Supplementary information

Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice

Lin Yang¹, Huijuan Kuang¹, Wanyi Zhang², Zoraida P. Aguilar³, Hua Wei¹, and Hengyi Xu¹*

¹State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China

² The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China

³Zystein, LLC., Fayetteville, AR 72704, USA

*Correspondence to:

Dr. Hengyi Xu

State Key Laboratory of Food Science and Technology, Nanchang University.

Address: 235 Nanjing East Road, Nanchang 330047, P.R. China.

Phone: +0086-791-8830-4447-ext-9520.

Fax: +0086-791-8830-4400.

E-mail: kidyxu@163.com; HengyiXu@ncu.edu.cn.

NPs	Size (nm)	Dose	Model	Exposure	Tissue accumulation	Conclusions	References
				duration	(in order of quantity)		
AgNPs	20, 15	90 mg kg ⁻¹	Rats	Oral, 28 d	St, In, Sp, Te, Li, Br,	Oral exposure to AgNPs showed similar distribution pattern with silver	1
				Re 1, 8, 56 d	Ki, Lu, Bl, Bla, He	salts, and no hepatotoxicity or immunotoxicity were observed	
AgNPs	10, 25	100, 500 mg kg ⁻¹	Rats	Oral, 28 d	Sp, Ov, Li, Ki, Te, Br,	Tissue clearance of the accumulated NPs over 4 recovery months,	2
				Re 1, 2, 4 m	B1,	which size did not affect the silver distribution.	
AgNPs	60	30, 300, 1000 mg	Rats	Oral, 28 d	St, Ki, Li, Lu, Te, Br,	Gender-related and dose-dependent accumulation of silver content in	3
		kg-1		Re 1 d	B1,	tissues	
AgNPs	14	63, 126, 252 mg	Rats	Oral, 28 d	NM	No adverse effects were observed in rats after exposure to 14 nm	4
Ag-acetate		kg-1		Re 1 d		AgNPs at a dose up to 252 mg kg ⁻¹	
AgNPs	14 ± 4	252 mg kg ⁻¹	Rats	Oral, 28 d	Fe, In, Ki, Li, Br, Lu,	Compared to AgNPs, silver acetate show higher concentrations	5
(PVP)				Re 1 d	Pl, Mu, Ur	throughout the rat body and lysosomes could be a likely target for side	
						effects of silver.	
AgNPs	7.9 ± 0.95	1, 10 mg kg ⁻¹	Rats	Oral, once	Fe, Li, Bl, Ki, Lu, Ur,	r, Bioavailability of AgNPs was extreme low after oral exposure,	
				Re 1, 4 d		suggesting limited toxicity.	
AgNPs	20, 110	0.3, 3, 30 mg kg ⁻¹	Mice	Oral, 3 d	Fe, GIT, Sp, Li, Ki,	Oral administrational AgNPs at a dose of 30 mg kg ⁻¹ was well-tolerated	7
				Re 2 d		in mice and NPs size or coating show minimal effects on fecal	
						elimination	
AgNPs	10, 75,	9, 18, 36 mg kg ⁻¹	Rats	Oral, 13 w	MLN, Co, Je, Il, Ki,	AgNPs predominantly deposited within cells, while Ag-acetate had an	8
Ag-acetate	110			Re 0.5 d	Sp, Li, Bl, He, Ut	affinity for extracellular membranes	
AgNPs	18	0.7×10^{6} , $1.4 \times$	Rats	Ih, 6 h/d, 90 d	NM	Lung function changes such as the decreases in minute volume and	9
		$10^{6}, 2.9 \times 10^{6}$				tidal volume as well as lung inflammation were induced by prolonged	
		particles/cm ³				inhalation exposure to AgNPs	

 Table S1. Classical studies of biodistribution and toxicity of AuNPs/AgNPs in rodents via other exposure routes.

