGKRFRPMDNLSGGEKTVAALAL	LFAINSYQPSPFFVLDEVDAALDITNVQRIAAYIRRHI LFAVHGRNPAPFFVLDEIDAALDNTNIGKVASYICES LFAIHSYKPAPFFVLDEIDAALDNTNIGKVANYIKEQ LFAIHSYKPAPFFVLDEIDAALDNTNIGKVANYIKEQ LFAIHSYKPAPFFVLDEIDAALDNTNIGKVANYIKEQ	NYPOLOFIVISLENTMFEEKSDALVGVYRQQQE-NS5KIIIL REHMQIIVISLEEFYNKADSLIGIFEYPAACTISGVLTFI STCNFQATVISLEEFYTKAESLIGVYFEQGOCVISKVLTFI STCNFQATVISLEEFYTKAESLIGVYFEQGOCVISKVLTFI STCNFQATVISLEEFYTKAESLIGVYFEQGOCVISKVLTFI	LSNY 1223 LTRF 1243 LTRY 1223 LTRY 1223 LTRY 1223
SMC3_YEAST SMC3_CAEEL SMC3_BOVIN SMC3_MOUSE SMC3_HUMAN	1 1 1 1	MYIKRVIIKGFKTYRNETIIDNFSPHQNVIIGSNGSGKSNFFAAIRFVI MKIKEVRITGFRSYKDNTNYSGFSPRSNVVVGRNGSGKSNFFAAIQFVI MYIKQVIIQGFRSYRDQTIVDPFSSKHNVIVGRNGSGKSNFFYAIQFVI MYIKQVIIQGFRSYRDQTIVDPFSSKHNVIVGRNGSGKSNFFYAIQFVI	SDDYSNIKREEROGIIHQGSGGSVMSASVEIVFHDPDHSM SDEYAHLKEEQRIGILHESTGFKVAHARVEITFDNSEKRI SDEFSHLREQRIALHEGTGFRVISAFVEITFDNSDRRI SDEFSHLRPEQRIALHEGTGFRVISAFVEITFDNSDRRI SDEFSHLRPEQRIALHEGTGFRVISAFVEITFDNSDNRI	ILPSGVLSRGDDEVTIRRTVGLKKDDYQLNDRNVTKG MAFENSEVKIVRQVGKKKDQYYIDNKMVFRAI FIDKEVSLRAVIGAKKDQYFLDKKMVTKNI FIDKEVSLRRVIGAKKDQYFLDKKMVTKNI FIDKEEVSLRRVIGAKKDQYFLDKKMVTKNI	DIVRMLETAGFSMNNPYNIVPQGKIVALTNAKDKERLQLLEI VVVILMESAGFSRSNPYYIVKQGKINELATSPDAYKKLIR VVMLLESAGFSRSNPYYIVKQGKINQMATAPDSQRLKLLR VVMLLESAGFSRSNPYYIVKQGKINQMATAPDSQRLKLLR VVMLLESAGFSRSNPYYIVKQGKINQMATAPDSQRLKLLR	VVGAKSFEVKLKASLKKM 186 VAGTRVVDERKESSLKL 180 VAGTRVVDERKESSISLM 179 VAGTRVVDERKEESISLM 179 VAGTRVVDERKEESISLM 179
SMC3_YEAST SMC3_CAEEL SMC3_BOVIN SMC3_MOUSE SMC3_HUMAN	1057 1105 1045 1045 1045	ERLVPRGTÄKLIIHRKNDNANDHDESIDVDMDAESNESQNGKDSEIM KQLVPHCRGKMQMRAREQRDDEEGINSVEI QKLVPGCKATIVNKKRXERQSGLRMÆKGVVKGERGSGPQSVPSVD QKLVPGGKATIVNKKGDVEGSQS-QDEGEGSGESERGSGSQSSVPSVD QKLVPGGKATIVNKKGDVEGSQS-QDEGEGSGESERGSGSQSSVPSVDQ	AYTGVSIS <mark>VSF</mark> NSKQNEQLHVEQLSGGQKTVCAIALILA MEGISVLVSFVSDDGDSETREMTQLSGGQKSLVALAIIFS FTGVGIRVSFTGKQGEMREMQQLSGGQKSLVALALIFA PTGVGIRVSFTGKQGEMREMQQLSGGQKSLVALALIFA	IQMVDPASFYLFDEIDAALDXQYRTAVATLLKELSKNI IQKCDPAPFYLFDEIDAALDAQHRKSVADMIQSLSDQ/ IQKCDPAPFYLFDEIDQALDAQHRKAVSDMIMELAVH/ IQKCDPAPFYLFDEIDQALDAQHRKAVSDMIMELAVH/ IQKCDPAPFYLFDEIDQALDAQHRKAVSDMIMELAVH/	QFICTTFRTDMLQVADKFFRVKYENKISTVIEVNREEA 12 QFICTTFRPELLATAEKFYGVRFRNKVSHIDSVTREQA 12 QFITTFFREELESADKFYGVKFRNKVSHIDVITAEMA 12 QFITTFFREELESADKFYGVKFRNKVSHIDVITAEMA 12	17 50 07 06 06
SCC1_YEAST SCC1_CAEEL RAD21_BOVIN RAD21_MOUSE RAD21_HUMAN	475 531 542 547 543	-PTPGEVASKAIVQMAKILRKELSEEKEVIFTDVLKSQANTEF FGNTSTYKEDDGKWAKRAKHILKKVSADIETSGQADFS-SVT-A DASGGDQDQEERRWNKRTQQMLHGLQRALAKTGAESIS-LLELC DASGGDQDQEERRWNKRTQQMLHGLQRALAKTGAESIS-LLELC DASGGDQDQEERRWNKRTQQMLHGLQRALAKTGAESIS-LLELC	YENITKREASRGFFDILSLATEGCIGLSQTEAFGNIKIDAK TAKNRKQAAEQFYSLLTLAKSQAISVDQSEPYGEIVIRFG RNTNRKQAAAKFYSELVLKKQQAIELTQEEPYSDIIATFG RNTNRKQAAAKFYSELVLKKQQAIELTQEEPYSDIIATFG RNTNRKQAAAKFYSELVLKKQQAIELTQEEPYSDIIATFG	PALF 560 ANFK 616 PRFH 628 PRFH 633 PRFH 629		

