Confined catalysis under two-dimensional materials

Haobo Li, Jianping Xiao, Qiang Fu,¹ Xinhe Bao

State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

¹To whom correspondence should be addressed. Email: <u>qfu@dicp.ac.cn;</u>

Computational details

Theoretical calculations were performed using Vienna *ab* initio simulation packages $(VASP)^1$ with the projector-augmented wave (PAW) scheme². We used the Perdew-Burke-Ernzerhof (PBE)³ functional at the level of the Generalized Gradient Approximation (GGA) for electronic exchange-correlation interactions. The plane wave cutoff was set to 400 eV. In addition, the weak van der Waals (vdW) interactions were corrected in the form of C⁶/R⁶ pair potentials (PBE-D), where C⁶ and the vdW radius, R⁰, were set as shown in the table below:

Element	Pt	С	Н	Ν	0	S	Li
C^{6} (J·nm ⁶ ·mol ⁻¹)	24.67	1.75	0.14	1.23	0.70	5.57	1.61
$\mathrm{R}^{0}\left(\mathrm{\AA} ight)$	1.75	1.452	1.001	1.397	1.342	1.683	0.825
Element	Na	K	Rb	Cs	В	Zn	
C^{6} (J·nm ⁶ ·mol ⁻¹)	5.71	10.80	24.67	24.67	3.13	10.80	
$R^{0}(Å)$	1 1 4 4	1.485	1.628	1.628	1.485	1.562	

The Brillouin zone was sampled by a $6 \times 6 \times 1$ *k*-point grid for the calculations of charge density and local potential, and a $2 \times 2 \times 1$ Monkhorst-Pack⁴ *k*-point grid for structural optimizations. The convergence of energy and forces were set to 1×10^{-5} eV and 0.05 eV·Å⁻¹.

For graphene/Pt(100) surface, A 3×3 Pt(111) supercell with $3\times 2\sqrt{3}$ graphene

overlayer was used as a simplified model for calculations. For graphene/Pt(110) surface, A 2×3 Pt(110) supercell with $3\times 2\sqrt{3}$ graphene overlayer was used for calculations.

Figure S1. Atomic structure diagrams of the calculation models used in this work. a) Graphene (Gr) covered Pt(111). b-c) CO adsorption at the interface of Gr/Pt(111) at the coverage of 1/7 ML (b) and 3/7 ML (c).

Table S1. Comparison of different vdW correction methods, as well as without vdW corrections, for the Gr/CO/Pt(111) system.

	E _{ad} (CO)	E _{ad} (CO)		Gr-Pt	Gr-CO-Pt
Method	(bare surface)	(with graphene)	E_{con}	distance	distance
vdW-D2 ⁵	-2.02 eV	-0.61 eV	1.41 eV	3.2 Å	5.7 Å
vdW-D3 ⁶	-2.06 eV	-0.57 eV	1.49 eV	3.2 Å	5.7 Å
vdW-DF opt-	-1.95 eV	-0.88 eV	1.07 eV	3.3 Å	5.7 Å
B88 ^{7,8,9,10}					
w/o vdW	-1.75 eV	-1.63 eV	0.12 eV	4.2 Å	5.9 Å

Table S2. The adsorption energies of CO at the interface of Gr/Pt(100) and Gr/Pt(110), as well as the adsorption energy difference.

Adsorption	Adsorption	Adsorptio	on energy (eV)	Coverage	Gr-h	eight (Å)
surface	site	Bare surface	With Gr	Δ	(ML)	Gr/Pt	Gr/CO/Pt
Gr/Pt(100)	Тор	-1.88	-0.04	1.84	1/9	3.18	5.65
Gr/Pt(110)	Тор	-2.46	1.29	3.75	1/6	2.25	5.49

Table S3. The adsorption energies of CO at the interface of Gr/Pt(111) with different adsorption sites at 1/7 ML coverage.

Adsorption site	Adsor	Gr-height (Å)			
	Bare surface	With Gr	Δ	Gr/Pt	Gr/CO/Pt
Тор	-2.02	-0.61	1.41	3.27	5.73
Bridge	-2.15	-0.82	1.33	3.27	5.61
Hollow (FCC)	-2.22	-0.94	1.28	3.27	5.51

Figure S2. The maximum potential energy between Gr and Pt(111) (corresponding to the energies at the positions marked by orange dots in Fig. 3a) as a function of d_{Gr-Pt} .

