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Supporting Information 1: A formal derivation of the internal gradient distribution

tensor

The normalized magnetization arising from an ensemble of non-interacting and equivalent

spins under the effects of a sequence of pulses or modulating gradients is M(t) =
〈
e−iφ(t)

〉
,

where the brackets account for an ensemble average over the random phases φ (t). For

the spin-echo sequences being considered in this work, the average phase 〈φ (t)〉 will be

equal to zero. Assuming that the random phase φ (t) has a Gaussian distribution [48],

M(t) = exp
{
−1

2
〈φ2(t)〉

}
, the signal will evidence a decay depending on the attenuation

factor β(t) = 1
2
〈φ2(t)〉. With most sources of decoherence normalized out by the constant-

time, constant-pulses-number, fixed-number-of-gradients nature of the NOGSE sequences

assayed [20, 21, 44], we ascribe to diffusion effects as the sole source of this attenuation.

It is then convenient to describe the β-factor in terms of the gradient modulating function
~Gtot(t

′) [45–47]:

β(TE) = γ2

2

∫ TE

0

dt′
∫ TE

0

dt′′ ~G†tot(t
′) · 〈~r(t′)~r(t′′)〉 · ~Gtot(t

′′) (S.1)

= γ2

2

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′ ~G†tot(t
′, TE) · g (t′′ − t′) · ~Gtot(t

′′, TE), (S.2)

where in the second equation we redefined the gradient modulation function such that
~Gtot(t

′, TE) = 0 if t′ < 0 or t′ > TE (i.e., outside the total evolution time range). The

evolution is given in terms of a tensorial correlation function reflecting the displacements’

fluctuations g (τ) = 〈∆~r(t′)∆~r(t′ + τ)〉; i.e. gi,j = 〈∆xi(t′)∆xj(t′ + τ)〉 with i, j representing

the spatial axis x, y, z. This correlation function can be related to a diffusion power spec-

trum D(ω) [4, 5, 45, 46] by a Fourier transform: FT {g(τ)} /
√

2π = D(ω)/ω2. In the event

of anisotropic diffusion, Eq. (S.1) can thus be recast in its Fourier representation [45–47] as:

β(TE) = γ2

2

∫ ∞
−∞

dω~G†tot(ω, TE) · D(ω)

ω2
· ~Gtot(ω, TE), (S.3)
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where ~Gtot(ω, TE) = ~G(ω, TE) + ~G0 (ω, TE) , is the filter function introduced in Eq. (1) of

the main text.

Considering the applied gradient modulation ~G(t′, TE), the internal background gradient

modulation ~G0(t
′, TE), and their respective filter functions ~G(ω, TE) and ~G0 (ω, TE), the

argument of the integral defining this attenuation factor can then be expanded as

~G†tot(ω, TE) · D(ω)

ω2
· ~Gtot(ω, TE) = ~G†(ω, TE) · D(ω)

ω2
· ~G(ω, TE)︸ ︷︷ ︸

external gradient dephasing

+ ~G†0(ω, TE) · D(ω)

ω2
· ~G0(ω, TE)︸ ︷︷ ︸

internal gradient dephasing

+ 2<
{
~G†(ω, TE) · D(ω)

ω2
· ~G0 (ω, TE)

}
.︸ ︷︷ ︸

cross-term

(S.4)

This leads to Eq. (2) of the main text, where β(TE) = βG2(TE) + βG2
0
(TE) + β ~G· ~G0

(TE)

and the normalized spin magnetization becomes

M(TE) = MG2(TE)×MG2
0

(TE)×M ~G. ~G0
(TE). (S.5)

Assuming a ~G(t′, TE) = ~Gf(t′, TE), involving a strength vector ~G and a time-

dependency f(t′, TE), then ~G(ω, TE) = ~GF (ω, TE) with F (ω, TE) the Fourier transform

of f(t′, TE). The applied gradient diffusion attenuation becomes

MG2(TE) = exp {−βG2(TE)} , (S.6)

where

βG2(TE) = γ2G2

2

∫ ∞
−∞

dω
DG(ω)

