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Supporting Information 1: A formal derivation of the internal gradient distribution

tensor

The normalized magnetization arising from an ensemble of non-interacting and equivalent
spins under the effects of a sequence of pulses or modulating gradients is M (t) = <e‘i¢(t)>,
where the brackets account for an ensemble average over the random phases ¢ (t). For
the spin-echo sequences being considered in this work, the average phase (¢ (¢)) will be
equal to zero. Assuming that the random phase ¢ (f) has a Gaussian distribution [15],
M(t) = exp {—% <¢2(t)>}, the signal will evidence a decay depending on the attenuation
factor B(t) = 5 (¢*(t)). With most sources of decoherence normalized out by the constant-
time, constant-pulses-number, fixed-number-of-gradients nature of the NOGSE sequences
assayed |20, 21, 44|, we ascribe to diffusion effects as the sole source of this attenuation.

It is then convenient to describe the [-factor in terms of the gradient modulating function

Gron(t') [15-17]:
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where in the second equation we redefined the gradient modulation function such that
étot(t’,TE) =0ift' <0ort > TF (ie., outside the total evolution time range). The
evolution is given in terms of a tensorial correlation function reflecting the displacements’

fluctuations g (7) = (AF(t")AF(t' + 7)); i.e. g;ij = (Az;(t')Az;(t' + 7)) with 4, j representing

the spatial axis x,y, 2. This correlation function can be related to a diffusion power spec-

trum D(w) |4, 5, 45, 46] by a Fourier transform: F7T {g(7)} /v2m = D(w)/w?. In the event

of anisotropic diffusion, Eq. (S.1) can thus be recast in its Fourier representation [15—17] as:
RS- Dw) =
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where Giot(w, TE) = G(w, TE) + Gy (w, TE) , is the filter function introduced in Eq. (1) of
the main text.

Considering the applied gradient modulation G (t', TE), the internal background gradient
modulation Go(t',TE), and their respective filter functions G(w, TE) and Gy (w, TE), the

argument of the integral defining this attenuation factor can then be expanded as
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cross-term
This leads to Eq. (2) of the main text, where 3(TE) = 862(TE) + B2 (TE) + Bga.g,(TE)

and the normalized spin magnetization becomes

M(TE) = Mcz(TE) x Mgz (TE) x Mg g,(TE). (S.5)

Assuming a G(t,TE) = G f(t',TE), involving a strength vector G and a time-
dependency f(#,TE), then G(w, TE) = G F(w, TE) with F(w,TE) the Fourier transform
of f(t',TE). The applied gradient diffusion attenuation becomes

Ma(TE) = exp {—fea(TE)} (5.6)
where
e (TE) = @/_ deZ(f) |F(w, TE)?, (S.7)

and Dg(w) = |G- D(w) - C_j} /G?. Likewise, the pure background gradient decay is inde-
pendent of the applied gradient

Mz (TE) = exp { ~g3 (TE) } (3:8)

where
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with D¢, (w) = ng)-D(w)-Cjo] /G2, and we have again assumed that Go(t',TE) =
Go fo(t', TE) and thereby Go(w, TE) = Gy Fo(w, TE). Finally, the cross-term attenuation
will be
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where D = 2 [fj‘;o dw 2Re {FT(W,TE) D) f, (w,TE')}].

Our derivations also assumed that Gy can be described by a Gaussian distribution. The

cross-term contribution to the attenuation factor turns out to be

B, (TE) = G"-D - (Go) + G- D - (AGAG, ) - D- G, (S.11)

where A@O = @0 — <éo> and <A50A@0> is the internal gradient-distribution tensor
(IGDT). This second term is always positive, since it is a quadratic term, while the first
term depends on the relative sign of the parallel component of [é* . f)} to the background
gradient Gg. ”

For an isotropic diffusion D(w) = D(w)I, the attenuation factor get the simplified form

—

Bag, (TE) = Dy G- <éo> + D2 G <AéoAéo> Yel (S.12)
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where Dy, = 772 [ffooo dw 2Re {FT(w, TE) DQE‘;) Fy (w, TE')H .

As an example on the use of this formalism, we consider the sequence of Fig. 1 of the
main text and assume free diffusion to derive Eq. (3-5) of the main text. For free diffusion
only the tail of the displacement power spectrum D(w) oc 1/w? is important [20, 44]. The

purely applied-gradient diffusion term Mg2(TE) is as derived for a CPMG sequence [11]

1 TE?
Me2(TE) = exp {_E’YZGQDO 2 } , (S5.13)

where the delay x = TE/N. The pure background gradient decay term is in turn the one

that corresponds to a spin-echo modulation [11]

1
Mgz (TE,N) = exp {—E72G§DOTE3} , (S.14)
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which is independent of x. The cross-term signal-decay contribution is calculated from Eq.

