Supporting Information

Internal gradient distributions: A susceptibility-derived tensor delivering morphologies by magnetic resonance

Gonzalo A. Álvarez, Noam Shemesh, and Lucio Frydman

Supporting Information 1: A formal derivation of the internal gradient distribution tensor

The normalized magnetization arising from an ensemble of non-interacting and equivalent spins under the effects of a sequence of pulses or modulating gradients is $M(t) = \langle e^{-i\phi(t)} \rangle$, where the brackets account for an ensemble average over the random phases $\phi(t)$. For the spin-echo sequences being considered in this work, the average phase $\langle \phi(t) \rangle$ will be equal to zero. Assuming that the random phase $\phi(t)$ has a Gaussian distribution [48], $M(t) = \exp \left\{-\frac{1}{2} \langle \phi^2(t) \rangle\right\}$, the signal will evidence a decay depending on the attenuation factor $\beta(t) = \frac{1}{2} \langle \phi^2(t) \rangle$. With most sources of decoherence normalized out by the constanttime, constant-pulses-number, fixed-number-of-gradients nature of the NOGSE sequences assayed [20, 21, 44], we ascribe to diffusion effects as the sole source of this attenuation. It is then convenient to describe the β -factor in terms of the gradient modulating function $\vec{G}_{tot}(t')$ [45–47]:

$$\beta(TE) = \frac{\gamma^2}{2} \int_0^{TE} dt' \int_0^{TE} dt'' \vec{G}_{\text{tot}}^{\dagger}(t') \cdot \langle \vec{r}(t') \vec{r}(t'') \rangle \cdot \vec{G}_{\text{tot}}(t'')$$
(S.1)

$$= \frac{\gamma^2}{2} \int_{-\infty}^{\infty} dt' \int_{-\infty}^{\infty} dt'' \vec{G}_{\text{tot}}^{\dagger}(t', TE) \cdot \mathbf{g} \left(t'' - t'\right) \cdot \vec{G}_{\text{tot}}(t'', TE), \qquad (S.2)$$

where in the second equation we redefined the gradient modulation function such that $\vec{G}_{tot}(t', TE) = 0$ if t' < 0 or t' > TE (i.e., outside the total evolution time range). The evolution is given in terms of a tensorial correlation function reflecting the displacements' fluctuations $\mathbf{g}(\tau) = \langle \Delta \vec{r}(t') \Delta \vec{r}(t' + \tau) \rangle$; i.e. $g_{i,j} = \langle \Delta x_i(t') \Delta x_j(t' + \tau) \rangle$ with i, j representing the spatial axis x, y, z. This correlation function can be related to a diffusion power spectrum $\mathbf{D}(\omega)$ [4, 5, 45, 46] by a Fourier transform: $\mathcal{FT} \{ \mathbf{g}(\tau) \} / \sqrt{2\pi} = \mathbf{D}(\omega) / \omega^2$. In the event of anisotropic diffusion, Eq. (S.1) can thus be recast in its Fourier representation [45–47] as:

$$\beta(TE) = \frac{\gamma^2}{2} \int_{-\infty}^{\infty} d\omega \vec{\mathcal{G}}_{\text{tot}}^{\dagger}(\omega, TE) \cdot \frac{\mathbf{D}(\omega)}{\omega^2} \cdot \vec{\mathcal{G}}_{\text{tot}}(\omega, TE), \qquad (S.3)$$

where $\vec{\mathcal{G}}_{tot}(\omega, TE) = \vec{\mathcal{G}}(\omega, TE) + \vec{\mathcal{G}}_0(\omega, TE)$, is the filter function introduced in Eq. (1) of the main text.