AgNPs	18-19	$0.6 imes 10^6$, $1.4 imes$	Rats	Ih, 5 h/d, 5	Lu, OB, Li, Br, Ki, Bl	Inhalation exposure of AgNPs caused the inflammatory responses in	10
		$10^{6}, 3.0 \times 10^{6}$		d/w, 13 w		the lung and liver.	
		particles/cm ³					
AuNPs	11, 21, 31	0.07-0.30 mg kg ⁻¹	Rats	Ins, 1 h, 1 d	Lu, Li, Sp, Ca, Ki,	The PEGylation had no effects on the translocation of AuNPs from the	11
(PEGylated)					He, Bl, Br	lungs to the circulation.	
AuNPs	13, 105	$12.8 \pm 2.42, 13.7$	Rats	Inh, 6 h/d, 5 d,	Lu, Li, Sp, Ki, Br, Te,	Small NPs had significantly higher concentrations in secondary target	12
		$\pm \ 1.32 \ \mu g/m^3$		Re 1, 3, 28 d	B1	organs that translocated from lungs compared to large NPs	
AgNPs	15, 410	179, 167 μg/m ³	Rats	Inh, 6 h/d, 4 d,	Lu, Li,	Size-related silver nanoparticle distribution in respiratory tract with 410	13
				Re 1, 7 d		nm NPs mainly deposited in upper airways and 15 nm NPs showed	
						alveolar accumulation.	
AgNPs	70	0.2, 1 mg kg ⁻¹	Rats	Ins, 1 d	NM	Instillation of 1 mg kg ⁻¹ AgNPs caused mild pulmonary toxicity, while	14
(PVP)						no side effects were observed at a dose of 0.2 mg kg ⁻¹	
AuNPs	1.4, 5, 18,	$0.8 \pm 0.1 - 34.5 \pm$	Rats	Ins, 1, 3, 24 h	Lu, Ur, Ki, Ca, Bl, Li,	Small AuNPs with high specific surface area (SSA) was more likely	15
	80, 200,	2.0 µg/rat			Sp, Ut, He, Br,	cross the air-blood barrier. While the translocation of NPs to the	
	2.8					secondary tissues was independent with the SSA.	
AuNPs	12.5	0.32, 1.6, 3.2 mg	Mice	i.p., 8 d	Sp, Li, Ki, Lu, Br, Bl	Dose-dependent accumulation pattern of NPs and no subacute	16
		kg-1				physiological damage.	

The following abbreviations are used in the Table: NM – not mentioned, Inh – inhalation exposure, Ins – instillation exposure, i.p. – intraperitoneal injection. Re – recovery days, h – hours, d– days, w– weeks, m– months, PVP – polymer polyvinylpyrrolidone, Ov – ovary, Pl – plasma, Br – brain, He – heart, Li – liver, Lu – lung, OB – olfactory bulb, Ki – kidney, In – intestine, MLN – mesenteric lymph nodes, Co – colon, Il – ileum, Je –jejunum, Sp – spleen, GIT – gastro-intestinal tract, Fe – feces, St – stomach, Te – testes, Ut – uterus, Ur – urine, Ca – carcass, Bla – bladder, Bl – blood, Mu – muscle.

References

1. Zande, M. *et al.* Distribution, elimination, and toxicity of silver nanoparticles and silver ions. *ACS Nano* **6**, 7427-7442 (2012).

2. Lee, J. H. *et al.* Biopersistence of silver nanoparticles in tissues from Sprague –Dawley rats. *Part. Fibre Toxicol.* **10**, 36 (2013).

3. Kim, Y. S. *et al.* Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. *Inhal.Toxicol.* **20**, 575-83 (2008).

4. Sung, J. H. *et al.* Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. *Arch. Toxicol.* **86**, 543-51 (2012).

5. Loeschner, K. *et al.* Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. *Part. Fibre Toxicol.* **8**, 18 (2011).

6. Park, K. *et al.* Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. *Arch. Pharm. Res.* **34**, 153-58 (2011).

7. Bergin, I. L., *et al.* Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. *Nanotoxicology* **10**, 352-360 (2016).