ω2
|F (ω, TE)|2 , (S.7)

and DG(ω) =
[
~G† ·D(ω) · ~G

]
/G2. Likewise, the pure background gradient decay is inde-

pendent of the applied gradient

MG2
0

(TE) = exp
{
−βG2

0
(TE)

}
, (S.8)

where
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βG2
0
(TE, ~G0) =

γ2G2
0

2

∫ ∞
−∞

dω
DG0(ω)

ω2
|F0(ω, TE)|2 , (S.9)

with DG0(ω) =
[
~G†0 ·D(ω) · ~G0

]
/G2

0, and we have again assumed that ~G0(t
′, TE) =

~G0 f0(t
′, TE) and thereby ~G0(ω, TE) = ~G0 F0(ω, TE). Finally, the cross-term attenuation

will be

β ~G· ~G0

(
TE, ~G, ~G0

)
= γ2

2
~G† ·
[∫ ∞
−∞

dω 2Re

{
F †(ω, TE)

D(ω)

ω2
F0 (ω, TE)

}]
· ~G0 = ~G† · D̃ · ~G0,

(S.10)

where D̃ = γ2

2

[∫∞
−∞ dω 2Re

{
F †(ω, TE) D(ω)

ω2 F0 (ω, TE)
}]

.

Our derivations also assumed that ~G0 can be described by a Gaussian distribution. The

cross-term contribution to the attenuation factor turns out to be

β ~G· ~G0
(TE) = ~G† · D̃ ·

〈
~G0

〉
+ ~G† · D̃ ·

〈
∆~G0∆~G0

〉
· D̃ · ~G, (S.11)

where ∆~G0 = ~G0 −
〈
~G0

〉
and

〈
∆~G0∆~G0

〉
is the internal gradient-distribution tensor

(IGDT). This second term is always positive, since it is a quadratic term, while the first

term depends on the relative sign of the parallel component of
[
~G† · D̃

]
‖
to the background

gradient G0.

For an isotropic diffusion D(ω) = D(ω)I, the attenuation factor get the simplified form

β ~G· ~G0
(TE) = D̃iso

~G† ·
〈
~G0

〉
+ D̃2

iso
~G† ·

〈
∆~G0∆~G0

〉
· ~G, (S.12)

where D̃iso = γ2

2

[∫∞
−∞ dω 2Re

{
F †(ω, TE) D(ω)

ω2 F0 (ω, TE)
}]

.

As an example on the use of this formalism, we consider the sequence of Fig. 1 of the

main text and assume free diffusion to derive Eq. (3-5) of the main text. For free diffusion

only the tail of the displacement power spectrum D(ω) ∝ 1/ω2 is important [20, 44]. The

purely applied-gradient diffusion term MG2(TE) is as derived for a CPMG sequence [44]

MG2(TE) = exp

{
− 1

12
γ2G2D0

TE3

N2

}
, (S.13)

where the delay x = TE/N . The pure background gradient decay term is in turn the one

that corresponds to a spin-echo modulation [44]

MG2
0

(TE,N) = exp

{
− 1

12
γ2G2

0D0TE
3

}
, (S.14)
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which is independent of x. The cross-term signal-decay contribution is calculated from Eq.