(S.10) leading to

1 ,~ =  TEP
Mé,~O(TE)=exp{172G-GODO } (S.15)

Supporting Information 2: sNOGSE/aNOGSE’s: Analytical attenuation expres-

sions for the general case of anisotropic diffusion
We calculate next the normalized spin signal arising from Eq. (S.5),

(o558 (1 gy — Ml O (1) x Mgy (TE) x MUY O (1E), (S.16)

for the symmetric and asymmetric non-uniform gradient spin echo modulations ((:) NOGSE)

introduced in Fig. 2. As described in the main text,

MENOGSE(TB) = MaYOUSE(TE) (S.17)
as a result of
FSNOGSE(W, TE) _ FaNOGSE(w’ TE) (818)

in Eq. (S.7). The pure background gradient signal contribution is therefore inde-
pendent of the applied gradient modulation and direction, providing the same weight
for both NOGSE sequences. The cross-term in the attenuation factor for sNOGSE
is zero but that for aNOGSE is not, as the products FsNO9SE(y TE) F, (w, TE) and
FeNOGSEY(y TE) Fy (w, TE) in Eq. (S.10) are odd and even functions of w, respectively.
This cross-term between the aNOGSE-modulated applied gradient and the background gra-
dient Gy will be

[e.9]

Bag, (TE) =3 G- [/ dw 2Re { (FeNOGSE(y, TE))! DOE(;}) £ (w,TE)H -Gy=G-D-Gy.
(S.19)

As explained in the main text, the measured spin signal decays for the sSNOGSE and
aNOGSE sequences as described in Fig. 2e, factor out all non-diffusing sources of decoher-

ence after normalizing them by the single-echo signal [20, 21, 41]. The amplitude of the



NOGSE modulation is then
MCPMG(TE)/MSinglefecho(TE) = €Xp (_Aﬁ) = €xXp [_ (BCPMG - 5Singlefech0)] ) (SQO)

where the amplitude contrast of the attenuation factors Ag = SEPMG _ gSingle—echo  Ag
the contribution to the attenuation factor that purely depends of the background gradient
is independent of the applied gradient modulation its contribution Aﬁcg is null, and the

amplitude of the attenuation factors is then

AB = ABg: + ABg.a,- (S.21)

For the sNOGSE sequence AS® = AfBg2 as the cross-term is null, and AB® = ABqg2 +
ABg.g, for the aNOGSE modulation curve. Notice that the contribution of the term that
only depends of the applied gradient ApBg2 is the same for both sequences according to Eqgs.
(S.17) and (S.18). Then by subtracting AB* and AjB®, the A 5, cross-term contribution

to the amplitude modulation is obtained, where

2
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(S.22)
— G- AD-G,, (S.23)
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with AD = 2 [ dw2Re { [FaNOGSE(y, TE) — FsNOGSE(y, TE)]" P R (o, TE)}. As-

suming as before a Gaussian distribution for Gy,

Afga, = G-AD-(Go) +G-AD- (AGoAGy) - AD -G, (8.24)

where the first term depends on the relative sign of the parallel component of [é . D(w)} | to
the background gradient Gy, which depends of the anisotropic restricted-diffusion weighting.
Notice that the second term is always positive and it contains the IGDT <AéoAéo>. This
was the expression used to evaluate the results presented in Fig. 4 after being normalized
by AB®* = Afg2 to remove the anisotropic weighting due to restricted diffusion effects. For

an isotropic diffusion D(w) = D(w)I, this gets simplified to

1SO0

ABga, = ADwG - <éo> +AD2G <AéoAéO> Yel (S.25)
where ADy, = Z [ dw 2Re { [FaNOGSE(y, TE) — FsNOGSE (i TE)|' D(w) Fy (w, TE)}.
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Supporting Information 3: sNOGSE/aNOGSE analytical expressions for the case

of free, unrestricted diffusion

For free diffusion only the tail of the displacement power spectrum D(w) oc 1/w? will

be important, as it is this short-times regime active before restriction effects are seen, that

matters |20, 141]. The purely applied-gradient diffusion term Mé‘;)NOGSE(TE) is then given
by [4] '
*)NOGSE
Mé‘";) (TE) = exp {—EVQGQDO (N —2)2° + 2¢°] } , (S.26)

where (N — 2) x+2y = TEyocse = TE/2 (see Fig. 2 of the main text for definitions). The

pure background gradient decay term is in turn
1
MG% (TE, N) = exXp {—E’YQGgD(]TEg} y (827)

which is independent of x and y, and therefore of the applied gradient modulation as was
mentioned in the manuscript.
The cross-term signal-decay contribution for SNOGSE is zero as described before, and

the one for aNOGSE will be

MEOGSE(TE) = exp {—%Qé - GoDoT Enocsi (—1)M? [2y2 - (1 + (—1)N/2) xQ]
(S.28)
Notice that the sign of the attenuation factor for this cross-term contribution depends of the
relative sign of GGGy, where G| is the applied component of the G-gradient that is parallel
to the background gradient vector. The extremes of this attenuation arise for x = y =
TEnocse/N (CPMG-like modulation)

orie () - 126 . Gp, TENossE ((_1pve 1), ($.20)

and for y = TEnocse/2 and z = 0 (single-echo modulation)
g%ile_emo (TE) = _%725 - GoDoT Eogsi (—1)°. (5.30)
Given the (—=1)™? factor in Eq. (S.28) it follows that if N/2 is even, ggyG(TE) =0 and

the contrast contribution for the difference of attenuation factors is

1 — —
ABgg, = gVQG -GoDoTEXoesE: (S.31)
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i.c., it depends on the relative sign of G| and Gy. If N/2 is odd Bg%](‘)/[G(TE) # 0; but for
N/2 odd the attenuation decays with 1/N? and this makes the contrast lower. Assuming a

Gaussian distribution for Gy,

1 =
Baa, (TE) = —Z’YQDOTENOGSE (—1)N2 (2% — <1 + (—1)N/2> 22) G - <G0>
1 2 - /o . 2
+ 57" DiT Bhgusp |27 — (1+ (-1)?) 2?] <[G (Go—(Go))] > - (8.32)
The attenuation factor contrast amplitude is then

1 Lo A A\ A
Mbga, = 37 DT Eroase G- (Go) + 1527 DiTERogs G - (AGeAGh) - G(3.33)

where <AéoAég> is the IGDT.
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