Locoregional effects of microbiota in a preclinical model of colon carcinogenesis

Sarah Tomkovich^{1,2}, Ye Yang¹, Kathryn Winglee⁵, Josee Gauthier¹, Marcus Mühlbauer¹, Xiaolun Sun¹, Mansour Mohamadzadeh[§], Xiuli Liu⁶, Patricia Martin^{3,4}, Gary P. Wang⁷, Eric Oswald ^{3,4}, Anthony A. Fodor⁵ and Christian Jobin^{1§*}

¹Department of Medicine, [§]Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA. ²Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27713, USA. ³IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France. ⁴CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France. ⁵Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina 28223, United States. ⁶Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA. ⁷Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL 32611, USA. ^{*}Corresponding author

Supplementary Materials and Methods

16S rRNA sequencing analysis

The forward and reverse reads were stitched together using fastq-join (1). Taxonomic ranks were assigned for the stitched reads using the RDP (ribosomal database project) classifier (2) version 2.2 with confidence set to 80%. Reads were grouped by genera and the counts were normalized and log₁₀ transformed (3) using the following formula:

$$\log_{10}\left(\frac{RC}{n} \ge \frac{\sum x}{N} + 1\right)$$

where RC is the read count for a particular OTU in a particular sample, *n* is the total number of reads in that sample, the sum of *x* is the total number of reads in all samples and N is the total number of samples. The Principle Coordinate Analysis (PCoA) was generated from the Bray-Curtis distance of the normalized and log_{10} transformed counts using the capscale function in the vegan R package (4,5).

Genera significantly associated with colon tumor number or combined inflammation score were detected using the gls function in the R nlme package, with the REML method (6) to fit a generalized mixed linear model of the form:

genera ~ variable + 1|cage +
$$\varepsilon$$

where genera indicates the log₁₀ normalized abundance of a particular genera, variable indicates either the number of colon tumors or the combined inflammation score and 1|cage indicates that we used the cage as a random effect. We filtered genera absent in more than a quarter of the samples. We then ran an ANOVA analysis on the above model to generate p-values for each variable. The p-values for cage were calculated using an ANOVA to compare this model and a model with the cage removed (genera ~

variable + ε). The p-values were then adjusted for multiple hypothesis testing using the method of Benjamini & Hochberg (7). The Spearman correlation was calculated using the R function cor (5) with x as the number of colon tumors or the combined inflammation score and y as log₁₀ normalized genera abundance. The code and tables used to generate the 16S rRNA sequencing figure and supplementary table can be found at: https://github.com/afodor/apcmin.

References

- 1. Aronesty E. ea-utils : "Command-linetools for processing biological sequencing data" [Internet]. 2011 [cited 2016 Nov 4]. Available from: https://github.com/ExpressionAnalysis/ea-utils
- 2. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
- 3. McCafferty J, Mühlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, Sha W, et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J. 2013;7:2116–25.
- 4. Oksanen JB, Guillaume F, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. vegan: Community Ecology Package. 2015.
- 5. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2015.
- 6. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. 2016.
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: apractical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57:289–300.

Supplementary Figure S1.

Supplementary Figure S1. PCR detection of *F. nucleatum* adhesins. A-B) Detection of

the fadA (A) and fap2 (B) adhesins in tested F. nucleatum strains.

Supplementary Figure S2.

Supplementary Figure S2. $Apc^{Min/+}$; $II10^{-/-}$ mice have increased colon proliferation. **A-B**) CTNNB1 immunohistochemistry (IHC) from 30-40 week old SPF $Apc^{Min/+}$; $II10^{-/-}$ (**A**) and $Apc^{Min/+}$ (**B**) colons. **C-D**) PCNA IHC from SPF $Apc^{Min/+}$; $II10^{-/-}$ (**C**) and $Apc^{Min/+}$ (**D**) colons. Higher magnification of both dysplastic and normal regions are shown for SPF $Apc^{Min/+}$; $II10^{-/-}$ mice.

Supplementary Figure S3.

Supplementary Figure S3. Bacteria do not promote colon inflammation and tumorigenesis in $Apc^{Min/+}$ mice. A-C) Colon macroscopic tumor counts (A), colitis scores (B), and small intestine tumor counts (C) from GF (n=6) and SPF gavaged (n=6) $Apc^{Min/+}$ mice. Data are expressed as mean +/- standard deviation with *p< 0.05, or NS: not significant (p> 0.05) shown.

Supplementary Figure S4.