Figure S3. a) Projected d-band states of Pt atoms of bare Pt(111) surface (blue) and Gr/Pt(111) interface (red). b) Projected sp-states of Pt atoms of CO/Pt(111) (blue) and Gr/CO/Pt(111) (red) structures. c) Projected sp-states of CO molecules of CO/Pt(111) (blue) and Gr/CO/Pt(111) (red) structures. The Fermi level is set to 0 eV as shown in dashed line.

Table S4. The adsorption sites and adsorption energies of different adsorbates (nonmetal atoms, molecules, alkali metal atoms) on bare Pt(111) surface and Gr/Pt(111) surface at 1/7 ML coverage, as well as the adsorption energy difference, the Gr height of the Gr/Pt(111) surface at full relaxation, the bind length of atoms or molecules with Pt(111) and the bond length of the adsorbed molecules.

	Adsorption site		Adsorption energy (eV)			Gr- height	Bind len	gth (Å)
Adsorbate	Pt	Gr/Pt	Pt	Gr/Pt	Δ	(Å)	Pt	Gr/Pt
H atom	Тор	Fcc	-0.58	-0.49	0.09	3.26	1.56	1.80
C atom	Fcc	Fcc	-7.59	-7.35	0.24	3.40	1.90	1.90
N atom	Fcc	Fcc	-0.00	0.30	0.30	3.38	1.95	1.93
O atom	Fcc	Fcc	-1.43	-1.08	0.35	3.45	2.04	2.02
S atom	Fcc	Fcc	-2.13	-1.18	0.95	4.18	2.26	2.24
СО	Тор	Тор	-2.02	-0.61	1.41	5.73	1.84	1.83
NO	Fcc	Fcc	-2.29	-1.00	1.28	5.12	2.07	2.09
H ₂ O	Тор	Тор	-0.52	0.59	1.11	4.97	2.32	2.23
NH ₃	Тор	Тор	-1.37	-0.19	1.18	5.56	2.10	2.10
Li atom	Fcc	Fcc	-1.90	-2.06	0.16	3.69		
Na atom	Fcc	Fcc	-1.37	-2.09	0.72	4.50		
K atom	Fcc	Fcc	-1.34	-2.47	1.13	5.45		
Rb atom	Fcc	Fcc	-1.52	-2.66	1.13	5.85		
Cs atom	Fcc	Fcc	-1.61	-2.88	1.26	6.10		

Table S5. The adsorption sites and adsorption energies of different adsorbates (nonmetal atoms, molecules, alkali metal atoms) on bare Pt(111) surface and Gr/Pt(111) surface at 3/7 ML coverage, as well as the adsorption energy difference, the Gr height of the Gr/Pt(111) surface at full relaxation, the bind length of atoms or molecules with Pt(111) and the bond length of the adsorbed molecules. (a: two molecules at Bridge site and one molecule at Fcc site in one unit cell; b: one molecule at Bridge site and two molecules at Fcc site in one unit cell)

	Adsorption site		Adsorption energy (eV)			Gr- height	Bind le	ngth (Å)
Adsorbate	Pt	Gr/Pt	Pt	Gr/Pt	Δ	(Å)	Pt	Gr/Pt
H atom	Fcc	Fcc	-0.56	-0.48	0.08	3.40	1.56	1.85
C atom	Fcc	Fcc	-7.02	-6.78	0.16	3.86	1.92	1.92
N atom	Fcc	Fcc	0.64	0.82	0.18	3.85	1.97	1.97
O atom	Fcc	Fcc	-1.04	-0.84	0.20	3.88	2.05	2.04
S atom	Fcc	Fcc	-1.09	-0.77	0.32	4.73	2.31	2.31
СО	2B1F ^a	1B2F ^b	-1.94	-1.50	0.44	5.89	2.06	2.10
NO	Fcc	Fcc	-1.87	-1.47	0.40	5.39	2.10	2.09
Li atom	Fcc	Fcc	-1.86	-1.72	-0.14	4.04		
Na atom	Fcc	~Fcc	-1.61	-1.63	0.02	4.90		
K atom	Fcc	Fcc	-1.63	-1.67	0.04	5.63		
Rb atom	Fcc	Fcc	-1.79	-1.81	0.02	5.88		
Cs atom	Fcc	Fcc	-1.77	-1.93	0.16	6.18		

Figure S4. One-dimensional local potential energies of a) He/Pt(111), b) Ne/Pt(111), and c) Ar/Pt(111) interfaces with the overlayer-surface distance at 5.7 Å (above) and 3.2 Å (below), respectively. The corresponding schematic atomic structures in the real space are shown as the semitransparent insets.