(S.10) leading to

M ~G· ~G0
(TE) = exp

{
1

4
γ2 ~G · ~G0D0

TE3

N2

}
. (S.15)

Supporting Information 2: sNOGSE/aNOGSE’s: Analytical attenuation expres-

sions for the general case of anisotropic diffusion

We calculate next the normalized spin signal arising from Eq. (S.5),

M(s
a)NOGSE(TE) = M

(s
a)NOGSE

G2 (TE)×MG2
0

(TE)×M(s
a)NOGSE
~G. ~G0

(TE), (S.16)

for the symmetric and asymmetric non-uniform gradient spin echo modulations (
(
s
a

)
NOGSE)

introduced in Fig. 2. As described in the main text,

M sNOGSE
G2 (TE) = MaNOGSE

G2 (TE) (S.17)

as a result of

F sNOGSE(ω, TE) = F aNOGSE(ω, TE) (S.18)

in Eq. (S.7). The pure background gradient signal contribution is therefore inde-

pendent of the applied gradient modulation and direction, providing the same weight

for both NOGSE sequences. The cross-term in the attenuation factor for sNOGSE

is zero but that for aNOGSE is not, as the products F sNOGSE†(ω, TE)F0 (ω, TE) and

F aNOGSE†(ω, TE)F0 (ω, TE) in Eq. (S.10) are odd and even functions of ω, respectively.

This cross-term between the aNOGSE-modulated applied gradient and the background gra-

dient G0 will be

β ~G· ~G0
(TE) = γ2

2
~G ·
[∫ ∞
−∞

dω 2Re

{(
F aNOGSE(ω, TE)

)† D(ω)

ω2
F0 (ω, TE)

}]
· ~G0 = ~G ·D̃ · ~G0.

(S.19)

As explained in the main text, the measured spin signal decays for the sNOGSE and

aNOGSE sequences as described in Fig. 2e, factor out all non-diffusing sources of decoher-

ence after normalizing them by the single-echo signal [20, 21, 44]. The amplitude of the
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NOGSE modulation is then

MCPMG(TE)/MSingle−echo(TE) = exp (−∆β) = exp
[
−
(
βCPMG − βSingle−echo

)]
, (S.20)

where the amplitude contrast of the attenuation factors ∆β = βCPMG − βSingle−echo. As

the contribution to the attenuation factor that purely depends of the background gradient

is independent of the applied gradient modulation its contribution ∆βG2
0
is null, and the

amplitude of the attenuation factors is then

∆β = ∆βG2 + ∆β ~G· ~G0
. (S.21)

For the sNOGSE sequence ∆βs = ∆βG2 as the cross-term is null, and ∆βa = ∆βG2 +

∆β ~G· ~G0
for the aNOGSE modulation curve. Notice that the contribution of the term that

only depends of the applied gradient ∆βG2 is the same for both sequences according to Eqs.

(S.17) and (S.18). Then by subtracting ∆βa and ∆βs, the ∆β ~G· ~G0
cross-term contribution

to the amplitude modulation is obtained, where

∆β ~G· ~G0
= γ2

2
~G ·
[∫ ∞
−∞

dω 2Re

{[
F aNOGSE(ω, TE)− F sNOGSE(ω, TE)

]† D(ω)

ω2
F0 (ω, TE)

}]
· ~G0

(S.22)

= ~G ·∆D̃ · ~G0, (S.23)

with ∆D̃ = γ2

2

∫∞
−∞ dω 2Re

{[
F aNOGSE(ω, TE)− F sNOGSE(ω, TE)

]† D(ω)
ω2 F0 (ω, TE)

}
. As-

suming as before a Gaussian distribution for G0,

∆β ~G· ~G0
= ~G ·∆D̃ ·

〈
~G0

〉
+ ~G ·∆D̃ ·

〈
∆~G0∆~G0

〉
·∆D̃ · ~G. (S.24)

where the first term depends on the relative sign of the parallel component of
[
~G ·D(ω)

]
‖
to

the background gradient G0, which depends of the anisotropic restricted-diffusion weighting.