Considering the applied gradient modulation $\vec{G}(t', TE)$, the internal background gradient modulation $\vec{G}_0(t', TE)$, and their respective filter functions $\vec{\mathcal{G}}(\omega, TE)$ and $\vec{\mathcal{G}}_0(\omega, TE)$, the argument of the integral defining this attenuation factor can then be expanded as

$$\vec{\mathcal{G}}_{\text{tot}}^{\dagger}(\omega, TE) \cdot \frac{\mathbf{D}(\omega)}{\omega^2} \cdot \vec{\mathcal{G}}_{\text{tot}}(\omega, TE) = \underbrace{\vec{\mathcal{G}}^{\dagger}(\omega, TE) \cdot \frac{\mathbf{D}(\omega)}{\omega^2} \cdot \vec{\mathcal{G}}(\omega, TE)}_{\text{external gradient dephasing}} + \underbrace{\vec{\mathcal{G}}_0^{\dagger}(\omega, TE) \cdot \frac{\mathbf{D}(\omega)}{\omega^2} \cdot \vec{\mathcal{G}}_0(\omega, TE)}_{\text{internal gradient dephasing}} + 2\Re \left\{ \vec{\mathcal{G}}^{\dagger}(\omega, TE) \cdot \frac{\mathbf{D}(\omega)}{\omega^2} \cdot \vec{\mathcal{G}}_0(\omega, TE) \right\}. \quad (S.4)$$

This leads to Eq. (2) of the main text, where $\beta(TE) = \beta_{G^2}(TE) + \beta_{G_0^2}(TE) + \beta_{\vec{G}\cdot\vec{G}_0}(TE)$ and the normalized spin magnetization becomes

$$M(TE) = M_{G^2}(TE) \times M_{G^2_0}(TE) \times M_{\vec{G},\vec{G}_0}(TE).$$
(S.5)

Assuming a $\vec{G}(t', TE) = \vec{G}f(t', TE)$, involving a strength vector \vec{G} and a timedependency f(t', TE), then $\vec{\mathcal{G}}(\omega, TE) = \vec{G}F(\omega, TE)$ with $F(\omega, TE)$ the Fourier transform of f(t', TE). The applied gradient diffusion attenuation becomes

$$M_{G^2}(TE) = \exp\{-\beta_{G^2}(TE)\},$$
 (S.6)

where

$$\beta_{G^2}(TE) = \frac{\gamma^2 G^2}{2} \int_{-\infty}^{\infty} d\omega \frac{D_G(\omega)}{\omega^2} \left| F(\omega, TE) \right|^2, \tag{S.7}$$

and $D_G(\omega) = \left[\vec{G}^{\dagger} \cdot \mathbf{D}(\omega) \cdot \vec{G}\right] / G^2$. Likewise, the pure background gradient decay is independent of the applied gradient

$$M_{G_0^2}(TE) = \exp\left\{-\beta_{G_0^2}(TE)\right\},$$
(S.8)

where

$$\beta_{G_0^2}(TE, \vec{G}_0) = \frac{\gamma^2 G_0^2}{2} \int_{-\infty}^{\infty} d\omega \frac{D_{G_0}(\omega)}{\omega^2} |F_0(\omega, TE)|^2, \qquad (S.9)$$

with $D_{G_0}(\omega) = \left[\vec{G}_0^{\dagger} \cdot \mathbf{D}(\omega) \cdot \vec{G}_0\right] / G_0^2$, and we have again assumed that $\vec{G}_0(t', TE) = \vec{G}_0 f_0(t', TE)$ and thereby $\vec{\mathcal{G}}_0(\omega, TE) = \vec{G}_0 F_0(\omega, TE)$. Finally, the cross-term attenuation will be

$$\beta_{\vec{G}\cdot\vec{G}_0}\left(TE,\vec{G},\vec{G}_0\right) = \frac{\gamma^2}{2}\vec{G}^{\dagger}\cdot\left[\int_{-\infty}^{\infty} d\omega \,2\operatorname{Re}\left\{F^{\dagger}(\omega,TE)\,\frac{\mathbf{D}(\omega)}{\omega^2}\,F_0\left(\omega,TE\right)\right\}\right]\cdot\vec{G}_0 = \vec{G}^{\dagger}\cdot\tilde{\mathbf{D}}\cdot\vec{G}_0,\tag{S.10}$$

where $\tilde{\mathbf{D}} = \frac{\gamma^2}{2} \left[\int_{-\infty}^{\infty} d\omega \, 2 \operatorname{Re} \left\{ F^{\dagger}(\omega, TE) \, \frac{\mathbf{D}(\omega)}{\omega^2} \, F_0(\omega, TE) \right\} \right].$