8. Boudreau, M. D., *et al.* Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity in the Sprague Dawley Rat Following Daily Oral Gavage Administration for 13-Weeks. *Toxicol. Sci.* kfv318 (2016)

9. Sung, J. H. *et al.* Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. *Inhal.Toxicol.* **20**, 567-74 (2008).

10. Sung, J. H. *et al.* Subchronic inhalation toxicity of silver nanoparticles. *Toxicol.Sci.* **108**, 452-61 (2009).

11. Lipka, J. *et al.* Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. *Biomaterials* **31**,6574-81 (2010).

12. Han, S. G., *et al.* Size-dependent clearance of gold nanoparticles from lungs of Sprague–Dawley rats after short-term inhalation exposure. *Arch. Toxicol.* **89**, 1083-1094 (2015).

13. Braakhuis, H. M., *et al.* Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. *Part. Fibre Toxicol.* **11**, 1 (2014).

14 Haberl, N., *et al.* Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats. *Beilstein J. Nanotech.* **4**, 933-940 (2013).

15 Kreyling, W. G., *et al.* Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. *ACS nano* **8**, 222-233 (2013).

16. Lasagna-Reeves, C. et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. *Biochem. Bioph. Res. Co.* **393**, 649-55 (2010).

Table S2. The visceral index of organs of Kunming mice following intravenous injection of AgNPs and/or AuNPs. D1 and D28 refer to collection of mice organ on post-injection in day 1 and day 28. These results show mean and standard deviation, n=5. *: P < 0.05 versus the control group.

NPs		Liver	Spleen	Kidney	Lung	Heart	Duain (mala)	Testis	Seminal
	DW (g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	Drain (ing/g)	(mg/g)	vesicle (mg/g)
AgNPs (D1)	38.59±1.81	54.11±3.22	5.67±1.75	14.86±1.44	5.96±0.59	4.87±0.68	11.26±0.52	6.20±1.12*	7.59±0.84
AuNPs (D1)	39.33±3.06	46.59±6.94	4.65±1.25	14.92±1.65	6.25±1.59	5.99±1.08	10.25±0.74	5.90±0.63*	7.71±1.97
AgNPs (D28)	42.65±1.68	50.68±9.70	2.58±0.36*	14.67±3.49	6.68±1.73	5.38±0.72	9.04±0.52*	5.73±0.84*	6.20±2.13*
AuNPs (D28)	42.87±3.18	49.46±5.66	2.95±0.91*	16.18±1.59	6.91±2.61	5.43±0.69	9.62±1.68	6.23±0.94*	5.78±0.63*
Control	41.16±1.07	52.42±4.92	4.77±1.06	18.08±0.61	7.54±2.73	6.44±1.13	11.18±0.25	8.18±1.39	8.87±1.47

Table S3. Biodistribution of Ag and/or Au NPs at 1 d and 28 d after the last injection. These results show mean and standard deviation, n=5.

IOMNs	Heart (µg/g)	Liver (µg/g)	Spleen (µg/g)	Lung (µg/g)	Kidney (µg/g)	Brain (µg/g)	Stomach (µg/g)	Intestine (µg/g))Testis (µg/g)	Seminal vesicle (µg/g)
AgNPs (D1)	5.00 ± 0.94	35.06±4.78	21.16±11.74	4.64±0.23	3.43±1.15	0.65±0.07	1.14±0.21	1.93±0.37	3.72±0.29	0.38±0.11
AuNPs (D1)	1.18±0.14	61.39 ± 19.99	12.98±1.03	1.06±0.23	5.27±0.72	0.69 ± 0.04	0.60 ± 0.08	0.75±0.18	0.82±0.18	0.18±0.01
AgNPs (D28)	3.85 ± 1.10	29.68±4.50	24.78±6.72	5.03±1.06	0.83±0.14	0.82 ± 0.08	0.65±0.13	2.02±0.83	5.85±1.46	0.30±0.07
AuNPs (D28)	1.03±0.19	47.00±10.62	22.03±2.30	0.90±0.09	1.01±0.14	0.71±0.03	0.55±0.17	0.84±0.16	0.98±0.02	0.20±0.05
Control (AgNPs) ND	ND	ND	ND	0.01±0.003	ND	ND	ND	ND	ND
Control (AuNPs) 0.04±0.02	0.02±0.03	0.04±0.03	0.031±0.002	0.015±0.0003	0.02±0.0001	0.016±0.0002	0.02±0.0005	0.02±0.005	0.03±0.0017