Supplementary Figure S4. Microbiota promote proximal colon proliferation in $Apc^{Min/+}$; *II10^{-/-}* mice. **A-C**) β -catenin and PCNA IHC from GF (**A**), SPF transferred (**B**), and SPF gavaged (**C**) $Apc^{Min/+}$; *II10^{-/-}* proximal colons. Higher magnification of both dysplastic and normal regions are shown for SPF transfer and gavage $Apc^{Min/+}$; *II10^{-/-}* mice.

Supplementary Figure S5.

Supplementary Figure S5. Colibactin promotes CRC development in AOM/*II10^{-/-}* mice. Colon tumor counts in 20 week *E. coli* NC101 (n=6) or $\Delta clbP$ (n=5) mono-associated AOM/*II10^{-/-}* mice. Data are expressed as mean +/- standard deviation with *p< 0.05.

Supplementary Table S2. V1-V3 MiSeq Primers

Name	Sequence
PE1_27F-1	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT CT <mark>AGTA</mark> AGAGTTTGATCCTGGCTCAG
PE1_27F-2	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT CT <mark>TCAT</mark> AGAGTTTGATCCTGGCTCAG
PE1_27F-3	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT CT <mark>GTCT</mark> AGAGTTTGATCCTGGCTCAG
PE1_27F-4	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT CTTCAAGAGAGTTTGATCCTGGCTCAG
PE1_27F-5	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT CT <mark>CTGAT</mark> AGAGTTTGATCCTGGCTCAG
PE2_534R-1	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTA AGCATTACCGCGGCTGCTGG
PE2_534R-2	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTT ACCATTACCGCGGCTGCTGG
PE2_534R-3	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTC TACATTACCGCGGCTGCTGG
PE2_534R-4	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTG CAGTATTACCGCGGCTGCTGG
PE2_534R-5	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTT AGCTATTACCGCGGCTGCTGG
PE2_534R-6	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTA GTGAATTACCGCGGCTGCTGG
PE2_534R-7	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTG TAGTGATTACCGCGGCTGCTGG
PE2_534R-8	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTC ATGCGATTACCGCGGCTGCTGG
PE2_534R-9	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTG ACTGTATTACCGCGGCTGCTGG
PE2_534R-10	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTC ACTGTATTACCGCGGCTGCTGG
PE2_534R-11	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTC AGAGCTATTACCGCGGCTGCTGG
PE2_534R-12	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTA GCATGTATTACCGCGGCTGCTGG
PE2_534R-13	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTT ATCGTGATTACCGCGGCTGCTGG
PE2_534R-14	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTG TACATCATTACCGCGGCTGCTGG
PE2_534R-15	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTG TCAGCATATTACCGCGGCTGCTGG
PE2_534R-16	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTT AGTCACGATTACCGCGGCTGCTGG
PE2_534R-17	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTA CGAGTGCATTACCGCGGCTGCTGG
PE2_534R-18	CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCTG ACCACTTATTACCGCGGCTGCTGG

Unique barcode in red.

Supplementary Table S2. Spearman correlations and corresponding p values from linear models used to generate Figure 3.