Our derivations also assumed that \vec{G}_0 can be described by a Gaussian distribution. The cross-term contribution to the attenuation factor turns out to be

$$\beta_{\vec{G}\cdot\vec{G}_0}\left(TE\right) = \vec{G}^{\dagger}\cdot\tilde{\mathbf{D}}\cdot\left\langle\vec{G}_0\right\rangle + \vec{G}^{\dagger}\cdot\tilde{\mathbf{D}}\cdot\left\langle\Delta\vec{G}_0\Delta\vec{G}_0\right\rangle\cdot\tilde{\mathbf{D}}\cdot\vec{G},\tag{S.11}$$

where $\Delta \vec{G}_0 = \vec{G}_0 - \langle \vec{G}_0 \rangle$ and $\langle \Delta \vec{G}_0 \Delta \vec{G}_0 \rangle$ is the internal gradient-distribution tensor (IGDT). This second term is always positive, since it is a quadratic term, while the first term depends on the relative sign of the parallel component of $\left[\vec{G}^{\dagger} \cdot \tilde{\mathbf{D}} \right]_{\parallel}$ to the background gradient G_0 .

For an isotropic diffusion $\mathbf{D}(\omega) = D(\omega)\mathbf{I}$, the attenuation factor get the simplified form

$$\beta_{\vec{G}\cdot\vec{G}_{0}}(TE) = \tilde{D}_{\rm iso}\,\vec{G}^{\dagger}\cdot\left\langle\vec{G}_{0}\right\rangle + \tilde{D}_{\rm iso}^{2}\,\vec{G}^{\dagger}\cdot\left\langle\Delta\vec{G}_{0}\Delta\vec{G}_{0}\right\rangle\cdot\vec{G},\tag{S.12}$$

$$\left[\int_{-\infty}^{\infty}d\omega\,2{\rm Re}\left\{F^{\dagger}(\omega,TE)\,\frac{D(\omega)}{2}\,F_{0}\left(\omega,TE\right)\right\}\right].$$

where $\tilde{D}_{\rm iso} = \frac{\gamma^2}{2} \left[\int_{-\infty}^{\infty} d\omega \, 2 \text{Re} \left\{ F^{\dagger}(\omega, TE) \, \frac{D(\omega)}{\omega^2} \, F_0(\omega, TE) \right\} \right].$

As an example on the use of this formalism, we consider the sequence of Fig. 1 of the main text and assume free diffusion to derive Eq. (3-5) of the main text. For free diffusion only the tail of the displacement power spectrum $D(\omega) \propto 1/\omega^2$ is important [20, 44]. The purely applied-gradient diffusion term $M_{G^2}(TE)$ is as derived for a CPMG sequence [44]

$$M_{G^2}(TE) = \exp\left\{-\frac{1}{12}\gamma^2 G^2 D_0 \frac{TE^3}{N^2}\right\},$$
(S.13)

where the delay x = TE/N. The pure background gradient decay term is in turn the one that corresponds to a spin-echo modulation [44]

$$M_{G_0^2}(TE, N) = \exp\left\{-\frac{1}{12}\gamma^2 G_0^2 D_0 TE^3\right\},$$
(S.14)

which is independent of x. The cross-term signal-decay contribution is calculated from Eq. (S.10) leading to

$$M_{\vec{G}\cdot\vec{G}_{0}}(TE) = \exp\left\{\frac{1}{4}\gamma^{2}\vec{G}\cdot\vec{G}_{0}D_{0}\frac{TE^{3}}{N^{2}}\right\}.$$
(S.15)