ND: not detected

	Recovery Ratios of applied doses
AgNPs (D1)	$35.87 \pm 9.94\%$
AuNPs (D1)	$31.17 \pm 9.67\%$
AgNPs (D28)	$42.54 \pm 18.87\%$
AuNPs (D28)	27.78± 6.13%

Table S4. Recovery ratios of total applied doses of AgNPs and/or AuNPs in both timepoints. These results show mean and standard deviation, n=5.

	Table S5. The primes used in qPC	CR.	
Genes	Descriptions	Forward primers (5'—3')	Reverse primes (5'—3')
Bax	Bcl2-associated X protein (Bax)	GATGGCAACTTCAACTGGG	CCGAAGTAGGAGAGGAGGC
Bcl-2	Bcl-2	CACTCGACCTTGTTTCTTCCAG	TCCTAACCCCTTGCTCTGCTT
Caspase-8	Caspase-8	GGAAGATGACTTGAGCCTGCTTG	CAAGGCTCATTCTTCTCTCTGTGC
Caspase-3	Caspase-3	GGAGGCTGACTTCCTGTATGCTT	CCTGTTAACGCGAGTGAGAATG
Caspase-9	Caspase-9	AAGAAGACCGGAGTGCAATG	CATGACAGGATTATACAACCGC
p53	<i>p53</i>	TACAAGAAGTCACAGCAC	GATACTCGGGATACAAAT
Mt2	Metallothionein 2	TGCATCTGCAAAGAGGCTTC	AAGTTGTGGAGAACGGGTCAG
Mt1	Metallothionein 1	CTGCTGCTCCTGCTGTC	ACTGTATAGGAAGACGCTGG
Zip14	Zrt- and Irt-related protein 14	CATTGAAGTATGGGGGGTACGGT	ATGAAGTAGAGCAGGAGCCTCT
Trf	Transferrin	CCGAACAACAAAGAGGAAT	GGTTCTTTCCTTCGGTGTT
Hmox	Heme oxygenase 1	ACCGCCTTCCTGCTCAAC	GAGGAGCGGTGTCTGGGAT
Sod 1	superoxide dismutase 1	TAACTGAAGGCCAGCATGGGT	GGTCTCCAACATGCCTCTCTTC
Sod 2	superoxide dismutase 2	CAGACCTGCCTTACGACTATGG	GCTGAAGAGCGACCTGAGTTGT
Fos	V-fos FBJ murine osteosarcoma	GAAGGGAAAGGAATAAGATGGC	AGTTGGTCTGTCTCCGCTTG
	viral oncogene homolog		
GADPH	Glyceraldehyde-3-phosphate	ACCCAGAGGACTGTGGATGG	TCAGCTCTGGGATGACCTTG
	dehydrogenase		

Fig. S1 Serum biochemical analysis from animals treated with AgNPs and/or AuNPs and control. A-D) results exhibit mean and standard deviation of DBIL (A), TP (B), GLB (C), CREA (D). Abbreviations: direct bilirubin, DBIL; total protein, TP; globulin, GLB; creatinine, CRE. n=5. *: P < 0.05 versus the control group.

Fig. S2 Whole blood analysis from animals treated with AgNPs and/or AuNPs and control. A,B results are based on mean and standard deviation of mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), respectively. These indicators are not significant changes (p < 0.05), n=5.

Page **11** of **14**

Page **12** of **14**

Fig. S3 HE images of various organs of treated AgNPs and/or AuNPs mice. D1 and D28 refer to collection of mice organ on day 1 and day 28 after AgNPs and/or AuNPs administrations, respectively. n=5.