
Supporting Information

S1. Simulation algorithm

The algorithm is a variant of a technique called
uniformization, see e.g., Example 4.6 in [1], which can
reduce a continuous time Markov chain to discrete
time. To explain this procedure, let q(i, j) be the
rate for jumps from i to j, λi =

∑
j 6=i q(i, j), and Λ =

maxi λi. If the chain is in state i at the nth step of the
simulation, then Xn+1 = j with probability q(i, j)/Λ
if j 6= i and Xn+1 = i with probability 1 − λi/Λ.
Since some transitions do not result in state changes
this is inefficient, but this has the advantage that the
times between jumps are exponential with rate Λ, so
there is no need to create the exponential random
variables. If n is large then the elapsed time after
n simulation steps Tn ∼ n/Λ, where an ∼ bn means
an/bn → 1.

The simulation method adapts easily to interact-
ing particle systems and to evolutionary games in
particular. Let cij(x, ξ) be the rate at which site x
changes from i to j when the configuration is ξ, let
λi(x, ξ) =

∑
j 6=i cij(x, ξ) and let Λ = maxi,x λi(x, ξ).

On each simulation step we pick a site x at ran-
dom. If it is in state i it changes to j with prob-
ability cij(x, ξ)/Λ and does not change with proba-
bility 1 − λi(x, ξ)/Λ. If there are N sites then the
time until the next site tries to change is a minimum
of N exponential(Λ) random variables, and hence
exponential(NΛ) Thus if n is large the elapsed time
after n simulation steps Tn ∼ n/(NΛ).

S2. Classification of 3 by 3 games

Here we describe the division of generic 3×3 games
without unstable edge fixed points into 11 cases. The
number in the name of each case gives the number of
stable edge fixed points. Cases are further subdivided
according to the number of edge fixed points that can
be invaded, i.e., the freqeuncy of the third strategy
will increase when rare. Whether a fixed point is
invadable or not is indicated by the arrows next to
the fixed points. On the other edges without fixed
points, arrows give the direction of the dominance
relations. Proofs of the statements we make about
the behavior of the replicator equation can be found
in Section 7 of [?].
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In Case 3A, all three edge equilibria can be invaded.
The replicator equation converges to the interior fixed
point and it was shown in [2] that there is coexistence
in the spatial game when selection is weak.
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In case 3B, two of the three edge fixed points can
be invaded. The replicator equation converges to the
equilibrium on the 1, 2 edge, which we call e1,2. It is
impossible to have three stable edge fixed points and
only 1 or 0 of them invadable.
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In case 2A, both edge equilibria can be invaded.
The replicator equation converges to the interior fixed
point and it was shown in [2] that there is coexistence
in the spatial model.

1



Case 2B. 1

3 2

•

•

Qk

6




























�





�

J
J

J
J

J
J

J
J

JJ

- �

In case 2B, one edge fixed point can be invaded.
The replicator equation converges to e1,3. There is
no arrow on the 1, 2 edge because it is not important
in which direction it points.
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In case 2C, neither edge fixed point can be invaded, so
there is bistability, i.e., e1,2 and e1,3 are both locally
stable.

Next consider the situation in which there is one
stable fixed point on the boundary. In first two cases
it can be invaded.

Case 1A.
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In case 1A, the pure strategy 2 can be invaded.
The replicator equation converges to the interior fixed
point. It was shown in [2] that there is coexistence in
the spatial game when selection is weak.

Case 1B.
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In case 1B, the pure strategy 2 cannot be invaded.
The replicator equation converges to the pure strat-
egy 2.

In the next two cases, there is one boundary fixed
point and it cannot be invaded.

Case 1C.
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In case 1C the interior equilibrium is bistable.

Case 1D.
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In case 1D the replicator equation converges to e1,3

There is no arrow on the 1, 2 edge because the result
does not depend on the direction it points.

Finally we have the situation with no boundary
fixed points. There are 8 possible orientations for the
arrows on the edges. Two lead to rock-paper-scissor
relationships between the strategies.
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Case 0A.
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In the other six combinations, two arrows point to-
ward the same pure strategy equilibrium and that is
the limit in the replicator equation.

Case 0B.
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S3. Correlation length

For concreteness consider the Ising model. Let
Λ(L) = {−L,−L + 1, . . . L}2 and for each ξ : ΛL →
{−1,−1} define

µ(ω) =
1

Z(L)
exp

(
β
∑
x∼y

ξxξy

)

where x ∼ y means x and y are nearest neigh-
bors and Z(L) is a normalizing constant to make p
a probability measure on {−1, 1}Λ(L). It is a well
known fact from statistical mechanics that one can
let L → ∞ to define probability measures on config-
urations ω : Z2 → {−1, 1}. When β < βc there is
only one limit that has exponentially decaying corre-
lations. That is if we let

cov (ξ(x), ξ(y)) = P (ξ(x) = 1, ξ(y) = 1)
− P (ξ(x) = 1)P (ξ(y) = 1)

which is ≥ 0 by the FKG inequality then as n →∞

1/n log cov (ξ(0, 0), ξ(n, 0)) = −γ(β).