Supporting Information 2: sNOGSE/aNOGSE's: Analytical attenuation expressions for the general case of anisotropic diffusion

We calculate next the normalized spin signal arising from Eq. (S.5),

$$M^{\binom{s}{a}NOGSE}(TE) = M^{\binom{s}{a}NOGSE}_{G^2}(TE) \times M_{G^2_0}(TE) \times M^{\binom{s}{a}NOGSE}_{\vec{G},\vec{G}_0}(TE),$$
(S.16)

for the symmetric and asymmetric non-uniform gradient spin echo modulations $\binom{s}{a}$ NOGSE) introduced in Fig. 2. As described in the main text,

$$M_{G^2}^{sNOGSE}(TE) = M_{G^2}^{aNOGSE}(TE)$$
(S.17)

as a result of

$$F^{\text{sNOGSE}}(\omega, TE) = F^{\text{aNOGSE}}(\omega, TE)$$
(S.18)

in Eq. (S.7). The pure background gradient signal contribution is therefore independent of the applied gradient modulation and direction, providing the same weight for both NOGSE sequences. The cross-term in the attenuation factor for sNOGSE is zero but that for aNOGSE is not, as the products $F^{sNOGSE\dagger}(\omega, TE) F_0(\omega, TE)$ and $F^{aNOGSE\dagger}(\omega, TE) F_0(\omega, TE)$ in Eq. (S.10) are odd and even functions of ω , respectively. This cross-term between the aNOGSE-modulated applied gradient and the background gradient G_0 will be

$$\beta_{\vec{G}\cdot\vec{G}_0}(TE) = \frac{\gamma^2}{2}\vec{G}\cdot\left[\int_{-\infty}^{\infty} d\omega \, 2\operatorname{Re}\left\{\left(F^{aNOGSE}(\omega, TE)\right)^{\dagger} \, \frac{\mathbf{D}(\omega)}{\omega^2} \, F_0\left(\omega, TE\right)\right\}\right] \cdot \vec{G}_0 = \vec{G}\cdot\tilde{\mathbf{D}}\cdot\vec{G}_0.$$
(S.19)

As explained in the main text, the measured spin signal decays for the sNOGSE and aNOGSE sequences as described in Fig. 2e, factor out all non-diffusing sources of decoherence after normalizing them by the single-echo signal [20, 21, 44]. The amplitude of the

NOGSE modulation is then

 $M_{CPMG}(TE)/M_{Single-echo}(TE) = \exp(-\Delta\beta) = \exp\left[-\left(\beta^{CPMG} - \beta^{Single-echo}\right)\right],$ (S.20) where the amplitude contrast of the attenuation factors $\Delta\beta = \beta^{CPMG} - \beta^{Single-echo}$. As the contribution to the attenuation factor that purely depends of the background gradient is independent of the applied gradient modulation its contribution $\Delta\beta_{G_0^2}$ is null, and the amplitude of the attenuation factors is then

$$\Delta\beta = \Delta\beta_{G^2} + \Delta\beta_{\vec{G},\vec{G}_0}.\tag{S.21}$$

(0,00)

For the sNOGSE sequence $\Delta\beta^s = \Delta\beta_{G^2}$ as the cross-term is null, and $\Delta\beta^a = \Delta\beta_{G^2} + \Delta\beta_{\vec{G}\cdot\vec{G}_0}$ for the aNOGSE modulation curve. Notice that the contribution of the term that only depends of the applied gradient $\Delta\beta_{G^2}$ is the same for both sequences according to Eqs. (S.17) and (S.18). Then by subtracting $\Delta\beta^a$ and $\Delta\beta^s$, the $\Delta\beta_{\vec{G}\cdot\vec{G}_0}$ cross-term contribution to the amplitude modulation is obtained, where