Notice that the second term is always positive and it contains the IGDT
〈

∆~G0∆~G0

〉
. This

was the expression used to evaluate the results presented in Fig. 4 after being normalized

by ∆βs = ∆βG2 to remove the anisotropic weighting due to restricted diffusion effects. For

an isotropic diffusion D(ω) = D(ω)I, this gets simplified to

∆β ~G· ~G0
= ∆D̃iso

~G ·
〈
~G0

〉
+ ∆D̃2

iso
~G ·
〈

∆~G0∆~G0

〉
· ~G. (S.25)

where ∆D̃iso = γ2

2

∫∞
−∞ dω 2Re

{[
F aNOGSE(ω, TE)− F sNOGSE(ω, TE)

]†
D(ω)F0 (ω, TE)

}
.
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Supporting Information 3: sNOGSE/aNOGSE analytical expressions for the case

of free, unrestricted diffusion

For free diffusion only the tail of the displacement power spectrum D(ω) ∝ 1/ω2 will

be important, as it is this short-times regime active before restriction effects are seen, that

matters [20, 44]. The purely applied-gradient diffusion term M
(s
a)NOGSE

G2 (TE) is then given

by [44]

M
(s
a)NOGSE

G2 (TE) = exp

{
− 1

12
γ2G2D0

[
(N − 2)x3 + 2y3

]}
, (S.26)

where (N − 2)x+2y = TENOGSE = TE/2 (see Fig. 2 of the main text for definitions). The

pure background gradient decay term is in turn

MG2
0

(TE,N) = exp

{
− 1

12
γ2G2

0D0TE
3

}
, (S.27)

which is independent of x and y, and therefore of the applied gradient modulation as was

mentioned in the manuscript.

The cross-term signal-decay contribution for sNOGSE is zero as described before, and

the one for aNOGSE will be

MaNOGSE
~G· ~G0

(TE) = exp

{
−1

4
γ2 ~G · ~G0D0TENOGSE (−1)N/2

[
2y2 −

(
1 + (−1)N/2

)
x2
]}

.

(S.28)

Notice that the sign of the attenuation factor for this cross-term contribution depends of the

relative sign of G‖G0, where G‖ is the applied component of the G-gradient that is parallel

to the background gradient vector. The extremes of this attenuation arise for x = y =

TENOGSE/N (CPMG-like modulation)

βCPMG
~G· ~G0

(TE) = −1

4
γ2 ~G · ~G0D0

TE3
NOGSE

N2

(
(−1)N/2 − 1

)
, (S.29)

and for y = TENOGSE/2 and x = 0 (single-echo modulation)

βSingle−echo~G· ~G0
(TE) = −1

8
γ2 ~G · ~G0D0TE

3
NOGSE (−1)N/2 . (S.30)

Given the (−1)N/2 factor in Eq. (S.28) it follows that if N/2 is even, βCPMG
~G· ~G0

(TE) = 0 and

the contrast contribution for the difference of attenuation factors is

∆β ~G· ~G0
=

1

8
γ2 ~G · ~G0D0TE

3
NOGSE; (S.31)
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i.e., it depends on the relative sign of G‖ and G0. If N/2 is odd βCPMG
~G· ~G0

(TE) 6= 0; but for

N/2 odd the attenuation decays with 1/N2, and this makes the contrast lower. Assuming a

Gaussian distribution for G0,

β ~G· ~G0
(TE) = −1

4
γ2D0TENOGSE (−1)N/2 (2y2 −

(
1 + (−1)N/2

)
x2) ~G ·

〈
~G0

〉
+

1

32
γ4D2

0TE
2
NOGSE

[
2y2 −

(
1 + (−1)N/2

)
x2
]2〈[

~G ·
(
~G0 −

〈
~G0

〉)]2〉
. (S.32)

The attenuation factor contrast amplitude is then

∆β ~G· ~G0
=

1

8
γ2D0TE

3
NOGSE

~G ·
〈
~G0

〉
+

1

128
γ4D2

0TE
6
NOGSE

~G ·
〈

∆~G0∆~G0

〉
· ~G,(S.33)

where
〈

∆~G0∆~G0

〉
is the IGDT.
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