Genus	Colon	P-value	P-value	Adjusted	Adjusted	Combined	P-value for	P-value for	Adjusted P-	Adjusted P-
	Tumor	for	for	P-value	P-value	Inflammation	Combined	Cage in	value for	value for
	Number	Colon	Cage in	for	for Cage	Score	Inflammation	Mixed Model	Combined	Cage in
	Spearman	Tumor	Mixed	Colon	in Mixed	Spearman	Score	with	Inflammation	Mixed Model
	Correlation	Number	Model	Tumor	Model	Correlation		Inflammation	Score	with
			with	Number	with			Score		Inflammation
			Colon		Colon					Score
			Tumor		Tumor					
			Number		Number					
Akkermansia	0.35	0.0175	7.37E-	0.0379	2.87E-07	0.36	0.1848	4.94E-07	0.2325	1.48E-06
			08							
Alistipes	-0.03	0.0444	1.38E-	0.0693	1.80E-12	0.02	0.0094	4.90E-14	0.0194	6.36E-13
Allohaoulum	0.35	2 085 08	13	8 10E 07	0.0010	0.27	0.0010	0.0027	0.0040	0.0036
Angananlagung	0.33	2.00E-00	0.0015 1.29E	0.10E-07	0.0019 4.00E.07	0.27	0.0019	0.0027	0.0049	0.0030 7.54E 07
Anderopiasma	-0.21	0.0938	1.38E- 07	0.1507	4.90E-07	-0.20	0.1074	2.13E-07	0.1551	7.34E-07
Anaerostipes	-0.40	0.0192	0.0028	0.0395	0.0039	-0.46	0.0002	0.0084	0.0009	0.0109
Anaerotruncus	-0.42	0.0014	0.1940	0.0062	0.2162	-0.32	0.0003	0.0409	0.0013	0.0489
Anaerovorax	0.18	0.8389	2.10E- 05	0.8389	4.31E-05	-0.04	0.0500	5.02E-06	0.0813	1.15E-05
Bacteroides	0.36	0.8199	0	0.8389	0	0.29	0.6818	0	0.7386	0
Barnesiella	0.03	0.6268	0.0001	0.6607	0.0003	0.04	0.9242	0.0002	0.9485	0.0003
Bifidobacterium	0.18	0.1295	0.0008	0.1742	0.0012	0.12	0.3854	0.0014	0.4294	0.0020
Blautia	0.15	0.0044	6.84E-	0.0123	2.87E-07	0.28	5.07E-05	8.45E-09	0.0003	3.71E-08
			08							
Butyricicoccus	-0.27	0.0171	3.78E- 06	0.0379	9.22E-06	-0.32	0.0052	1.26E-06	0.0112	3.27E-06
Butyrivibrio	-0.65	5.75E-	4.03E-	0.0004	7.48E-05	-0.52	0.0002	1.86E-05	0.0009	3.81E-05
		05	05							
Clostridium IV	-0.43	5.68E-	2.10E-	0.0004	6.26E-06	-0.40	1.47E-05	3.91E-07	0.0002	1.27E-06
		05	06							
Clostridium XI	0.52	0.0012	0.0001	0.0056	0.0003	0.46	0.0008	0.0002	0.0026	0.0003
Clostridium XlVa	-0.29	0.0228	0.1387	0.0434	0.1591	-0.26	0.0016	0.1370	0.0045	0.1522
Clostridium XlVb	-0.45	0.0245	1.17E-	0.0434	3.81E-06	-0.39	1.59E-05	8.55E-09	0.0002	3.71E-08
			06							
Clostridium XVIII	-0.01	0.5614	4.28E- 10	0.6081	2.78E-09	0.17	0.1435	5.81E-10	0.1930	3.24E-09

Coprobacillus	0.19	0.0237	4.39E- 08	0.0434	2.14E-07	0.17	0.1271	1.16E-07	0.1771	4.52E-07
Coprococcus	-0.19	0.1928	0.0466	0.2425	0.0551	-0.22	0.0490	0.0414	0.0813	0.0489
Dorea	0.29	0.0138	0.0264	0.0336	0.0332	0.30	0.0161	0.0519	0.0298	0.0595
Enterococcus	0.61	8.03E- 06	0.0002	7.83E-05	0.0004	0.40	0.0003	0.0002	0.0013	0.0003
Enterorhabdus	-0.50	0.0419	2.52E- 06	0.0693	6.55E-06	-0.43	0.0049	6.31E-07	0.0112	1.76E-06
Erysipelotrichaceae incertae sedis	-0.20	0.5089	0.0034	0.5670	0.0046	-0.10	0.3202	0.0012	0.3785	0.0017
Escherichia/Shigella	0.35	0.0016	3.90E- 05	0.0062	7.48E-05	0.18	0.0999	2.72E-05	0.1498	5.31E-05
Flavonifractor	-0.19	0.1593	1.54E- 11	0.2071	1.50E-10	-0.14	0.0004	3.48E-13	0.0013	3.39E-12
Lachnoanaerobaculum	-0.46	0.0017	0.9284	0.0062	0.9284	-0.33	0.0050	0.9352	0.0112	0.9352
Lachnospiracea incertae sedis	-0.51	0.0022	1.57E- 09	0.0072	8.77E-09	-0.39	0.0012	3.06E-10	0.0035	1.99E-09
Lactobacillus	0.12	0.4745	7.86E- 11	0.5443	6.13E-10	0.18	0.9804	1.26E-10	0.9804	9.79E-10
Marvinbryantia	-0.51	0.0044	0.0004	0.0123	0.0006	-0.24	0.1580	0.0001	0.2054	0.0002
Oscillibacter	-0.70	3.37E- 06	0.0454	4.39E-05	0.0551	-0.63	1.04E-09	0.0196	4.07E-08	0.0246
Pseudoflavonifractor	-0.61	1.03E- 06	0.5268	2.02E-05	0.5553	-0.58	5.38E-09	0.1405	1.05E-07	0.1522
Robinsoniella	0.29	0.0073	3.22E- 15	0.0189	6.28E-14	0.15	0.0669	3.89E-15	0.1043	7.58E-14
Roseburia	-0.18	0.0441	8.28E- 06	0.0693	1.90E-05	-0.25	0.0134	9.60E-06	0.0260	2.08E-05
Ruminococcus2	-0.31	0.0866	1.62E- 05	0.1251	3.52E-05	-0.40	0.0310	8.24E-05	0.0550	0.0002
Staphylococcus	-0.16	0.2232	0.8027	0.2720	0.8238	-0.12	0.3724	0.6830	0.4271	0.7010
Streptococcus	-0.28	0.0745	0.3529	0.1118	0.3823	-0.23	0.2006	0.5401	0.2445	0.5693
Syntrophococcus	-0.62	0.0001	0.0039	0.0007	0.0051	-0.49	2.57E-05	0.0001	0.0002	0.0002
Turicibacter	0.21	0.2970	2.25E- 06	0.3510	6.26E-06	-0.01	0.7483	2.34E-06	0.7887	5.70E-06