$$\Delta \beta_{\vec{G} \cdot \vec{G}_0} = \frac{\gamma^2}{2} \vec{G} \cdot \left[\int_{-\infty}^{\infty} d\omega \, 2\text{Re} \left\{ \left[F^{aNOGSE}(\omega, TE) - F^{sNOGSE}(\omega, TE) \right]^{\dagger} \, \frac{\mathbf{D}(\omega)}{\omega^2} \, F_0\left(\omega, TE\right) \right\} \right] \cdot \vec{G}_0$$

$$= \vec{G} \cdot \Delta \vec{\mathbf{D}} \cdot \vec{G}_0, \tag{S.23}$$

with $\Delta \tilde{\mathbf{D}} = \frac{\gamma^2}{2} \int_{-\infty}^{\infty} d\omega \, 2\text{Re} \left\{ \left[F^{aNOGSE}(\omega, TE) - F^{sNOGSE}(\omega, TE) \right]^{\dagger} \frac{\mathbf{D}(\omega)}{\omega^2} F_0(\omega, TE) \right\}$. Assuming as before a Gaussian distribution for G_0 ,

$$\Delta \beta_{\vec{G} \cdot \vec{G}_0} = \vec{G} \cdot \Delta \tilde{\mathbf{D}} \cdot \left\langle \vec{G}_0 \right\rangle + \vec{G} \cdot \Delta \tilde{\mathbf{D}} \cdot \left\langle \Delta \vec{G}_0 \Delta \vec{G}_0 \right\rangle \cdot \Delta \tilde{\mathbf{D}} \cdot \vec{G}.$$
(S.24)

where the first term depends on the relative sign of the parallel component of $\left[\vec{G} \cdot \mathbf{D}(\omega)\right]_{\parallel}$ to the background gradient G_0 , which depends of the anisotropic restricted-diffusion weighting. Notice that the second term is always positive and it contains the IGDT $\left\langle \Delta \vec{G}_0 \Delta \vec{G}_0 \right\rangle$. This was the expression used to evaluate the results presented in Fig. 4 after being normalized by $\Delta \beta^s = \Delta \beta_{G^2}$ to remove the anisotropic weighting due to restricted diffusion effects. For an isotropic diffusion $\mathbf{D}(\omega) = D(\omega)\mathbf{I}$, this gets simplified to

$$\Delta \beta_{\vec{G} \cdot \vec{G}_0} = \Delta \tilde{D}_{\rm iso} \vec{G} \cdot \left\langle \vec{G}_0 \right\rangle + \Delta \tilde{D}_{\rm iso}^2 \vec{G} \cdot \left\langle \Delta \vec{G}_0 \Delta \vec{G}_0 \right\rangle \cdot \vec{G}. \tag{S.25}$$

where $\Delta \tilde{D}_{iso} = \frac{\gamma^2}{2} \int_{-\infty}^{\infty} d\omega \, 2\text{Re} \left\{ \left[F^{aNOGSE}(\omega, TE) - F^{sNOGSE}(\omega, TE) \right]^{\dagger} \, D(\omega) \, F_0(\omega, TE) \right\}.$

Supporting Information 3: sNOGSE/aNOGSE analytical expressions for the case of free, unrestricted diffusion

For free diffusion only the tail of the displacement power spectrum $D(\omega) \propto 1/\omega^2$ will be important, as it is this short-times regime active before restriction effects are seen, that matters [20, 44]. The purely applied-gradient diffusion term $M_{G^2}^{(s)NOGSE}(TE)$ is then given by [44]

$$M_{G^2}^{\binom{s}{a}\text{NOGSE}}(TE) = \exp\left\{-\frac{1}{12}\gamma^2 G^2 D_0\left[(N-2)x^3 + 2y^3\right]\right\},$$
(S.26)

where $(N-2)x + 2y = TE_{NOGSE} = TE/2$ (see Fig. 2 of the main text for definitions). The pure background gradient decay term is in turn

$$M_{G_0^2}(TE, N) = \exp\left\{-\frac{1}{12}\gamma^2 G_0^2 D_0 TE^3\right\},$$
(S.27)

which is independent of x and y, and therefore of the applied gradient modulation as was mentioned in the manuscript.