Figure S5. Confinement energies of a series of non-metal atoms and small molecules (blue dots) together with alkali metal atoms (green dots) at 3/7 ML coverage, and their relationship with the Gr/Pt(111) distance at full optimal relaxation. The blue dots and green dots are fitted in blue and green dashed lines, respectively, which is just 1/3 of the pink dashed line in Fig. 4a. The blue dots fit the curve well with a little lower than the curve, which is supposed to be due to the slight charge transfer between intercalation species and the Gr layer.

Figure S6. Confinement energies of a series of non-metal atoms and small molecules at 1/7 ML coverage, and their relationship with the h-BN/Pt(111) distance at full optimal relaxation. The curve plotted using an exponential function (in red) is shown as the yellow dashed line.

Figure S7. Dissociative binding energies of O_2 , OH, NO, H_2 , CO, and N_2 molecules on Gr/Pt(111) (yellow) in comparison to those on bare Pt(111) surface (blue).

Figure S8. Schematic diagram of a volcano curve for catalytic reactions. The catalytic activity can be increased or suppressed when the binding energy of adsorbates on a catalyst surface is modulated.

Figure S9. Linear relation between the binding energy of O* (ΔE_{O*}) and *OH (ΔE_{*OH}) on different metals with or without vdW corrections (over the most close packed surface, at 1/4 ML coverage). The corresponding metals and values of each point are listed in Table S6. The data without vdW corrections are cited from the literature by Nørskov et al.¹¹

	ΔE_{O^*}	ΔE*OH	ΔE_{O^*}	ΔE*OH
Metal	(with vdW)	(with vdW)	(without vdW)	(without vdW)
Ag	0.72	2.12	0.74	2.34
Au	1.49	2.75	1.41	3.06
Со	-0.08	-0.22	-0.76	-0.62
Cu	0.37	1.20	0.13	1.02
Fe	-0.88	-0.90	-0.68	-0.55
Ir	0.63	1.00	0.41	0.75
Мо	-0.61	-1.62	-0.45	-1.75
Ni	0.13	0.34	-0.53	-0.19
Pd	0.92	1.53	0.38	1.01
Pt	1.05	1.57	0.83	1.00
Rh	0.34	0.44	0.07	0.56
Ru	-0.01	-0.05	-0.24	0.26
W	-0.80	-2.06	-1.36	-1.87

Table S6. Corresponding metals and values of each point in Fig. S9. The data without vdW corrections are cited from the literature by Norskov et al.¹¹

Figure S10. (a-b) Schematic diffusion process of adsorbed species at the interface of Gr/Pt(111): (a) O atom (from fcc site to hcp site); (b) CO molecule (from top site to bridge site). Pt: light blue balls; C: grey sticks or balls; O: red balls. The diffusion steps of initial states (IS) to final states (FS) are shown in yellow arrows. (c) Diffusion barriers of the process on Pt(111) (left side) and Gr/Pt(111) (right side). Black lines: O atom; blue lines: CO molecule.

References

[1] Kresse G, Furthmüller J (1996) Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 54(16):11169.

[2] Blöchl PE (1994) Projector augmented-wave method. J. Phys. Rev. B 50(24):17953.

[3] Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77(18):3865.

[4] Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. *Phys. Rev. B: Solid State* 13(12):5188-5192.

[5] Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comp. Chem.* 27(15):1787-1799.

[6] Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 132(15):154104.

[7] Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2005) Van der Waals density fuctional for general geometries. *Phys. Rev. Lett.* 92(24):246401.

[8] Román-Pérez G, Zamora F, Soler JM (2010) Hollow C₃N₄ nanoclusters from first principles. *Phys. Rev. B.* 82(19):195405.

[9] Klimeš J, Bowler DR, Michaelides A (2011) Van der Waals density functional applied to solids. *Phys. Rev. B.* 83(19):195131.

[10] Klimeš J, Bowler DR, Michaelides A (2010) A critical assessment of theoretical methods for finding reaction pathways and transition states of surface processes. *J. Phys.: Cond. Matt.* 22(7):022201.

[11] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. *J. Phys. Chem. B* 108(46):17886-17892.