Supplementary Figure 8 | Multiple sequence alignment of the modelled sequences. The sequences represented are: human Smc1A (SMC1A_HUMAN), Smc3 (SMC3_HUMAN) and Rad21 (RAD21_HUMAN); *Mus musculus* Smc1A (SMC1A_MOUSE), Smc3 (SMC3_MOUSE) and Rad21 (RAD21_MOUSE); *Bos taurus* Smc1A (SMC1A_BOVIN), Smc3 (SMC3_BOVIN) and Rad21 (RAD21_BOVIN); *Caenorhabditis elegans* Smc1 (SMC1_CAEEL), Smc3 (SMC3_CAEEL) and Scc1 (SCC1_CAEEL); and *Saccharomyces cerevisiae* Smc1 (SMC1_YEAST), Smc3 (SMC3_YEAST) and Scc1 (SCC1_YEAST). The residues are coloured according to conservation (BLOSUM62 score). Contacting residues in the interfaces between Smc1A/Smc3 (red dots) and Smc1A/Rad21-Cter (blue dots) are highlighted, locating all of them preferentially in the most conserved regions of the alignment.

Supplementary Figure 9 | **Error analysis of free energy values.** (a) Standard deviation values (right) of the free-energy surface (left) for ATP hydrolysis at AS1 in the presence of Rad21-Cter. Error analysis was performed using bootstrap resampling (100 replicates) on the data. Color scale for standard deviation values is included. (b) Mean values +/- standard deviation of the 1D free-energy profile of ATP hydrolysis at AS2 in the AS1-ADP/AS2-ATP condition. Error analysis was performed using bootstrap resampling (100 replicates) on the data.

Supplementary Video 1 | **ATP hydrolysis at AS1 in the presence of Rad21.** The reaction along the MEPSA minimum energy path is shown in Supplementary Fig. 1. The different steps in the reaction are highlighted: initial structure (S), stabilization of the catalytic water molecule, transition state (TS) and final product (P).

Supplementary Video 2 | **Positioning of Smc1A-K1120.** After ATP hydrolysis at AS1, Smc1A-K1120 moves close to the AS2 catalytic water molecule and remained in its new location in a stable conformation. The movie shows the MD from time 75 to 150 ns of Fig. 3a. Position of residue Smc3-Q1147 is also indicated. Protons are not shown during movement to avoid smoothing artifacts.

Supplementary Video 3 | **ATP hydrolysis at AS2 in its active form (AS1-ADP/AS2-ATP).** The reaction along the RC1 coordinate as indicated in Supplementary Fig. 5. Sequential steps in the reaction are highlighted: initial structure (S), transition state (TS) and final product (P).