The cross-term signal-decay contribution for sNOGSE is zero as described before, and the one for aNOGSE will be

$$M^{aNOGSE}_{\vec{G}\cdot\vec{G}_0}(TE) = \exp\left\{-\frac{1}{4}\gamma^2 \vec{G}\cdot\vec{G}_0 D_0 TE_{NOGSE}\left(-1\right)^{N/2} \left[2y^2 - \left(1 + \left(-1\right)^{N/2}\right)x^2\right]\right\}.$$
(S.28)

Notice that the sign of the attenuation factor for this cross-term contribution depends of the relative sign of $G_{\parallel}G_{0}$, where G_{\parallel} is the applied component of the *G*-gradient that is parallel to the background gradient vector. The extremes of this attenuation arise for $x = y = TE_{NOGSE}/N$ (CPMG-like modulation)

$$\beta_{\vec{G}\cdot\vec{G}_0}^{CPMG}(TE) = -\frac{1}{4}\gamma^2 \vec{G} \cdot \vec{G}_0 D_0 \frac{TE_{NOGSE}^3}{N^2} \left((-1)^{N/2} - 1 \right), \tag{S.29}$$

and for $y = TE_{NOGSE}/2$ and x = 0 (single-echo modulation)

$$\beta_{\vec{G}\cdot\vec{G}_{0}}^{Single-echo}\left(TE\right) = -\frac{1}{8}\gamma^{2}\vec{G}\cdot\vec{G}_{0}D_{0}TE_{NOGSE}^{3}\left(-1\right)^{N/2}.$$
(S.30)

Given the $(-1)^{N/2}$ factor in Eq. (S.28) it follows that if N/2 is even, $\beta_{\vec{G}\cdot\vec{G}_0}^{CPMG}(TE) = 0$ and the contrast contribution for the difference of attenuation factors is

$$\Delta \beta_{\vec{G} \cdot \vec{G}_0} = \frac{1}{8} \gamma^2 \vec{G} \cdot \vec{G}_0 D_0 T E^3_{NOGSE};$$
(S.31)

i.e., it depends on the relative sign of G_{\parallel} and G_0 . If N/2 is odd $\beta_{\vec{G}\cdot\vec{G}_0}^{CPMG}(TE) \neq 0$; but for N/2 odd the attenuation decays with $1/N^2$, and this makes the contrast lower. Assuming a Gaussian distribution for G_0 ,

$$\beta_{\vec{G}\cdot\vec{G}_{0}}(TE) = -\frac{1}{4}\gamma^{2}D_{0}TE_{NOGSE}(-1)^{N/2}(2y^{2} - (1 + (-1)^{N/2})x^{2})\vec{G}\cdot\left\langle\vec{G}_{0}\right\rangle + \frac{1}{32}\gamma^{4}D_{0}^{2}TE_{NOGSE}^{2}\left[2y^{2} - (1 + (-1)^{N/2})x^{2}\right]^{2}\left\langle\left[\vec{G}\cdot\left(\vec{G}_{0} - \left\langle\vec{G}_{0}\right\rangle\right)\right]^{2}\right\rangle.$$
 (S.32)

The attenuation factor contrast amplitude is then

$$\Delta\beta_{\vec{G}\cdot\vec{G}_0} = \frac{1}{8}\gamma^2 D_0 T E^3_{NOGSE} \vec{G} \cdot \left\langle \vec{G}_0 \right\rangle + \frac{1}{128}\gamma^4 D_0^2 T E^6_{NOGSE} \vec{G} \cdot \left\langle \Delta \vec{G}_0 \Delta \vec{G}_0 \right\rangle \cdot \vec{G}, (S.33)$$

where $\left\langle \Delta \vec{G}_0 \Delta \vec{G}_0 \right\rangle$ is the IGDT.

