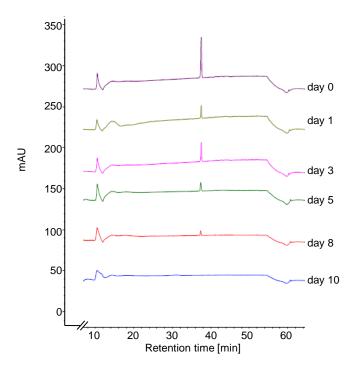
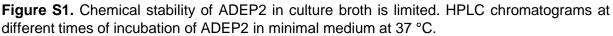
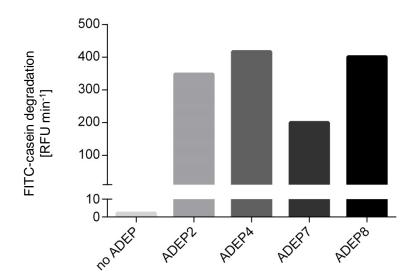
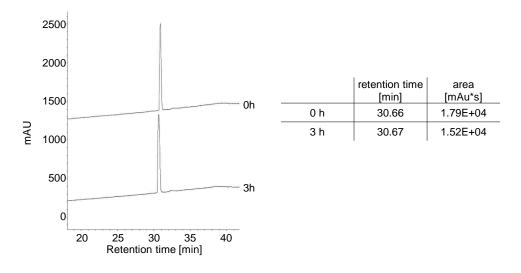
Supporting Information


Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease


Kirsten Famulla¹, Peter Sass¹, Imran Malik¹, Tatos Akopian², Olga Kandror², Marina Alber³, Berthold Hinzen⁴, Helga Ruebsamen-Schaeff⁵, Rainer Kalscheuer³, Alfred Goldberg², and Heike Brötz-Oesterhelt¹


¹Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany; ²Department of Cell Biology, Harvard Medical School, Boston, MA; ³Institute for Medical Microbiology and Hospital Hygiene, University of Duesseldorf; ⁴Bayer Pharma AG, Wuppertal, Germany; ⁵AiCuris GmbH & Co. KG, Wuppertal, Germany.

primer	sequence	restriction site
Construction of <i>M. bo</i>	ovis BCG Pasteur clpP1-tet off:	
<i>clpP1</i> -F1-fwd	5`-TTTTTTTCCATAAATTGGAGCCCGGTTCAATGAGTTGC-3`	Van911
<i>clpP1</i> -F1-rev	5`-TTTTTTTCCATTTCTTGGTCAGGGGCACCTGCTTTCC-3`	<i>Van</i> 911
clpP1-F2-fwd	5`-TTTTTTGCATCTTTTGCCAAACCGTATTCCAGGG-3`	<i>Bst</i> API
clpP1-F2-rev	5`-TTTTTTTGCATAGATTGCATGAGCCAAGTGACTGACATGC-3`	<i>Bst</i> API
c- <i>clpP1</i> -fwd	5'-ACGAAGCGACAACGTGAC-3'	
c- <i>clpP1</i> -rev	5'-GGGAATTCACTGTGCTTCTC-3'	
seq- <i>clpP1</i> -fwd	5'-CACGACTTCGAGGTGTTC-3'	
seq- <i>clpP</i> 2-rev	5'-GGGAATTCACTGTGCTTCTC-3'	
<i>rev-tetR</i> -fwd	5'-TTTTTGAATTCATGAGCACGATCCGCGGTACCATC-3'	EcoR1
<i>rev-tetR</i> -rev	5'-TTTTTAAGCTTAGGAGCCGCTCTCGCACTTCAG-3'	<i>Hin</i> dIII
Cloning of MTB ftsZ:		
MTB ftsZ-fwd	5'-TTTCCATGGCCCCCCGCACAACTACC-3'	Ncol
MTB ftsZ-rev	5'-AAAAAGCTTGCGGCGCATGAAGGGCGG-3'	<i>Hin</i> dIII
qRT-PCR of MTB clpl	P expression:	
q <i>clpP1</i> -fwd	5'- TGAGCCAAGTGACTGACAT-3'	
q <i>clpP1</i> -rev	5'- GATGTAGAGGCTGATGTCCT-3'	


Table S1. Primer used in this study.