Supplementary Table S3. Accession numbers for 16S rRNA sequenced *Apc^{Min/+}; II10^{-/-}* stool samples from Figure 3.

Sample ID	SRA accession	number of reads	cage	colon tumor	combined
	number			number	inflammation
					score
1	SRR4453219	288706	54802	1	0.5
2	SRR4453218	273580	637823	2	0.875
3	SRR4453243	239102	51541	8	2.875
5	SRR4453220	388330	52048	2	0
6	SRR4453246	288676	54253	8	2.5
7	SRR4453208	419434	56547	15	3.125
8	SRR4453217	300654	584724	2	0.75
10	SRR4453213	192538	53690	1	0.875
11	SRR4453248	247728	55908	3	1.375
12	SRR4453223	241112	52561	3	2.125
13	SRR4453252	318654	55906	1	0.375
14	SRR4453251	257246	644039	22	3.25
15	SRR4453211	257872	55907	0	0.75
17	SRR4453185	308250	578031	7	2.25
18	SRR4453245	234064	55908	3	0.875
19	SRR4453244	250950	55907	0	0.5
20	SRR4453214	279160	51541	1	0.25
21	SRR4453247	317838	56800	2	0
22	SRR4453206	224598	56800	2	1.75
23	SRR4453212	232396	50925	2	0.5
25	SRR4453210	266526	51542	0	0
26	SRR4453216	182184	50927	2	0.5
27	SRR4453241	252032	54252	2	0.5
28	SRR4453242	247056	54803	2	0
29	SRR4453205	238380	605881	6	2.375
30	SRR4453222	221232	54530	5	1.375
31	SRR4453224	262342	578031	13	2.5
33	SRR4453250	264660	51542	0	0.25
34	SRR4453202	219824	578030	2	0
35	SRR4453207	139938	625434	6	2.25
36	SRR4453249	247550	50927	1	0.25
37	SRR4453196	207336	669929	21	3.25
38	SRR4453195	211686	584724	1	2
39	SRR4453194	206174	55906	0	1.75
40	SRR4453201	215064	56548	9	3.25
41	SRR4453200	194462	56800	1	0.5
42	SRR4453199	191006	50926	10	3.875
43	SRR4453198	196080	50925	2	0.625
44	SRR4453204	192844	54802	6	2.75
45	SRR4453203	194830	55907	9	3.5
46	SRR4453235	230700	56801	2	0.375
47	SRR4453236	233494	52048	10	2.5
49	SRR4453215	271316	50928	1	1.875
51	SRR4453221	184994	52933	0	0.375
52	SRR4453239	203852	52048	12	0.75
53	SRR4453240	213666	55906	1	0.25
54	SRR4453237	200366	637823	2	0.375
55	SRR4453238	218774	54252	1	0.25

56	SRR4453209	190800	56548	7	3.25
57	SRR4453197	301744	578030	0	0
58	SRR4453187	205868	639275	6	2.25
59	SRR4453186	240942	54530	7	2.5
61	SRR4453189	207414	53690	0	0.75
62	SRR4453188	223306	584725	2	1.1
63	SRR4453191	250208	52560	5	1.75
65	SRR4453190	283568	50928	0	0.75
66	SRR4453193	238832	639275	4	1.625
67	SRR4453192	216246	605881	3	1.75
68	SRR4453184	290478	56548	7	2.25
70	SRR4453183	223168	53691	1	0
71	SRR4453225	867326	53690	2	0.5
72	SRR4453226	175708	54967	0	0
73	SRR4453227	242832	584724	0	1
74	SRR4453228	220574	54967	0	0.375
75	SRR4453229	218900	644039	15	2.625
76	SRR4453230	237422	50925	6	2.5
77	SRR4453231	243032	54253	16	1.5
78	SRR4453232	210244	51542	1	0.375
79	SRR4453233	331504	53690	2	0.75
80	SRR4453234	222050	605882	0	0.25
Average		250163.1714		4.23	1.31
Standard		88400.39565		5.02	1.10
deviation					