- Callaghan, P. T. Principles of Nuclear Magnetic Resonance Microscopy (Oxford University Press, 1993).
- [2] Price, W. S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. basic theory. *Concepts Magn. Reson.* 9, 299–336 (1997).
- [3] Sen, P. N. Time-dependent diffusion coefficient as a probe of geometry. *Concepts Magn. Reson.* 23, 1–21 (2004).
- [4] Grebenkov, D. S. NMR survey of reflected brownian motion. *Rev. Mod. Phys.* 79, 1077–1137 (2007).
- [5] Gore, J. C. et al. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR in Biomedicine 23, 745–756 (2010).
- [6] Mitra, P. P., Sen, P. N., Schwartz, L. M. & Le Doussal, P. Diffusion propagator as a probe of the structure of porous media. *Phys. Rev. Lett.* 68, 3555–3558 (1992).
- [7] Basser, P., Mattiello, J. & LeBihan, D. J. Magn. Reson., Series B 103, 247 (1994).
- [8] Basser, P., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. *Biophys. J.* 66, 259–267 (1994).
- [9] Kukla, V. et al. NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702–704 (1996).

- [10] Kuchel, P. W., Coy, A. & Stilbs, P. NMR "diffusion-diffraction" of water revealing alignment of erythrocytes in a magnetic field and their dimensions and membrane transport characteristics. *Magn. Reson. Med.* 37, 637–643 (1997).
- [11] Mair, R. W. et al. Probing porous media with gas diffusion NMR. Phys. Rev. Lett. 83, 3324–3327 (1999).
- [12] Peled, S., Cory, D. G., Raymond, S. A., Kirschner, D. A. & Jolesz, F. A. Water diffusion, t2, and compartmentation in frog sciatic nerve. *Magn. Reson. Med.* 42, 911–918 (1999).
- [13] Song, Y.-Q., Ryu, S. & Sen, P. N. Determining multiple length scales in rocks. Nature 406, 178–181 (2000).
- [14] LeBihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4, 469–480 (2003).
- [15] Song, Y.-Q., Zielinski, L. & Ryu, S. Two-dimensional NMR of diffusion systems. *Phys. Rev. Lett.* 100, 248002 (2008).
- [16] Lawrenz, M. & Finsterbusch, J. Double-wave-vector diffusion-weighted imaging reveals microscopic diffusion anisotropy in the living human brain. *Magn. Reson. Med.* 69, 1072–1082 (2013).
- [17] Hertel, S. A. et al. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes. Phys. Rev. E 92, 012808 (2015).
- [18] Ong, H. H. et al. Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: simulation and experimental studies. *Neuroimage* 40, 1619–1632 (2008).
- [19] Budde, M. D. & Frank, J. A. Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. *Proc. Natl. Acad. Sci. U. S. A.* 107, 14472–14477 (2010).
- [20] Álvarez, G. A., Shemesh, N. & Frydman, L. Coherent dynamical recoupling of diffusion-driven decoherence in magnetic resonance. *Phys. Rev. Lett.* **111**, 080404 (2013).
- [21] Shemesh, N., Álvarez, G. A. & Frydman, L. Measuring small compartment dimensions by probing diffusion dynamics via non-uniform oscillating-gradient spin-echo (NOGSE) NMR. J. Magn. Reson. 237, 49–62 (2013).
- [22] Assaf, Y. & Basser, P. J. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. *Neuroimage* 27, 48–58 (2005).
- [23] Panagiotaki, E. et al. Compartment models of the diffusion MR signal in brain white matter:

A taxonomy and comparison. Neuroimage 59, 2241–2254 (2012).