The inverse of this exponential decay rate ξ(β) =
1/γ(β) is the correlation length. Spins that are sepa-
rated by one correlation length have covariance ≈ e−1

and hence have a tendency to be aligned. However, if
we look at the fraction pL of 1 spins in a box of side L
which is much larger than the correlation length then
the variance of pL will be small and this will be close
to its mean 1/2. In the stochastic Ising model, boxes
that are the same size as the correlation length the
feequency of 1’s at time t, pL(t) will show fluctuations
over time due to correlations, but when the length is
much larger than the correlation length pL(t) wil stay
approximately constant over time. This phenomenon
is best understood in the well studied Ising model but
this is a general property of stochastic spatial models.
For more information see Chpater 10 of [?].

S4. Analysis of the Multiple myeloma game.

Boundary equilibria. To study the properties
of the game we begin with the two strategy games it
contains.

1 vs. 2. (A/(A+E), E/(A+E)) is a mixed strategy
equilibrium. Since A,E > 0 it is attracting (on the
1, 2 edge).

1 vs. 3. (B/(B+C), C/(B+C)) is a mixed strategy
equilibrium. Since B,C > 0, it is attracting (on the
1, 3 edge).

2 vs. 3. 3 dominates 2.

Invadability. The next step is to determine when
the third strategy will increase when rare if the other
two are equilibrium.

In the 1, 2 equilibrium, fitnesses F1 = F2 = AE/(A+
E) while F3 = (CA + FE)/(A + E) so 3 can invade
1,2 (which we write as 3 → 1, 2) if CA + FE > AE
or C/E > 1− F/A.

In the 1, 3 equilibrium, the fitnesses F1 = F3 =
BC/(B+C), while F2 = (EB−DC)/(B+C), so 2 can
invade 1,3 if EB−DC > BC or 1−DC/BE > C/E.

Case 1. C/E > 1 − F/A. 3 → 1, 2 but 2 6→ 1, 3 so
the replicator converges to the 1,3 edge fixed point.

Case 2. 1 − F/A > C/E > 1 − DC/BE 3 6→ 1, 2
but 2 6→ 1, 3 so we have bistability.

Case 3. 1−DC/BE > C/E. 3 6→ 1, 2 but 2 → 1, 3
so the replicator converges to the 1,2 edge fixed point.

S5. Convergence to boundary fixed points

Coexistence has been proved in cases 3A, 2A, 1A.
Rock-paper scissors and bistable cases were consid-
ered in the main paper. Here, will give simulations
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for the cases in which there is convergence to a bound-
ary fixed point: 3B, 2B, 1B, 1D, 0B. In each case we
give the original game matrix G and the transformed
matrix H. The invadability conditions are as previ-
ously drawn for that case.

G1 1 2 3
1 0 2.5 3.25
2 3.5 0 2.5
3 1.75 1.5 0

H1 1 2 3
1 0 2 4
2 4 0 3
3 1 1 0

1

23

Case 3B

Figure 1: The replicator equation for H1 → (1/3, 2/3, 0). In
the spatial game G1 frequencies → (0.378, 0.622, 0).

G2 1 2 3
1 0 1.25 3.25
2 0.25 0 2.5
3 1.75 1.5 0

H2 1 2 3
1 0 2 4
2 −1 0 3
3 1 1 0

1

23

Case 2B

Figure 2: The replicator equation for H2 → (3/4, 0, 1/4).
In the spatial game 1 + (1/2.25)G2 frequencies →
(0.7506, 0, 0.2494).

G3 1 2 3
1 0 −1 3.25
2 1 0 0.5
3 1.75 −0.5 0

H3 1 2 3
1 0 −2 4
2 2 0 1
3 1 −1 0

1

23

Case 1B

Figure 3: The replicator equation for H3 and the frequencies
in the spatial game 1 + (1/3)G1 → (0, 1, 0).

G4 1 2 3
1 0 1.25 3.25
2 −0.25 0 0.125
3 2.5 −0.625 0

H4 1 2 3
1 0 2 4
2 −1 0 −2
3 −2 1 0

1

23

Case 1D

Figure 4: The replicator equation for H4 → (2/3, 0, 1/3).
In the spatial game 1 + (1/2.625)G4 frequencies →
(0.636, 0, 0.364).

G5 1 2 3
1 0 1.25 3.25
2 −0.25 0 −1.25
3 −0.5 0.25 0

H5 1 2 3
1 0 2 4
2 −1 0 −2
3 2 1 0

1

23

Case 0B

Figure 5: The replicator equation for H5 and the frequencies
in the spatial game 1 + (1/3.25)G1 → (1, 0, 0).
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