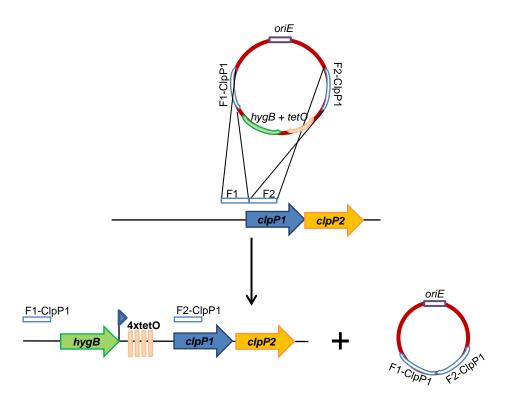


Figure S2. Degradation of FITC-casein by BS ClpP. Reaction rate [increase in RFU min⁻¹] calculated from the initial linear period of enzyme activity (10 min). ADEPs activate BS ClpP much more strongly than MTB ClpP1P2 under the same assay conditions.

Figure S3. The HPLC chromatogram shows that Z-LL is not degraded by BS ClpP after 3 hours incubation at 37 °C.

Figure S4. Construction of *M. bovis* BCG *clpP1-tetoff.* The *hyg*-P*myc1*-4*xtetO* cassette was inserted upstream of the *clpP1P2* operon via homologous recombination. Then, the plasmid which expresses the TetR repressor was introduced to obtain *M. bovis* BCG *clpP1-tetoff.*

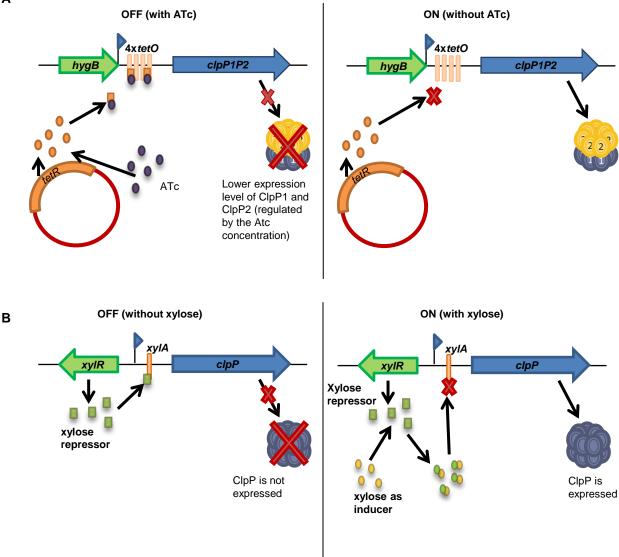


Figure S5. Schematic representation of the inducible mutants used in this study.

A. Operating mode of the Tet-Off system in strain *M. bovis* BCG *clpP1-tetoff* in the absence and presence of ATc. In the absence of ATc, the TetR repressor cannot bind to the tetO sites upstream the *clpP1P2* operon, *clpP1* and *clpP2* are expressed. In the presence of ATc, TetR undergoes a conformational change that now allows binding to the tetO sites. Thus, the expression level of clpP1P2 can be regulated via the ATc concentration. B. Operating mode of the Xyl-On system in B. subtilis 168-pX2-clpP in the absence and presence of xylose. In the absence of xylose, the repressor XyIR can binds to the xylA operator palindrome upstream of *clpP*, thereby silencing *clpP* expression. Xylose functions as an inducer in this system. The presence of xylose leads to a conformational change in XyIR, which is now incapable to bind to xyIA operator, thereby allowing clpP expression