- [24] Warren, W. S. et al. MR Imaging Contrast Enhancement Based on Intermolecular Zero Quantum Coherences. Science 281, 247 –251 (1998).
- [25] Sen, P. & Axelrod, S. Inhomogeneity in local magnetic field due to susceptibility contrast. J. Appl. Phys. 86, 4548–4554 (1999).
- [26] Faber, C., Pracht, E. & Haase, A. Resolution enhancement in in vivo NMR spectroscopy: detection of intermolecular zero-quantum coherences. J. Magn. Reson. 161, 265–274 (2003).
- [27] Pathak, A., Ward, B. & Schmainda, K. A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method. *Neuroimage* 40, 1130–1143 (2008).
- [28] Wharton, S. & Bowtell, R. Whole-brain susceptibility mapping at high field: A comparison of multiple- and single-orientation methods. *Neuroimage* 53, 515–525 (2010).
- [29] Lee, J. et al. Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proc. Natl. Acad. Sci. U. S. A. 107, 5130–5135 (2010).
- [30] de Rochefort, L. et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging. Magn. Reson. Med. 63, 194–206 (2010).
- [31] Li, W., Wu, B., Avram, A. & Liu, C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. *Neuroimage* 59, 2088–2097 (2012).
- [32] Liu, C. & Li, W. Imaging neural architecture of the brain based on its multipole magnetic response. *Neuroimage* 67, 193–202 (2013).
- [33] Chen, W., Foxley, S. & Miller, K. Detecting microstructural properties of white matter based on compartmentalization of magnetic susceptibility. *Neuroimage* 70, 1–9 (2013).
- [34] Liu, C. Susceptibility tensor imaging. Magn. Reson. Med. 63, 1471–1477 (2010).
- [35] Lee, J. et al. T-2*-based fiber orientation mapping. Neuroimage 57, 225–234 (2011).
- [36] Oh, S., Kim, Y., Cho, Z. & Lee, J. Origin of b-0 orientation dependent r*(2) (=1/T*(2)) in white matter. Neuroimage 73, 71–79 (2013).
- [37] Liu, C., Li, W., Wu, B., Jiang, Y. & Johnson, G. 3D fiber tractography with susceptibility tensor imaging. *Neuroimage* 59, 1290–1298 (2012).
- [38] Haacke, E., Xu, Y., Cheng, Y. & Reichenbach, J. Susceptibility weighted imaging (SWI). Magn. Reson. Med. 52, 612–618 (2004).

- [39] Thomas, B. P. et al. High-Resolution 7t MRI of the Human Hippocampus In Vivo. J. Magn. Reson. Imaging 28, 1266–1272 (2008).
- [40] Yao, B. et al. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44, 1259–1266 (2009).
- [41] Shmueli, K. et al. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn. Reson. Med. 62, 1510–1522 (2009).
- [42] Haacke, E. M., Mittal, S., Wu, Z., Neelavalli, J. & Cheng, Y.-C. N. Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1. Am. J. Neuroradiology 30, 19–30 (2009).
- [43] Han, S. et al. Magnetic field anisotropy based MR tractography. J. Magn. Reson. 212, 386–393 (2011).
- [44] Ålvarez, G. A., Shemesh, N. & Frydman, L. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance. J. Chem. Phys. 140, 084205 (2014).
- [45] Stepisnik, J. Time-dependent self-diffusion by NMR spin-echo. *Physica B* 183, 343–350 (1993).
- [46] Callaghan, P. T. & Stepisnik, J. Frequency-domain analysis of spin motion using modulatedgradient NMR. J. Magn. Reson. 117, 118–122 (1995).
- [47] Stepisnik, J., Lasic, S., Mohoric, A., Sersa, I. & Sepe, A. Spectral characterization of diffusion in porous media by the modulated gradient spin echo with CPMG sequence. J. Magn. Reson. 182, 195–199 (2006).
- [48] Stepisnik, J. Validity limits of gaussian approximation in cumulant expansion for diffusion attenuation of spin echo. *Physica B* 270, 110–117 (1999).
- [49] Zheng, G. & Price, W. Suppression of background gradients in (b-0 gradient-based) NMR diffusion experiments. *Concepts Magn. Reson.* **30A**, 261–277 (2007).
- [50] Cho, H., Ryu, S., Ackerman, J. & Song, Y. Visualization of inhomogeneous local magnetic field gradient due to susceptibility contrast. J. Magn. Reson. 198, 88–93 (2009).